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1 THE WAVE FUNCTION

1.1 THE SCHRÖDINGER EQUATION

Imagine a particle of mass m, constrained to move along the x axis, subject to some specified

force F(x, t) (Figure 1.1). The program of classical mechanics is to determine the position of

the particle at any given time: x(t). Once we know that, we can figure out the velocity (v =

dx/dt), the momentum (p = mv), the kinetic energy
�

T = (1/2)mv2
�

, or any other dynamical

variable of interest. And how do we go about determining x(t)? We apply Newton’s second

law: F = ma. (For conservative systems—the only kind we shall consider, and, fortunately, the

only kind that occur at the microscopic level—the force can be expressed as the derivative of

a potential energy function,1 F = 2"V/"x , and Newton’s law reads m d2x/dt2 = 2"V/"x .)

This, together with appropriate initial conditions (typically the position and velocity at t = 0),

determines x(t).

Quantum mechanics approaches this same problem quite differently. In this case what we’re

looking for is the particle’s wave function, "(x, t), and we get it by solving the Schrödinger

equation:

i�
""

"t
= 2

�
2

2m

"2"

"x2
+ V ". (1.1)

Here i is the square root of 21, and � is Planck’s constant—or rather, his original constant (h)

divided by 2Ã :

� =
h

2Ã
= 1.054573 × 10234 J s. (1.2)

The Schrödinger equation plays a role logically analogous to Newton’s second law: Given

suitable initial conditions (typically, "(x, 0)), the Schrödinger equation determines "(x, t)

for all future time, just as, in classical mechanics, Newton’s law determines x(t) for all future

time.2

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function,” and what does it do for you once you’ve got it? After

all, a particle, by its nature, is localized at a point, whereas the wave function (as its name

1 Magnetic forces are an exception, but let’s not worry about them just yet. By the way, we shall assume throughout

this book that the motion is nonrelativistic (v � c).
2 For a delightful first-hand account of the origins of the Schrödinger equation see the article by Felix Bloch in Physics

Today, December 1976.
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4 CHAPTER 1 The Wave Function
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Figure 1.1: A “particle” constrained to move in one dimension under the influence of a specified force.
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b

Figure 1.2: A typical wave function. The shaded area represents the probability of finding the particle

between a and b. The particle would be relatively likely to be found near A, and unlikely to be found

near B.

suggests) is spread out in space (it’s a function of x , for any given t). How can such an object

represent the state of a particle? The answer is provided by Born’s statistical interpretation,

which says that |"(x, t)|2 gives the probability of finding the particle at point x , at time t—or,

more precisely,3

� b

a

|"(x, t)|2 dx =

�

probability of finding the particle

between a and b, at time t.

�

(1.3)

Probability is the area under the graph of |"|2. For the wave function in Figure 1.2, you would

be quite likely to find the particle in the vicinity of point A, where |"|2 is large, and relatively

unlikely to find it near point B.

The statistical interpretation introduces a kind of indeterminacy into quantum mechanics,

for even if you know everything the theory has to tell you about the particle (to wit: its wave

function), still you cannot predict with certainty the outcome of a simple experiment to measure

its position—all quantum mechanics has to offer is statistical information about the possi-

ble results. This indeterminacy has been profoundly disturbing to physicists and philosophers

alike, and it is natural to wonder whether it is a fact of nature, or a defect in the theory.

Suppose I do measure the position of the particle, and I find it to be at point C .4 Question:

Where was the particle just before I made the measurement? There are three plausible answers

3 The wave function itself is complex, but |"|2 = "7" (where "7 is the complex conjugate of ") is real and

non-negative—as a probability, of course, must be.
4 Of course, no measuring instrument is perfectly precise; what I mean is that the particle was found in the vicinity of

C , as defined by the precision of the equipment.
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1.2 The Statistical Interpretation 5

to this question, and they serve to characterize the main schools of thought regarding quantum

indeterminacy:

1. The realist position: The particle was at C. This certainly seems

reasonable, and it is the response Einstein advocated. Note, however,

that if this is true then quantum mechanics is an incomplete theory, since the

particle really was at C , and yet quantum mechanics was unable to tell us so.

To the realist, indeterminacy is not a fact of nature, but a reflection of our

ignorance. As d’Espagnat put it, “the position of the particle was never

indeterminate, but was merely unknown to the experimenter.”5 Evidently

" is not the whole story—some additional information (known as a

hidden variable) is needed to provide a complete description of the

particle.

