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1 Special Relativity

1.1 Geometry

Special relativity focuses our attention on the geometry of space-time, rather than the usual

Euclidean geometry of space by itself. We’ll start by reviewing the role of rotations as a

transformation that preserves a specific definition of length, then introduce Lorentz boosts

as the analogous transformation that preserves a new definition of length.

1.1.1 Rotations

In two dimensions, we know it makes little difference (physically) how we orient the x̂

and ŷ axes – the laws of physics do not depend on the axis orientation. The description of

those laws changes a little (what is “straight down” for one set of axes might be “off to the

side” for another, as in Figure 1.1), but their fundamental predictions are independent of

the details of these basis vectors.

A point in one coordinate system can be described in terms of a rotated coordinate

system. For a vector that points from the origin to the point labeled by x and y in the x̂,

ŷ basis vectors: r = x x̂ + y ŷ, we want a description of the same point in the coordinate

system with basis vectors ˆ̄x and ˆ̄y – i.e., what are x̄ and ȳ in r̄ = x̄ ˆ̄x + ȳ ˆ̄y? Referring

to Figure 1.2, we can use the fact that the length of the vector r is the same as the length of

the vector r̄ – lengths are invariant under rotation. If we call the length r, then:

x̄ = r cos(ψ − θ) = r cos ψ cos θ + r sin ψ sin θ = x cos θ + y sin θ

ȳ = r sin(ψ − θ) = r sin ψ cos θ − r cos ψ sin θ = y cos θ − x sin θ .
(1.1)

So we know how to go back and forth between the barred coordinates and the unbarred

ones. The connection between the two is provided by the invariant1 length of the vector.

In fact, the very definition of a rotation “transformation” between two coordinate systems

is tied to length invariance. We could start with the idea that two coordinate systems agree

on the length of a vector and use that to generate the transformation (1.1). Let’s see how

that goes: the most general linear transformation connecting x̄ and ȳ to x and y is

x̄ = A x + B y

ȳ = C x + D y
(1.2)

1 Invariant here means “the same in all coordinate systems related by some transformation.”
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2 Special Relativity
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Fig. 1.1 Two diferent orientations for the x̂ and ŷ basis vectors. In either case, the laws of physics are the same

(e.g., F = m a holds in both).
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Fig. 1.2 The same point in two diferent bases (rotated by an angle θ with respect to one another). The angleψ is the

angle made by the vector with the x̂-axis.

for constants A, B, C, and D. Now, if we demand that x̄2 + ȳ2 = x2 + y2, we have:

(

A2 + C2
)

x2 +
(

B2 + D2
)

y2 + 2 (A B + C D) x y = x2 + y2
, (1.3)

and then the requirement is: A2 + C2 = 1, B2 + D2 = 1, and A B + C D = 0. We can

satisfy these with a one-parameter family of solutions by letting A = cos θ , B = sin θ ,

C = − sin θ , and D = cos θ for arbitrary parameter θ . These choices reproduce (1.1)

(other choices give back clockwise rotation).

1.1.2 Boosts

There is a fundamental invariant in special relativity, a quantity like length for rotations,

that serves to define the transformation of interest. We’ll start with the invariant and then

build the transformation that preserves it. The length invariant used above for rotations

comes from the Pythagorean notion of length. The invariant “length” in special relativity

comes from the first postulate of the theory:

The speed of light is the same in all frames of reference traveling at constant velocity

with respect to one another.
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3 Geometry

The idea, experimentally verified, is that no matter what you are doing, light has speed c.

If you are at rest in a laboratory, and you measure the speed of light, you will get c. If you

are running alongside a light beam in your laboratory, you will measure its speed to be c.

If you are running toward a light beam in your laboratory, you will measure speed c. If the

light is not traveling in some medium (like water), its speed will be c. This observation is

very different from our everyday experience measuring relative speeds. If you are traveling

at 25 mph to the right, and I am traveling next to you at 25 mph, then our relative speed is

0 mph. Not so with light.

