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Relevant Constructions

The purpose of this first chapter is to develop the techniques that will be used

in the third chapter to prove the equivalence of categories between p-adic Ga-

lois representations and etale (ϕL,ΓL)-modules. On the one hand, the source

category refers to the absolute Galois group of a local field L of characteristic

zero with (finite) residue field of characteristic p. On the other hand the coeffi-

cient ring of the (ϕL,ΓL)-modules in the target category is a complete discrete

valuation ring whose residue field is a local field of characteristic p. Therefore

it should not come as a surprise that much of this chapter will be devoted to

setting up formalisms which allow us to pass between fields (or even rings) of

characteristic zero and those of characteristic p.

Historically, the first such formalism was Witt’s functorial construction of

the ring of Witt vectorsW (B) for any (commutative) ring B (see [B-AC], §9.1).

If B = k is a perfect field of characteristic p thenW (k) is a complete discrete

valuation ring with maximal ideal pW (k), residue field k, and field of fractions

of characteristic zero. For example, we haveW (F p) = Zp. Moreover, the pth

power map on k lifts naturally to a ‘Frobenius’ endomorphism F of W (k).

Since we will work over a finite, possibly ramified, extension L of Q p we

need a generalization of Witt’s original construction. Suppose that o is the ring

of integers in L and Fq its residue field. The rings of ramified Witt vectors

W (B)L, for any o-algebra B, have all the features of the usual Witt vectors but

are designed in such a way that W (Fq) = o. This generalization is not well

covered in the literature, although most details can be extracted from the rather

technical treatment in [Haz]. In Section 1.1 we therefore give a complete and

detailed, but nevertheless streamlined, discussion of ramified Witt vectors.

In Section 1.2 we recall the theory of unramified extensions of a complete

discretely valued field K. Its importance lies in the fact that if K nr/K denotes

the maximal unramified extension and k
sep
K /kK the separable algebraic closure

of the residue field kK of K then one has a natural isomorphism of Galois
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6 Relevant Constructions

groups Gal(Knr/K)
∼=
−→ Gal(k

sep
K /kK). For us this means that the absolute Ga-

lois group of kK can be identified naturally with a quotient of the absolute

Galois group of K.

The coefficient ring of (ϕL,ΓL)-modules carries an endomorphism ϕL as

well as a group of operators ΓL
∼= o×. Their ultimate origin lies in the theory

of Lubin–Tate formal group laws, which we explain in detail in Section 1.3. If

we fix a prime element π of o then there is, up to an isomorphism, a unique
Lubin–Tate formal group law in two variables F(X ,Y ) ∈ o[[X ,Y ]] that con-

tains the ring o in its ring of endomorphisms. In particular, the prime element

π corresponds to an endomorphism which later on will give rise to the ϕ L. By

adjoining to L the torsion points of this formal group law we obtain an abelian

extension L∞/L. The action of the Galois group ΓL :=Gal(L∞/L) on these tor-

sion points is given by a character χL : ΓL =Gal(L∞/L)
∼=
−→ o×. In an appendix

to this section we determine explicitly the higher ramification theory of the

extension L∞/L.

Section 1.4 is the technical heart of the matter. Let C p be the completion of

the algebraic closure of Q p. Already Fontaine introduced a very simple recipe

for how to construct out of C p an algebraically closed complete field C♭
p of

characteristic p. It was Scholze, however,who saw the general principle behind

this recipe. He introduced the notion of a perfectoid field K in characteristic

zero and used Fontaine’s recipe to associate with it a complete perfect field K ♭

in characteristic p, calling it the tilt of K. For us a very important example of

a perfectoid field will be the completion L̂∞ of the extension L∞/L. The tilting

procedure is natural. Hence the absolute Galois group GL of L acts on the tilt

C♭
p. The absolute Galois groupHL of L∞ fixes L̂∞ and consequently also the tilt

L̂♭∞. In this way we obtain, on the one hand, a residual action of Γ L = GL/HL
on L̂♭∞. On the other hand, using the torsion points of our Lubin–Tate formal

group law we will exhibit an explicit element ω in L̂♭∞. We then embed the

Laurent series field k((X)) in one variable over the residue field k of L into L̂♭∞
by sending the variable X to ω . Its image is a local field EL of characteristic p.
The ΓL-action on L̂♭∞ preserves EL. This field EL is called the field of norms of