2. The orthodox position: The particle wasn’t really anywhere. It was the

act of measurement that forced it to “take a stand” (though how and why it

decided on the point C we dare not ask). Jordan said it most starkly:

“Observations not only disturb what is to be measured, they produce it . . . We

compel [the particle] to assume a definite position.”6 This view (the so-called

Copenhagen interpretation), is associated with Bohr and his followers.

Among physicists it has always been the most widely accepted position. Note,

however, that if it is correct there is something very peculiar about the act of

measurement—something that almost a century of debate has done precious

little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly

as it sounds—after all, what sense can there be in making assertions about the

status of a particle before a measurement, when the only way of knowing

whether you were right is precisely to make a measurement, in which case what

you get is no longer “before the measurement”? It is metaphysics (in the

pejorative sense of the word) to worry about something that cannot, by its

nature, be tested. Pauli said: “One should no more rack one’s brain about the

problem of whether something one cannot know anything about exists all the

same, than about the ancient question of how many angels are able to sit on the

point of a needle.”7 For decades this was the “fall-back” position of most

physicists: they’d try to sell you the orthodox answer, but if you were

persistent they’d retreat to the agnostic response, and terminate the

conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had their parti-

sans. But in 1964 John Bell astonished the physics community by showing that it makes an

observable difference whether the particle had a precise (though unknown) position prior to

5 Bernard d’Espagnat, “The Quantum Theory and Reality” (Scientific American, November 1979, p. 165).
6 Quoted in a lovely article by N. David Mermin, “Is the moon there when nobody looks?” (Physics Today, April

1985, p. 38).
7 Ibid., p. 40.
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6 CHAPTER 1 The Wave Function

xC

Ψ2

Figure 1.3: Collapse of the wave function: graph of |"|2 immediately after a measurement has found the

particle at point C .

the measurement, or not. Bell’s discovery effectively eliminated agnosticism as a viable option,

and made it an experimental question whether 1 or 2 is the correct choice. I’ll return to this

story at the end of the book, when you will be in a better position to appreciate Bell’s argu-

ment; for now, suffice it to say that the experiments have decisively confirmed the orthodox

interpretation:8 a particle simply does not have a precise position prior to measurement, any

more than the ripples on a pond do; it is the measurement process that insists on one partic-

ular number, and thereby in a sense creates the specific result, limited only by the statistical

weighting imposed by the wave function.

What if I made a second measurement, immediately after the first? Would I get C again,

or does the act of measurement cough up some completely new number each time? On

this question everyone is in agreement: A repeated measurement (on the same particle)

must return the same value. Indeed, it would be tough to prove that the particle was really

found at C in the first instance, if this could not be confirmed by immediate repetition of

the measurement. How does the orthodox interpretation account for the fact that the sec-

ond measurement is bound to yield the value C? It must be that the first measurement

radically alters the wave function, so that it is now sharply peaked about C (Figure 1.3).

We say that the wave function collapses, upon measurement, to a spike at the point C (it

soon spreads out again, in accordance with the Schrödinger equation, so the second mea-

surement must be made quickly). There are, then, two entirely distinct kinds of physical

processes: “ordinary” ones, in which the wave function evolves in a leisurely fashion under

the Schrödinger equation, and “measurements,” in which " suddenly and discontinuously

collapses.9

8 This statement is a little too strong: there exist viable nonlocal hidden variable theories (notably David Bohm’s), and

other formulations (such as the many worlds interpretation) that do not fit cleanly into any of my three categories.

But I think it is wise, at least from a pedagogical point of view, to adopt a clear and coherent platform at this stage,

and worry about the alternatives later.
9 The role of measurement in quantum mechanics is so critical and so bizarre that you may well be wondering what

precisely constitutes a measurement. I’ll return to this thorny issue in the Afterword; for the moment let’s take the

naive view: a measurement is the kind of thing that a scientist in a white coat does in the laboratory, with rulers,

stopwatches, Geiger counters, and so on.
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1.2 The Statistical Interpretation 7

Example 1.1

Electron Interference. I have asserted that particles (electrons, for example) have a wave

nature, encoded in ". How might we check this, in the laboratory?

The classic signature of a wave phenomenon is interference: two waves in phase

interfere constructively, and out of phase they interfere destructively. The wave nature

of light was confirmed in 1801 by Young’s famous double-slit experiment, showing

interference “fringes” on a distant screen when a monochromatic beam passes through

two slits. If essentially the same experiment is done with electrons, the same pattern

develops,10 confirming the wave nature of electrons.