What does the constancy of the speed of light tell us about lengths? Well, suppose I

measure the position of light in my (one-dimensional) laboratory as a function of time:

I flash a light on and off at time t = 0 at the origin of my coordinate system. Then the

position of the light flash at time t is given by x = c t. Your laboratory, moving at constant

speed with respect to mine, would call the position of the flash: x̄ = c t̄ (assuming your lab

lined up with mine at t = t̄ = 0 and x = x̄ = 0) at your time t̄. We can make this look a lot

like the Pythagorean length by squaring – our two coordinate systems must agree that:

− c2 t̄2 + x̄2 = −c2 t2 + x2 = 0. (1.4)

Instead of x2 +y2, the new invariant is −c2 t2 +x2. There are two new elements here: (1)

c t is playing the role of a coordinate like x (the fact that c is the same for everyone makes it

a safe quantity for setting units), and (2) the sign of the temporal portion is negative. Those

aside, we have our invariant. While it was motivated by the constancy of the speed of light

and applied in that setting, we’ll now promote the invariant to a general rule (see Section

1.2.3 if this bothers you), and find the transformation that leaves the value −c2 t2 + x2

unchanged. Working from the most general linear transformation relating c t̄ and x̄ to c t

and x:

c t̄ = A (c t) + B x

x̄ = C (c t) + D x,
(1.5)

and evaluating −c2 t̄2 + x̄2,

− (c t̄)2 + x̄2 = −
(

A2 − C2
)

(c t)2 + 2 x (c t) (C D − A B) +
(

D2 − B2
)

x2
, (1.6)

we can see that to make this equal to −c2 t2 +x2, we must have A2 −C2 = 1, D2 −B2 = 1,

and C D−A B = 0. This is a lot like the requirements for length invariance above, but with

funny signs. Noting that the hyperbolic version of cos2 θ + sin2 θ = 1 is

cosh
2 η − sinh

2 η = 1, (1.7)

we can write A = cosh η, C = sinh η, D = cosh η, and B = sinh η. The transformation

analogous to (1.1) is then:

c t̄ = (c t) cosh η + x sinh η

x̄ = (c t) sinh η + x cosh η.
(1.8)

That’s the form of the so-called Lorentz transformation. The parameter η, playing the role

of θ for rotations, is called the “rapidity” of the transformation.
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4 Special Relativity
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Fig. 1.3 A frame L and another frame, L̄, moving to the right with speed v (in L). At time t = 0 in L, we have t̄ = 0 and

x = x̄ = 0. Then at time t, the origin of L̄ is at horizontal location x = v t in L.

We can attach a physical picture to the transformation. Let the barred axes move with

speed v to the right in the unbarred axes (the “lab frame,” L). At time t = 0, we agree that

t̄ = 0 and the spatial origins coincide (x = x̄ = 0, similar to keeping the origin fixed in rota-

tions). Then the barred axes (the “moving frame,” L̄) have points (c t̄, x̄) related to the points

in L by (1.8), and we need to find the relation between η and v. Referring to Figure 1.3,

the origin of L̄ is moving according to x = v t in L. So we know to associate x̄ = 0 with

x = v t, and using the second equation in (1.8) with this information gives:

0 = c t sinh η + v t cosh η −→ tanh η = −v

c
. (1.9)

We can isolate both sinh η and cosh η given tanh η and the identity cosh2 η − sinh2 η = 1:

sinh η = −
v
c

√

1 − v2

c2

, cosh η = 1
√

1 − v2

c2

. (1.10)

From these it is convenient to define the dimensionless quantities:

γ ≡ 1
√

1 − v2

c2

, β ≡ v

c
, (1.11)

and then (1.8) can be written:

c t̄ = γ ((c t) − x β)

x̄ = γ (−(c t) β + x) .
(1.12)

This form of the “Lorentz boost” is equivalent to the hyperbolic cosine and sine

transformation in (1.8) (which connect nicely with rotations), but written with the physical

configuration (one lab traveling at constant speed with respect to another) in mind.

Problem 1.1 The definition of hyperbolic cosine is cosh η = 1
2

(

eη + e−η
)

, and

hyperbolic sine is sinh η = 1
2

(

eη − e−η
)

. Using these definitions, show that cosh2 η −
sinh2 η = 1.
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5 Examples and Implications

Problem 1.2 Using the configuration shown in Figure 1.3, develop the “inverse Lorentz

transformation” relating c t and x to c t̄ and x̄ (inverting (1.12)). Hint: don’t do any algebra.

Problem 1.3 Starting from tanh η = − v
c
, use the properties of hyperbolic sine and cosine

to establish (1.10).

Problem 1.4 Show that −c2 t̄2 + x̄2 = −c2 t2 + x2 using the Lorentz transformations in

“boost” form (1.12). If we take x–y coordinates (in addition to time), we would write the

invariant as s2 ≡ −c2 t2 + x2 + y2. Show that rotations (1.1) (with t̄ = t) also preserve this

“length”; i.e., show that −c2 t̄2 + x̄2 + ȳ2 = −c2 t2 + x2 + y2 where the spatial coordinates

x and y are related by a rotation.