L because it can also be constructed via a projective limit with respect to the

norm maps in the tower L∞/L. It was used in this form in Fontaine’s original

approach to the theory of (ϕL,ΓL)-modules. However, the route we will take

is instead via Scholze’s tilting correspondence. The main result that we prove

in this section is Theorem 1.4.24, which says that the tilting K �→ K ♭ induces

a bijection between the perfectoid intermediate fields L̂∞ ⊆ K ⊆ Cp and the

complete perfect intermediate fields L̂♭∞ ⊆ F ⊆ C♭
p. The proof will be given

through the construction of an inverse map F �→ F ♯. If oF is the ring of integers
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1.1 Ramified Witt Vectors 7

of F then F ♯ is the field of fractions of the quotient ofW (oF)L by an explicit

element c ∈W (oL̂♭∞)L, which depends only on L.

A ring like oF has its own valuation topology. This leads to a natural topol-

ogy on the ramifiedWitt vectorsW (oF)L. It is called the weak topology since it

is coarser than the p-adic topology onW (oF)L. It plays an important technical

role in proofs, and it induces the relevant topology on the coefficient ring of

(ϕL,ΓL)-modules. In Section 1.5 we introduce this weak topology in a slightly
more general setting and provide the tools to work with it.

In Section 1.6 we deduce from the tilting correspondence that the G L-action

on Cp induces a topological isomorphism of profinite groups between the ab-

solute Galois group HL of L∞ and the absolute Galois group HEL of the local

field EL. This is the crucial fact which, for our purposes, governs the passage

between characteristic zero and characteristic p.

Finally, in preparation for the coefficient ring of (ϕL,ΓL)-modules, in Sec-

tion 1.7 we consider the p-adic completion AL of the ring of Laurent series

o((X)) in one variable X over o. Its elements are ‘infinite’ Laurent series of a

certain kind. We will show that the endomorphisms of our Lubin–Tate formal

group law, which correspond to elements in o, extend to operators on A L. In

this way we obtain an endomorphism ϕL corresponding to the prime element

π as well as an action of ΓL
∼= o× on AL. We will also see that, on the one

hand,AL carries a weak topology of its own and, on the other, it is a complete

discrete valuation ring with prime element π and residue field k((X)).
Throughout, we fix a prime number p and a finite field extension L/Q p of

the field of p-adic numbers. Let o⊆ L be the ring of integers with residue class

field k of cardinality q = p f . We also fix, once and for all, a prime element π
of the discrete valuation ring o.

By Alg we denote the category of (commutative unital) o-algebras.

1.1 Ramified Witt Vectors

For any integer n≥ 0 we call

Φn(X0, . . . ,Xn) := X
qn

0 +πX qn−1

1 + · · ·+πnXn

the nthWitt polynomial. TheseWitt polynomials satisfy the recursionΦ0(X0)=

X0 and

Φn+1(X0, . . . ,Xn+1) = Φn(X
q
0 , . . . ,X

q
n )+πn+1Xn+1

= X
qn+1

0 +πΦn(X1, . . . ,Xn+1) . (1.1.1)
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8 Relevant Constructions

Let B be in Alg.

Lemma 1.1.1 For any m,n≥ 1 and b1,b2 ∈ B we have that

b1 ≡ b2 mod πmB =⇒ b
qn

1 ≡ b
qn

2 mod πm+nB .

