
Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Part I

Databases and Database Design

1 Fundamental Concepts of Database Management 3

2 Architecture and Categorization of DBMSs 20

3 Conceptual Data Modeling using the (E)ER Model and UML
Class Diagram 38

4 Organizational Aspects of Data Management 79

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Fundamental Concepts of Database
Management

Chapter Objectives

In this chapter, you will learn to:

• understand the differences between the file versus database approach to data management;

• discern the key elements of a database system;

• identify the advantages of database systems and database management.

Opening Scenario

Since Sober is a startup company, it must carefully decide how it will manage all its data. The

company is thinking about storing all its data in Word documents, Excel files, and maybe some

other files (e.g., Notepad) as well.

In this chapter, we discuss the fundamental concepts of database management. Many ideas

presented here are elaborated in later chapters. We kick off by reviewing popular applications of

database technology, and follow this by defining key concepts such as a database and a database

management system, or DBMS. Next, we step back in time and discuss the file-based approach and

contrast it with the database approach to data management. We then zoom into the elements of a

database system. We conclude by discussing the advantages of database design.

1.1 Applications of Database Technology
. .

Data are everywhere and come in different shapes and volumes. These data need to be stored and

managed using appropriate data management or database technologies. Think about the storage and

retrieval of traditional numeric and alphanumeric data in an application developed to keep track of

the number of products in stock. For each product, the product number, product name, and available

quantity needs to be stored. Replenishment orders need to be issued as soon as the quantity drops

below the safety limit. Every replenishment order has an order number, order date, supplier number,

supplier name, and a set of product numbers, names, and quantities.

Database technology is not just for traditional numeric and alphanumeric data. It can also store

multimedia data such as pictures, audio, or video – YouTube and Spotify support the querying of

music based upon artist, album, genre, playlist, or record label. Biometric data, including finger-

prints and retina scans, are often used for security, such as border control as you enter a country.

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Information is also gathered by wearables, such as a Fitbit or an Apple Watch, which continuously

monitor and analyze your health and fitness. Geographical information systems (GIS) applications,

such as Google Maps, store and retrieve all types of spatial or geographical data.

Database technology can also store and retrieve volatile data. One example is high-frequency

trading, where automated, algorithmic platforms are used by investment banks or hedge funds to

process a large number of orders at extremely high speed based upon events happening in the

environment or macro-economy. Another example is sensors monitoring the key parameters of a

nuclear reactor, whereby an automatic system shutdown may be enacted if certain thresholds are hit.

You may have heard the term Big Data, referring to the huge amounts of data being gathered and

analyzed by companies such as Google, Facebook, and Twitter. Look at Walmart, America’s largest

retailer with over 11,000 locations worldwide, $4.8 billion in annual sales and over 100 million

customers per week. Its point-of-sale (POS) database system stores an enormous amount of data

such as which customer bought what products, in what quantities, at which location, and at what

time. All these data can then be intelligently analyzed using analytical data modeling to

reveal unknown but interesting purchase patterns, such as which products

are frequently purchased together. Better still, certain analysis techniques

allow one to make predictions about the future (e.g., which customers are

most likely to respond positively to a sales promotion). We discuss this in

more detail in Chapter 20.

These are just a few examples of database applications; many others exist.

Drill Down

The Internet of Things (IoT) provides many examples of Big Data applications. Moocall is a

Dublin-based startup providing sensors for farmers to reduce the mortality rates of calves and

cows during birthing. The sensor is attached to the cow’s tail. They measure specific movements

of the tail triggered by labor contractions as the calving begins. These sensor data are then sent

through the Vodafone IoT network to a farmer’s smartphone. Using an app, the farmer gets

up-to-date information about the calving process and can intervene or call a vet when needed.

The app can generate alerts, and includes a herd management facility. This technology improves

both the farmer’s productivity and the survival probabilities of calves and cows during the

birthing process.

1.2 Key Definitions
. .

We have briefly introduced the concept of a database by exploring the

various types of databases you may encounter every day. A database can

be defined as a collection of related data items within a specific business

process or problem setting. Consider a purchase order system, where you

have data items such as products, suppliers, and purchase orders. Each data

item has characteristics: a product has a product number, product name, and

product color; a supplier has a supplier name and a supplier address; a

purchase order has a reference number and date. These data items are also

related. A product can be supplied by one or more suppliers. A purchase

Connections

In Chapter 2 we discuss

the internal architecture

of a DBMS. We also

provide a categorization

of DBMSs along

various dimensions.

Retention Questions

• Give some examples of

applications of database

technology.