1.2 Examples and Implications

The Lorentz transformation is easy to describe and understand in terms of redefined

“length,” but its geometric implications for space and time are less familiar than their

rotational analogues. For rotations, statements like “one lab’s north is another’s northwest”

are perfectly reasonable, with no problem of interpretation. The inclusion of time in the

transformation, allowing for relations like “one lab’s time is another’s space-and-time”

sound more interesting but are really of the same basic type.

1.2.1 Length Contraction and Time Dilation

We can think of two “labs,” L and L̄, and compare observations made in each. We’ll refer

to the setup in Figure 1.3, so that the lab L̄ moves at speed v to the right within L (and

x = x̄ = 0 at t = t̄ = 0). As an example of moving measurements from one lab to the other:

suppose we have a rod at rest in L̄. Its length is 	x̄ as measured in L̄. What is the length of

the rod in L? In order to make a pure length measurement, we will find 	x with 	t = 0,

i.e., an instantaneous
2 length measurement in L. From the Lorentz transformation (1.12),

we have:

	x̄ = γ (−c 	t β + 	x) = γ 	x −→ 	x = 1

γ
	x̄ =

√

1 − v2

c2
	x̄. (1.13)

For3 v < c, we have 	x < 	x̄, and the moving rod has a length in L that is less than

its length in L̄. We cryptically refer to this phenomenon as length contraction and say that

“moving objects are shortened.” To be concrete, suppose v = 3
5

c, then a meter stick in L̄

(	x̄ = 1 m) has length 	x = 4
5

m in L.

What happens to a pure temporal measurement? Take a clock in L̄ that is at the origin

x̄ = 0 (and remains there). Suppose we measure an elapsed time in L̄ that is 	t̄, how much

2 If you measure the ends of a moving rod at two different times, you will, of course, get an artificially inflated

or deflated length.
3 If v > c, 	x̄ is imaginary, a reminder that superluminal motion is no longer sensible.
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6 Special Relativity

time elapsed in L? This time, we’ll use the inverse Lorentz transformation (since we know

	x̄ = 0, the clock remained at the origin) from the solution to Problem 1.2:

c 	t = γ
(

c 	t̄ + β 	x̄
)

= γ c 	t̄ −→ 	t = γ 	t̄. (1.14)

Remember that γ > 1 for v < c, so this time we have 	t > 	t̄: if 1 s passes in L̄, traveling

at v = 3
5

c, then 	t = 5
4

s passes in L. The phrase we use to describe this “time dilation” is

“moving clocks run slow.”

Time dilation and length contraction are very real physical effects. The muon, an

elementary particle, has a lifetime of 2 × 10−6 s when at rest. Muons produced in the

upper atmosphere travel very fast. For v = .999 c, we would expect a muon to decay

in about 600 m, yet they make it down to the surface of the earth for detection. The

reason is time dilation. From the earth’s point of view, the muon’s lifetime is T = 1/√
1 − 0.9992

(

2 × 10−6 s
)

≈ 4 × 10−5 s. In this amount of time, they can go a distance

≈ 0.999 c T ≈ 12 km, far enough to reach the earth’s surface.

1.2.2 Directions Perpendicular to Travel

The “first” postulate of special relativity is the following.

The laws of physics are the same in all inertial frames of reference

or, sloppily, in any frames moving at constant velocity with respect to each other. That

doesn’t have a lot of quantitative meaning just yet, but it can be used to establish that, for

example, length contraction occurs only in the direction parallel to the motion. When we

define the Lorentz boost in three dimensions for a lab L̄ moving along the x̂-axis in L, we

say that (c t), x, y, and z become, in the “barred” coordinates:

c t̄ = γ ((c t) − x β)

x̄ = γ (−(c t) β + x)

ȳ = y

z̄ = z.

(1.15)

But how do we know that nothing interesting happens in the y- and z-directions

(perpendicular to the relative motion)? We can use the first postulate – suppose I have

a door that is exactly my height, so that I just barely fit under it at rest as in the top panel

of Figure 1.4. Now assume that length contraction holds in the ŷ-direction even for relative

motion in the x̂-direction. I move toward the door at speed v. From the door’s point of view,

I am moving and by our (false) assumption, I appear shorter than normal (to the door) and

easily make it through the door. From my point of view, the door is moving toward me; it

appears shorter than when it is at rest, and I do not make it through. This conflict violates

the notion that the door and I had better agree on whether I can get through. The easy fix:

there is no length contraction perpendicular to the direction of travel.