Proof By induction it suffices to consider the case n = 1. The polynomial

P(X ,Y ) := ∑
q−1
i=0 X

iY q−1−i satisfies (X −Y )P(X ,Y ) = Xq−Y q. Hence it suf-

fices to show that P(b1,b2) ∈ πB. But our assumption implies P(b1,b2) ≡
P(b1,b1) = qb

q−1
1 mod πmB.

Lemma 1.1.2 For m≥ 1, n≥ 0, and b0, . . . ,bn,c0, . . . ,cn ∈ B we have:

(i) if bi ≡ ci mod πmB for 0≤ i≤ n then

Φi(b0, . . . ,bi)≡ Φi(c0, . . . ,ci) mod πm+iB for 0≤ i≤ n;

(ii) if π1B is not a zero divisor in B then in (i) the reverse implication holds as
well.

Proof Both assertions will be proved by induction with respect to n. Since

the case n= 0 is trivial we assume that n≥ 1.

(i) By assumption and Lemma 1.1.1 we have b
q
i ≡ c

q
i mod πm+1

L for 0≤ i≤

n− 1. The induction hypothesis then implies that

Φn−1(b
q
0, . . . ,b

q
n−1)≡ Φn−1(c

q
0, . . . ,c

q
n−1) mod πm+nB .

Inserting this into the recursion formula (1.1.1) gives

Φn(b0, . . . ,bn)−πnbn ≡ Φn(c0, . . . ,cn)−πncn mod πm+nB .

But, as a consequence of the assumption we have π nbn ≡ πncn mod πm+nB. It

follows that Φn(b0, . . . ,bn)≡ Φn(c0, . . . ,cn) mod πm+nB.

(ii) By the induction hypothesis we have b i ≡ ci mod πmB for 0≤ i≤ n−1.

As above we deduce that

Φn(b0, . . . ,bn)−πnbn ≡ Φn(c0, . . . ,cn)−πncn mod πm+nB .

But, by assumption, we have the corresponding congruence for the left sum-

mands alone. Hence we obtain π n(bn− cn) ∈ πm+nB and therefore bn− cn ∈

πmB by the additional assumption that π1B is not a zero divisor.

Let

BN0 := {(b0,b1, . . .) : bn ∈ B}

be the countably infinite direct product of the algebra B with itself (so that
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1.1 Ramified Witt Vectors 9

addition and multiplication are componentwise). We introduce the following

maps:

fB : B
N0 −→ BN0

(b0,b1, . . .) �−→ (b1,b2, . . .) ,

which is an endomorphism of o-algebras,

vB : B
N0 −→ BN0

(b0,b1, . . .) �−→ (0,πb0,πb1, . . .) ,

which respects the o-module structure but neither multiplication nor the unit

element,

Φn : B
N0 −→ B

(b0,b1, . . .) �−→ Φn(b0, . . . ,bn) ,

for n≥ 0, and

ΦB : B
N0 −→ BN0

b �−→ (Φ0(b),Φ1(b),Φ2(b), . . .) .

Lemma 1.1.3

(i) If π1B is not a zero divisor in B then ΦB is injective.

(ii) If π1B ∈ B× then ΦB is bijective.

Proof Let b = (bn)n, u = (un)n ∈ BN0 . As a consequence of the recursion

relations (1.1.1) the relationΦB(b) = u is equivalent to the system of equations

u0 = b0,

un = Φn−1(b
q
0, . . . ,b

q
n−1)+πnbn for n≥ 1.

(1.1.2)

Under the assumption in (i) (resp. in (ii)) the element b is therefore, in an

inductive way, uniquely determined by u (resp. can be recursively computed

from u).

Remark 1.1.4 The system of equations (1.1.2) in fact shows the following:

Let b= (bn)n,u= (un)n ∈ B
N0 be such that ΦB(b) = u. Let C ⊆ B be a subal-

gebra with the property that the additive map B/C
π ·
−−→ B/C is injective. Then

we have, for any m≥ 0,

u0, . . . ,um ∈C⇐⇒ b0, . . . ,bm ∈C .
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10 Relevant Constructions

Proposition 1.1.5 Suppose that B has an endomorphism σ of o-algebras

such that

σ(b)≡ bq mod πB for any b ∈ B.