4 1 Fundamental Concepts of Database Management

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

order is always connected to exactly one supplier. A supplier can supply one or more products.

These are examples of relationships between the data items that should be adequately captured

by a database. A database has a target group of users and applications. An inventory manager

uses our purchase order system to manage the inventory and issue purchase

orders; a product manager uses it for monitoring trends in product sales.

A database management system (DBMS) is the software package used

to define, create, use, and maintain a database. It typically consists of several

software modules, each with their own functionality, as we discuss in

Chapter 2. Popular DBMS vendors are Oracle, Microsoft, and IBM. MySQL

is a well-known open-source DBMS. The combination of a DBMS and a

database is then often called a database system.

Drill Down

Gartner1 estimated the total DBMS market value at $35.9 billion for 2015, which represented an

8.7% growth when compared to 2014. According to the IDC, the overall market for database

management solutions is estimated to reach over $50 billion by 2018.

1.3 File versus Database Approach to Data Management
. .

Before we further explore database technology, let’s step back and see how data management

has evolved. This will give us a proper understanding of the legacy problems many companies are

still facing.

1.3.1 The File-Based Approach

In the early days of computing, every application stored its data into its own dedicated files. This is

known as a file-based approach and is illustrated in Figure 1.1.

Suppose we have a traditional invoicing application, written in a programming language such as

COBOL or C, that makes use of customer information such as customer number, customer name,

VAT code, etc., stored in a separate file. A separate application, such as a customer relationship

management (CRM) system, makes use of a different file containing the same data. Finally, a third

application (GIS) stores information such as customer number, customer name, and ZIP code in yet

another file. The data files only contain the data themselves; the data definitions and descriptions are

included in each application separately. An application can make use of one or more files. As more

applications are developed with corresponding data files, this file-based approach to data manage-

ment will cause serious problems.

Since each application uses its own data files and many applications use similar data, duplicate

or redundant information will be stored, which is a waste of storage resources. If this is not

appropriately managed there is a danger that customer data will be updated in only one file and

not elsewhere, resulting in inconsistent data. In this file-based approach to data management there

is a strong coupling, or dependency, between the applications and the data. A structural change in

Retention Questions

• Define the following

concepts:

◦ database

◦ DBMS

◦ database system

1 https://blogs.gartner.com/merv-adrian/2016/04/12/dbms-2015-numbers-paint-a-picture-of-slow-but-steady-change.

1.3 File versus Database Approach to Data Management 5

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

a data file necessitates changes in all applications that use it, which is not desirable from a

maintenance perspective. It is hard to manage concurrency control (i.e., the simultaneous access

by different users or applications to the same data without conflicts). For example, if one

application performs a cash transfer while another application calculates the account balance,

and the data operations of both applications are interleaved for efficiency, this can easily lead to

inconsistent data in cases where there are no adequate concurrency control facilities provided.

Since the applications each work independently with their own ecosystem of data files, it is

difficult and expensive to integrate applications aimed at providing cross-company services.

Although this file approach to data management has serious disadvantages, many firms still

struggle with “legacy ” file-based systems in their current information and communications

technology (ICT) environment.

1.3.2 The Database Approach

The emergence of database technology provided a new paradigm for data management. In this

database approach, all data are stored and managed centrally by a DBMS, as illustrated in

Figure 1.2.

The applications now directly interface with the DBMS instead of with their own files. The

DBMS delivers the desired data at the request of each application. The DBMS stores and

manages two types of data: raw data and metadata. Metadata refers to the data definitions that

are now stored in the catalog of the DBMS. This is a key difference to the file-based approach.

The metadata are no longer included in the applications, but are now properly managed by the

DBMS itself. From an efficiency, consistency, and maintenance perspective, this approach is

superior.

Another key advantage of the database approach is the facilities provided for data querying and

retrieval. In the file-based approach, every application had to explicitly write its own query and

access procedures. Consider the following example in pseudo-code:

CustomerNr

CustomerName

VATcode

CustomerNr

CustomerName

Turnover

CustomerNr

CustomerName

ZipCode

Invoicing

A
p

p
lic

a
ti
o

n
s

F
il
e
s

CRM GIS

Duplicate data!

Figure 1.1 File-based approach to data management.