Problem 1.5 A meter stick sits at rest in L̄. The L̄ frame is moving to the right at speed

v in the lab (the same setup as shown in Figure 1.3). In L, the stick is measured to have

length 12/13 m. What is v?
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7 Examples and Implications

at rest

v

door’s point of view person’s point of view

v

x̂

ŷ

Fig. 1.4 A person and a door are the same height when at rest (top). If length contraction happened in directions

perpendicular to travel, we’d have a shorter person from the door’s point of view (bottom left) or a shorter door

from the person’s point of view (bottom right). These two points of view lead to diferent physical predictions: the

person either makes it through the door or does not, and we can’t have that. There must therefore be no length

contraction in the direction perpendicular to the relative motion.

Problem 1.6 A clock moves through a lab with speed v = (12/13) c. It goes from x = 0

to x = 5 m. How long did its trip take in the lab? How long did its trip take in the rest

frame of the clock (i.e., in L̄ moving at speed v, where the clock remains at x̄ = 0)?

Problem 1.7 You take off in a rocket ship, headed for the stars, at a speed of v = 3/5 c.

After a year of traveling, you turn around and head back to earth at the same speed. How

much time has passed on earth? (Make L̄ the ship’s frame.)

1.2.3 Alternative

We generated the Lorentz transformations by defining the quantity:

s2 ≡ −c2 t2 + x2 + y2 + z2 (1.16)

and demanding that it be unchanged by the transformation. But our only example, light

traveling at c, has s2 = 0, so it is still possible that we should allow, for s2 �= 0, a scaling.

Maybe we require only that:

s̄2 = α2 s2
, (1.17)

where s̄2 is in the transformed frame and α is a scaling factor. If s̄2 = s2 = 0, we wouldn’t

see the α at all. We will now show that the constancy of the speed of light requires α = ±1,

and we’ll take the positive root to avoid switching the signs of intervals. First note that α

cannot be a constant function of the speed v (other than 1) in the transformation. If it were,

we would get s̄2 �= s2 in the v = 0 limit. So α(v) has the constraint that α(0) = 1 in order

to recover the same s2 when the boost speed is zero.
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8 Special Relativity

Now the Lorentz transformation that puts an α2 in front of the length s2 upon

transformation, without violating any of our other rules, is:

c t̄ = α γ ((c t) − x β)

x̄ = α γ (−(c t) β + x)

ȳ = y

z̄ = z,

(1.18)

for a boost in the x-direction. The inverse transformation can be obtained by taking

β → −β (as usual) and α → 1/α.

In L̄, we shoot a laser along the ˆ̄y-axis. In a time 	t̄, the light has traveled 	x̄ = 	z̄ = 0,

	ȳ = c 	t̄. Using these in the inverse transformation associated with (1.18), we have

	t = γ

α
	t̄, 	x = γ

α
v 	t̄, 	y = c 	t̄, (1.19)

with 	z = 0. The distance traveled by the light in L is:

	 ≡
√

	x2 + 	y2 =

√

γ 2

α2
v2 + c2 	t̄ (1.20)

so that the speed of the light, as measured in L, is

cL = 	

	t
=

√

v2 + α2 c2

(

1 − v2

c2

)

=
√

v2
(

1 − α2
)

+ c2, (1.21)

and the only way for the speed of light to be c in L, cL = c, is if α = ±1, and we’ll take

the positive root.

1.2.4 Simultaneity

Suppose we have an “event” that occurs in the lab at position x1, time t1 (e.g., a firecracker

goes off) and another event that occurs at x2, time t1. The two events are separated spatially

but happen at the same time. For our moving L̄ coordinate system, these points become:

c t̄1 = γ ((c t1) − x1 β) , x̄1 = γ (x1 − (c t1) β)

c t̄2 = γ ((c t1) − x2 β) , x̄2 = γ (x2 − (c t1) β) ,
(1.22)

so that t̄2 − t̄1 = − γ β
c

(x2 − x1) �= 0. The two events did not occur at the same time in L̄.

Events simultaneous in one coordinate system are not simultaneous in another.