We then have the following.

(i) Let b0, . . . ,bn−1 ∈ B for some n ≥ 1 and put un−1 := Φn−1(b0, . . . ,bn−1);

an element un ∈ B then satisfies

un = Φn(b0, . . . ,bn) for some bn ∈ B⇐⇒ σ(un−1)≡ un mod πnB .

(ii) B′ := im(ΦB) is an o-subalgebra of B
N0 which satisfies

• B′ = {(un)n ∈ BN0 : σ(un)≡ un+1 mod πn+1B for any n≥ 0},
• fB(B

′)⊆ B′, vB(B
′)⊆ B′.

Proof (i) By our assumption on σ we have σ(b i) ≡ b
q
i mod πB for any 0 ≤

i≤ n− 1. Applying Lemma 1.1.2(i) with m= 1 gives

σ(un−1) = Φn−1(σ(b0), . . . ,σ(bn−1))≡ Φn−1(b
q
0, . . . ,b

q
n−1) mod πnB .

The existence of an element bn ∈ B such that

un = Φn(b0, . . . ,bn) = Φn−1(b
q
0, . . . ,b

q
n−1)+πnbn

is equivalent to un−Φn−1(b
q
0, . . . ,b

q
n−1) ∈ πnB, hence to un−σ(un−1) ∈ πnB.

(ii) By (i), the image B′, as a subset of BN0 , has the asserted description. The

other claims are easily derived from this.

First of all we apply this last result to the ring o with its identity endomor-

phism.We obtain, for any λ ∈ o, an elementΩ(λ ) = (Ω0(λ ),Ω1(λ ), . . .)∈ oN0

such that

Φo(Ω(λ )) = (λ , . . . ,λ , . . .) .

By Lemma 1.1.3(i) this Ω(λ ) is uniquely determined by λ . For any o-algebra
Bwe use the canonical homomorphism o→ B to viewΩ(λ ) also as an element
in BN0 .

Example Ω0(λ ) = λ , Ω1(λ ) = π−1(λ − λ q), Ω2(λ ) = π−2(λ − λ q2)−

π−1−q(λ −λ q)q.

Next we consider the polynomial o-algebra

A := o[X0,X1, . . . ,Y0,Y1, . . .]

in two sets of countably many variables. Obviously π1A is not a zero divisor in
A. We consider on A the o-algebra endomorphism θ defined by

θ (Xi) := X
q
i and θ (Yi) := Y

q
i for any i≥ 0.
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1.1 Ramified Witt Vectors 11

Remark 1.1.6 θ (a)≡ aq mod πA for any a ∈ A.

Proof The subset {a∈ A : θ (a)≡ aq mod πA} is a subring of A which, since
k× has order q−1, contains o as well as, by the definition of θ , all the variables
Xi and Yi. Hence it must be equal to A.

LetX :=(X0,X1, . . .) andY :=(Y0,Y1, . . .) inA
N0 . Because of Lemma 1.1.3(i)

and Proposition 1.1.5(ii) there exist uniquely determined elements S = (S n)n,

P= (Pn)n, I= (In)n, and F= (Fn)n in A
N0 such that

ΦA(S) = ΦA(X)+ΦA(Y),

ΦA(P) = ΦA(X)ΦA(Y),

ΦA(I) =−ΦA(X),

ΦA(F) = fA(ΦA(X)) ,

respectively such that

Φn(S0, . . . ,Sn) = Φn(X0, . . . ,Xn)+Φn(Y0, . . . ,Yn),

Φn(P0, . . . ,Pn) = Φn(X0, . . . ,Xn)Φn(Y0, . . . ,Yn),

Φn(I0, . . . , In) =−Φn(X0, . . . ,Xn),

Φn(F0, . . . ,Fn) = Φn+1(X0, . . . ,Xn+1)

(1.1.3)

for any n≥ 0. Remark 1.1.4 implies that

Sn,Pn ∈ o[X0, . . . ,Xn,Y0, . . . ,Yn],

In ∈ o[X0, . . . ,Xn],

Fn ∈ o[X0, . . . ,Xn+1].