Now suppose we decrease the intensity of the electron beam, until only one electron is

present in the apparatus at any particular time. According to the statistical interpretation

each electron will produce a spot on the screen. Quantum mechanics cannot predict the

precise location of that spot—all it can tell us is the probability of a given electron landing

at a particular place. But if we are patient, and wait for a hundred thousand electrons—one

at a time—to make the trip, the accumulating spots reveal the classic two-slit interference

pattern (Figure 1.4).11

a b

c d

Figure 1.4: Build-up of the electron interference pattern. (a) Eight electrons, (b) 270 electrons,

(c) 2000 electrons, (d) 160,000 electrons. Reprinted courtesy of the Central Research Laboratory,

Hitachi, Ltd., Japan.

10 Because the wavelength of electrons is typically very small, the slits have to be extremely close together. Histori-

cally, this was first achieved by Davisson and Germer, in 1925, using the atomic layers in a crystal as “slits.” For

an interesting account, see R. K. Gehrenbeck, Physics Today, January 1978, page 34.
11 See Tonomura et al., American Journal of Physics, Volume 57, Issue 2, pp. 117–120 (1989), and the amazing asso-

ciated video at www.hitachi.com/rd/portal/highlight/quantum/doubleslit/. This experiment can now be done with

much more massive particles, including “Bucky-balls”; see M. Arndt, et al., Nature 40, 680 (1999). Incidentally,

the same thing can be done with light: turn the intensity so low that only one “photon” is present at a time and

you get an identical point-by-point assembly of the interference pattern. See R. S. Aspden, M. J. Padgett, and

G. C. Spalding, Am. J. Phys. 84, 671 (2016).
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8 CHAPTER 1 The Wave Function

Of course, if you close off one slit, or somehow contrive to detect which slit each

electron passes through, the interference pattern disappears; the wave function of the

emerging particle is now entirely different (in the first case because the boundary con-

ditions for the Schrödinger equation have been changed, and in the second because of

the collapse of the wave function upon measurement). But with both slits open, and

no interruption of the electron in flight, each electron interferes with itself; it didn’t

pass through one slit or the other, but through both at once, just as a water wave,

impinging on a jetty with two openings, interferes with itself. There is nothing mysteri-

ous about this, once you have accepted the notion that particles obey a wave equation.

The truly astonishing thing is the blip-by-blip assembly of the pattern. In any classi-

cal wave theory the pattern would develop smoothly and continuously, simply getting

more intense as time goes on. The quantum process is more like the pointillist painting

of Seurat: The picture emerges from the cumulative contributions of all the individual

dots.12

1.3 PROBABILITY

1.3.1 Discrete Variables

Because of the statistical interpretation, probability plays a central role in quantum mechan-

ics, so I digress now for a brief discussion of probability theory. It is mainly a question

of introducing some notation and terminology, and I shall do it in the context of a simple

example.

Imagine a room containing fourteen people, whose ages are as follows:

one person aged 14,

one person aged 15,

three people aged 16,

two people aged 22,

two people aged 24,

five people aged 25.

If we let N ( j) represent the number of people of age j , then

N (14) = 1,

N (15) = 1,

N (16) = 3,

N (22) = 2,

N (24) = 2,

N (25) = 5,

12 I think it is important to distinguish things like interference and diffraction that would hold for any wave theory

from the uniquely quantum mechanical features of the measurement process, which derive from the statistical

interpretation.
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1.3 Probability 9

j

N(j)

10 11 12 13 14 15 1716 18 19 20 21 22 23 24 25 26

Figure 1.5: Histogram showing the number of people, N ( j), with age j , for the example in Section 1.3.1.

while N (17), for instance, is zero. The total number of people in the room is

N =

>
"

j=0

N ( j). (1.4)

(In the example, of course, N = 14.) Figure 1.5 is a histogram of the data. The following are

some questions one might ask about this distribution.

Question 1 If you selected one individual at random from this group, what is the probability

that this person’s age would be 15?

Answer One chance in 14, since there are 14 possible choices, all equally likely, of whom

only one has that particular age. If P( j) is the probability of getting age j , then P(14) =

1/14, P(15) = 1/14, P(16) = 3/14, and so on. In general,

P( j) =
N ( j)

N
. (1.5)

Notice that the probability of getting either 14 or 15 is the sum of the individual probabilities

(in this case, 1/7). In particular, the sum of all the probabilities is 1—the person you select

must have some age:

>
"

j=0

P( j) = 1. (1.6)

Question 2 What is the most probable age?

Answer 25, obviously; five people share this age, whereas at most three have any other age.

The most probable j is the j for which P( j) is a maximum.

Question 3 What is the median age?