Related to simultaneity is the idea of “causality” – one event (at t1, x1, say) can cause

another (at t2, x2) only if there is a way for a signal traveling at the speed of light (or less)

to be sent between the two in a time less than (or equal to) t2 − t1. Think of E&M, where

electric and magnetic fields propagate (in vacuum) at speed c. The only way for one charge

to act on another electromagnetically is for the fields to travel from one location to the other
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9 Examples and Implications

at speed c. The requirement that two space-time points be “causally connected”4 amounts

to: c2 (t2 − t1)
2 ≥ (x2 − x1)

2 (where we squared both sides to avoid absolute values), or

− c2 (t2 − t1)
2 +(x2 − x1)

2 ≤ 0. (1.23)

Problem 1.8 Two events (t1 at x1 and t2 at x2) are causally related if −c2 (t2 − t1)
2 +

(x2 − x1)
2 ≤ 0. Show that if event one causes event two in L (i.e., the two events are

causally related with t1 < t2), then event one causes event two in any L̄ traveling at speed

v in L (where L and L̄ are related as usual by Figure 1.3).

1.2.5 Minkowksi Diagrams

Just as we can draw motion in the “usual” two-dimensional space spanned by x̂ and ŷ,

and relate that motion to rotated (or otherwise transformed) axes, we can think of motion

occurring in the two-dimensional space spanned by time c t̂ and x̂.5 Referring to Figure 1.5,

we can display motion that takes the form x(t) by inverting to get t(x) and then plotting

c t(x) versus x. Light travels with x = c t, and the dashed line in Figure 1.5 shows light

emitted from the origin. For a particle traveling with constant speed v, we have x = v t and

can invert to write

c t = c

v
x, (1.24)

describing a line with slope c/v. For light, the slope is 1, and for particle motion with v < c,

the slope of the line is > 1. Superluminal motion occurs with lines of slope < 1. For the

“fun” trajectory shown in Figure 1.5, if we look at the tangent to a point on the curve, we

can estimate the speed of the particle at a given time – portions of that trajectory do have

tangent lines with slope < 1, indicating that the particle is traveling faster than the speed

of light.

For a particle traveling with constant speed through “the lab” L, we know that the particle

is at rest in its own L̄ (moving with constant speed through L). That means that the line of

the particle’s motion in L represents the particle’s c ˆ̄t-axis (purely temporal motion). What

does the ˆ̄x-axis look like? Well, those are points for which t̄ = 0. From the inverse of the

transformation (1.12), we have

c t = γ β x̄

x = γ x̄,
(1.25)

defining the line: c t = v
c

x in L. That’s just the reflection of the line c t = c
v

x about

the “light” line. In Figure 1.6, we have the picture relating the axes for boosts analogous

to Figure 1.1 for rotations. By looking at the two coordinate systems, it should be clear that

a pure temporal interval in the barred coordinates, 	t̄, corresponds to a combination of 	t

and 	x in the unbarred coordinate system (and vice versa).

It is interesting to note that our new “Minkowski length” definition: s2 = −c2 t2 + x2

allows for three distinct options: s2 can be greater than, less than, or equal to zero. We

4 Meaning that light can travel between the two points in a time that is less than their temporal separation.
5 The basis vector for the temporal direction is denoted c t̂ because writing ĉ t looks awkward.
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10 Special Relativity

“fun” trajectory

constant
speed v<c

constant
speed v>c

light (v= c)

x̂

c t̂

Fig. 1.5 A Minkowski diagram: we plot the motion of a particle or light with c t as the vertical axis and x as the

horizontal one.

lightc t̂ c ˆ̄t

x̂

ˆ̄x

Fig. 1.6 Two coordinate systems related by a Lorentz boost (1.12).

generated interest in this particular combination of c t and x by thinking about light, for

which −c2 t2 + x2 = 0 (since light travels along the line x = c t). We call points separated

by “zero” light-like since a light-like trajectory connects these points. But we also have

motion with v < c: x = v t, and this gives a separation s2 = −c2 t2 + v2 t2 < 0. Such

intervals are called “time-like” because there is a rest frame (in which only temporal motion

occurs) connecting the two points. Finally, for v > c, −c2 t2 + x2 = −c2 t2 + v2 t2 > 0

and these separations are “space-like” (like motion along the spatial x̂ and ˆ̄x axes). For

material particles, only time-like separations are possible. It is clear that speeds greater

than c cannot be achieved: the boost factor γ becomes imaginary. That’s a mathematical

warning sign, the physical barrier is the amount of energy that a massive particle moving

at c would have (infinite, as we shall see).

Problem 1.9 We have L̄ moving at constant speed v in L as in Figure 1.3 (with origins

x = x̄ = 0 that overlap at t = t̄ = 0). In L̄, we observe the following two events: t̄1 = 0,

x̄1 = 0, and t̄2 = 0, x̄2 = d. The c ˆ̄t−ˆ̄x picture is shown in Figure 1.7. Find the location

and time of these two events in L and draw the c t̂ − x̂ version of the picture using d = 1

m and v = 4/5 c.
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