Lemma 1.1.7 Fn ≡ X
q
n mod πA for any n≥ 0.

Proof We have

Φn(F0, . . . ,Fn) = Φn+1(X0, . . . ,Xn+1) = Φn(X
q
0 , . . . ,X

q
n )+πn+1Xn+1

≡ Φn(X
q
0 , . . . ,X

q
n ) mod πn+1A .

Hence the assertion follows from Lemma 1.1.2(ii).

The polynomials Sn,Pn, In,Fn can be computed inductively from the system

of equations (1.1.3).

Example

(1) S0 = X0+Y0, S1 = X1+Y1−∑
q−1
i=1 π−1

(

q
i

)

X i0Y
q−i
0 .

(2) P0 = X0Y0, P1 = πX1Y1+X
q
0Y1+X1Y

q
0 .

(3) F0 = X
q
0 +πX1, F1 = X

q
1 +πX2−∑

q−1
i=0

(

q
i

)

πq−i−1X
qi
0 X

q−i
1 .
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12 Relevant Constructions

Exercise Show that:

(1) Sn−Xn−Yn ∈ o[X0, . . . ,Xn−1,Y0, . . . ,Yn−1].

(2) If p �= 2 then In =−Xn for any n≥ 0.

Let B again be an arbitrary o-algebra. On the one hand we have the o-

algebra (BN0 ,+, ·) defined as a direct product. Any o-algebra homomorphism

ρ : B1 −→ B2 induces the o-algebra homomorphism

ρN0 : B
N0
1 −→ B

N0
2

(bn)n �−→ (ρ(bn))n .

On the other hand we define on the setW (B)L := BN0 a new ‘addition’

(an)n⊞ (bn)n := (Sn(a0, . . . ,an,b0, . . . ,bn))n

and a new ‘multiplication’

(an)n⊡ (bn)n := (Pn(a0, . . . ,an,b0, . . . ,bn))n .

Moreover, we put

0 := (0,0, . . .) and 1 := (1,0,0, . . .) .

Because of (1.1.3) the map

ΦB :W (B)L −→ BN0

satisfies the identities

ΦB(a⊞b) = ΦB(a)+ΦB(b),

ΦB(a⊡b) = ΦB(a) ·ΦB(b) .
(1.1.4)

In addition we obviously have

ΦB(0) = 0 and ΦB(1) = 1 . (1.1.5)

For any o-algebra homomorphism ρ : B1 −→ B2 the map W (ρ)L := ρN0 :

W (B1)L −→W (B2)L commutes with ⊞ and⊡ and satisfiesW (ρ)L(1) = 1 and
the commutative diagram

W (B1)L
ΦB1

��

W(ρ)L

��

B
N0
1

ρN0

��

W (B2)L
ΦB2

�� B
N0
2 .
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1.1 Ramified Witt Vectors 13

Proposition 1.1.8

(i) (W (B)L,⊞,⊡) is a (commutative) ring with zero element 0 and unit ele-

ment 1; the additive inverse of (bn)n is (In(b0, . . . ,bn))n.

(ii) The map Ω : o −→ (W (B)L,⊞,⊡) is a ring homomorphism, making

(W (B)L,⊞,⊡) into an o-algebra.

(iii) The map ΦB :W (B)L −→ BN0 is a homomorphism of o-algebras; in par-

ticular, for any m≥ 0,

Φm :W (B)L −→ B

(bn)n �−→ Φm(b0, . . . ,bm)

is a homomorphism of o-algebras.

(iv) For any o-algebra homomorphism ρ : B1 −→ B2 the map

W (ρ)L :W (B1)L −→W (B2)L

is an o-algebra homomorphism as well.