Answer 23, for 7 people are younger than 23, and 7 are older. (The median is that value of

j such that the probability of getting a larger result is the same as the probability of getting a

smaller result.)

Question 4 What is the average (or mean) age?

Answer

(14) + (15) + 3(16) + 2(22) + 2(24) + 5(25)

14
=

294

14
= 21.
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10 CHAPTER 1 The Wave Function

In general, the average value of j (which we shall write thus: � j�) is

� j� =

�

j N ( j)

N
=

>
"

j=0

j P( j). (1.7)

Notice that there need not be anyone with the average age or the median age—in this example

nobody happens to be 21 or 23. In quantum mechanics the average is usually the quantity of

interest; in that context it has come to be called the expectation value. It’s a misleading term,

since it suggests that this is the outcome you would be most likely to get if you made a single

measurement (that would be the most probable value, not the average value)—but I’m afraid

we’re stuck with it.

Question 5 What is the average of the squares of the ages?

Answer You could get 142 = 196, with probability 1/14, or 152 = 225, with probability 1/14,

or 162 = 256, with probability 3/14, and so on. The average, then, is

�

j2
�

=

>
"

j=0

j2 P( j). (1.8)

In general, the average value of some function of j is given by

� f ( j)� =

>
"

j=0

f ( j)P( j). (1.9)

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) Beware: The average

of the squares,
�

j2
�

, is not equal, in general, to the square of the average, � j�2. For instance, if

the room contains just two babies, aged 1 and 3, then
�

j2
�

= 5, but � j�2 = 4.

Now, there is a conspicuous difference between the two histograms in Figure 1.6, even

though they have the same median, the same average, the same most probable value, and the

same number of elements: The first is sharply peaked about the average value, whereas the

second is broad and flat. (The first might represent the age profile for students in a big-city

classroom, the second, perhaps, a rural one-room schoolhouse.) We need a numerical measure

j

N(j)

j

N(j)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 1.6: Two histograms with the same median, same average, and same most probable value, but

different standard deviations.
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1.3 Probability 11

of the amount of “spread” in a distribution, with respect to the average. The most obvious way

to do this would be to find out how far each individual is from the average,

� j = j 2 � j� , (1.10)

and compute the average of � j . Trouble is, of course, that you get zero:

�� j� =
"

( j 2 � j�)P( j) =
"

j P( j) 2 � j�
"

P( j)

= � j� 2 � j� = 0.

(Note that � j� is constant—it does not change as you go from one member of the sample to

another—so it can be taken outside the summation.) To avoid this irritating problem you might

decide to average the absolute value of � j . But absolute values are nasty to work with; instead,

we get around the sign problem by squaring before averaging:

Ã 2 c
�

(� j)2
�

. (1.11)

This quantity is known as the variance of the distribution; Ã itself (the square root of the aver-

age of the square of the deviation from the average—gulp!) is called the standard deviation.

The latter is the customary measure of the spread about � j�.

There is a useful little theorem on variances:

Ã 2 =
�

(� j)2
�

=
"

(� j)2 P( j) =
"

( j 2 � j�)2 P( j)

=
"

"

j2 2 2 j � j� + � j�2
"

P( j)

=
"

j2 P( j) 2 2 � j�
"

j P( j) + � j�2
"

P( j)

=
�

j2
�

2 2 � j� � j� + � j�2 =
�

j2
�

2 � j�2 .

Taking the square root, the standard deviation itself can be written as

Ã =

"

�

j2
�

2 � j�2. (1.12)

In practice, this is a much faster way to get Ã than by direct application of Equation 1.11:

simply calculate
�

j2
�

and � j�2, subtract, and take the square root. Incidentally, I warned you a

moment ago that
�

j2
�

is not, in general, equal to � j�2. Since Ã 2 is plainly non-negative (from

its definition 1.11), Equation 1.12 implies that
�

j2
�

g � j�2 , (1.13)

and the two are equal only when Ã = 0, which is to say, for distributions with no spread at all

(every member having the same value).

1.3.2 Continuous Variables

So far, I have assumed that we are dealing with a discrete variable—that is, one that can take

on only certain isolated values (in the example, j had to be an integer, since I gave ages only

in years). But it is simple enough to generalize to continuous distributions. If I select a random

person off the street, the probability that her age is precisely 16 years, 4 hours, 27 minutes,

and 3.333. . . seconds is zero. The only sensible thing to speak about is the probability that

her age lies in some interval—say, between 16 and 17. If the interval is sufficiently short, this

probability is proportional to the length of the interval. For example, the chance that her age is

between 16 and 16 plus two days is presumably twice the probability that it is between 16 and
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