Proof From the preliminary discussion above it remains to prove the asser-

tions (i) and (ii). For that we consider the o-algebra B 1 := o[{Xb}b∈B] together

with the surjective o-algebra homomorphism ρ : B1−→ B defined by ρ(Xb) :=
b. On the algebra B1 we have the endomorphism defined by σ(Xb) := X

q
b ,

which has the property that σ(b) ≡ bq mod πB1 for any b ∈ B1 (compare the

proof of Remark 1.1.6). Moreover π1B1 is not a zero divisor in B1. In this
situation Lemma 1.1.3(i) and Proposition 1.1.5(ii) imply that

ΦB1 :W (B1)L
∼=
−−→ B′1

is a bijection onto the o-subalgebraB ′
1 in B

N0
1 . Therefore, by (1.1.4) and (1.1.5),

the associativity law, the distributivity laws, etc. in B
N0
1 transform into the cor-

responding laws for ⊞ and ⊡ in W (B1)L. Hence (W (B1)L,⊞,⊡) is a com-

mutative ring with unit element 1. The formula for the additive inverse fol-

lows analogously from (1.1.3). Since ΦB1 ◦Ω : o −→ B′
1 is obviously a ring

homomorphism it also follows that Ω : o −→W (B1)L is one. Since the map

W (ρ)L :W (B1)L −→W (B)L is surjective and respects ⊞, ⊡, 1, and the Ω(λ ),
the o-algebra axioms forW (B)L are a consequence of those forW (B1)L.

Definition 1.1.9 (W (B)L,⊞,⊡) is called the ring of ramified Witt vectors

with coefficients in B.

Exercise Show that the o-algebra (W (B)L,⊞,⊡), up to natural (in B) iso-

morphism, does not depend on the choice of the prime element π . Hint: The
description of B′ in Proposition 1.1.5(ii) uses only the ideal πB.
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14 Relevant Constructions

If L=Qp and π = p one simply speaks of the ring of Witt vectorsW (B) :=

W (B)Qp
. The elements Φn(b0, . . . ,bn) ∈ B are called the ghost components of

the Witt vector (bn)n ∈W (B)L.

In addition we have onW (B)L the maps

F :W (B)L −→W (B)L

(bn)n �−→ (Fn(b0, . . . ,bn+1))n

and

V :W (B)L −→W (B)L

(bn)n �−→ (0,b0,b1, . . .) .

Using (1.1.3) and (1.1.1) we obtain the commutativity of the diagrams

W (B)L
ΦB

��

F

��

BN0

fB

��

W (B)L
ΦB

�� BN0

and W (B)L
ΦB

��

V

��

BN0

vB

��

W (B)L
ΦB

�� BN0 .

(1.1.6)

Proposition 1.1.10

(i) F is an endomorphism of the o-algebraW (B)L.

(ii) V is an endomorphism of the o-moduleW (B)L.

(iii) F(V (b)) = πb for any b ∈W (B)L.

(iv) V (a⊡F(b)) =V (a)⊡b for any a,b ∈W (B)L.

(v) F(b)≡ bq mod πW(B)L for any b ∈W (B)L.

Proof (Expressions in the assertions such as πb and bq refer of course to the
new o-algebra structure ofW (B)L.) Using the same technique as in the proof

of Proposition 1.1.8 this reduces to corresponding identities for f B and vB in

BN0 , which are easy to check.

Definition 1.1.11 We call F and V the Frobenius and the Verschiebung on

W (B)L, respectively.

For any m≥ 0 define

Vm(B)L := im(V
m) = {(bn)n ∈W (B)L : b0 = · · ·= bm−1 = 0} .

We obviously have

W (B)L =V0(B)L ⊇V1(B)L ⊇ ·· · and
⋂

m

Vm(B)L = 0 .

By Proposition 1.1.10(ii) and (iv) everyVm(B)L is an ideal inW (B)L.

www.cambridge.org/9781107188587
www.cambridge.org