6 1 Fundamental Concepts of Database Management

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Procedure FindCustomer;

Begin

open file Customer.txt;

Read(Customer)

While not EOF(Customer)

If Customer.name='Bart' Then

display(Customer);

EndIf

Read(Customer);

EndWhile;

End;

Here, we first open a Customer.txt file and read the first record. We then implement a while loop

that iterates through each record in the file until the end of the file is reached (indicated by EOF

(Customer)). If the desired information is found (Customer.name='Bart'), it will be displayed. This

requires a lot of coding. Because of the tight coupling between data and applications, many

procedures would be repeated in various applications, which is again not very appealing from a

maintenance perspective. As noted, DBMSs provide database languages that facilitate both data

querying and access. A well-known language, which we discuss extensively in Chapter 7, is

Structured Query Language (SQL). SQL can be used to formulate database queries in a structured

and user-friendly way, and is one of the most popular data querying standards used in the industry.

An example SQL query that gives the same output as our pseudo-code above could be:

SELECT *

FROM Customer

WHERE

name = 'Bart'

Here, you only need to specify what information you want. In our case, we want all customer

information for customer 'Bart'. This SQL query will then be executed by the DBMS in a

transparent way. In the database approach, we only need to specify which data we are interested

in, and no longer how we should access and retrieve them. This facilitates the development of

Invoicing

A
p

p
lic

a
ti
o

n
s

D
B
M
S

CRM GIS

DBMS

Raw data Catalog

Figure 1.2 Database

approach to data

management.

1.3 File versus Database Approach to Data Management 7

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

database applications because we no longer need to write complex data

retrieval procedures.

To summarize, the file-based approach results in a strong application–data

dependence, whereas the database approach allows for applications to be

independent from the data and data definitions.

Drill Down

One of the key disadvantages of a file-based approach to data management is that the data

typically sit all over the organization in silos; therefore, an overall, comprehensive view is

lacking. For example, the city of Amsterdam has data spread across 12,000 different datasets.

Because of the lack of integration, no one knows exactly how many bridges span Amsterdam’s

famous canals, because each of the city’s individual districts has its own data and no overall

comprehensive database is available. It turned out that many of these siloed datasets adopted their

own data definition of a bridge, which further complicates matters. See http://sloanreview.mit

.edu/case-study/lessons-from-becoming-a-data-driven-organization.

1.4 Elements of a Database System
. .

In this section we discuss database model versus instances, data models, the three-layer architecture,

the role of the catalog, the various types of database users, and DBMS languages.

1.4.1 Database Model versus Instances

In any database implementation, it is important to distinguish between the description of the data, or

data definitions, and the actual data. The database model or database schema provides the

description of the database data at different levels of detail and specifies the various data items,

their characteristics, and relationships, constraints, storage details, etc.2 The database model is

specified during database design and is not expected to change frequently. It is stored in the catalog,

which is the heart of the DBMS. The database state then represents the data in the database at a

particular moment. It is sometimes also called the current set of instances. Depending upon data

manipulations, such as adding, updating, or removing data, it typically changes on an ongoing basis.

The following are examples of data definitions that are an essential part of the database model

stored in the catalog.

Database model

Student (number, name, address, email)

Course (number, name)

Building (number, address)

. . .

We have three data items: Student, Course, and Building. Each of these data items can be

described in terms of its characteristics. A student is characterized by a number, name, address,

and email; a course by a number and name; and a building by a number and address.

Retention Questions

• Contrast the file versus

database approach to data

management.

2 We consider the terms model and schema as synonyms.

8 1 Fundamental Concepts of Database Management

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Figure 1.3 shows an example of a corresponding database state. You can see the database

includes data about three students, three courses, and three buildings.

1.4.2 Data Model

A database model comprises different data models, each describing the data from different perspec-

tives. A good data model is the start of every successful database application. It provides a clear and

unambiguous description of the data items, their relationships, and various data

constraints from a particular perspective. Several types of data models will be

developed during a database design process.

A conceptual data model provides a high-level description of the data

items (e.g., supplier, product) with their characteristics (e.g., supplier name,

product number) and relationships (e.g., a supplier can supply products). It is a

communication instrument between the information architect (see Chapter 4)

and business user to make sure the data requirements are adequately captured

and modeled. Therefore, the conceptual data model should be implementation-

independent, user-friendly, and close to how the business user perceives the

data. It will usually be represented using an Enhanced Entity Relationship

(EER) model or an object-oriented model, as we discuss in Chapter 3.

A logical data model is a translation or mapping of the conceptual data

model toward a specific implementation environment. The logical data items

may still be understood by business users, but are not too far removed from the

physical data organization. Depending upon the ICT environment available, it

can be a hierarchical (see Chapter 5), CODASYL (see Chapter 5), relational

(see Chapters 6 and 7), object-oriented (see Chapter 8), extended relational

(see Chapter 9), XML (see Chapter 10), or NoSQL model (see Chapter 11).

The logical data model can be mapped to an internal data model that

represents the data’s physical storage details. It clearly describes which data

are stored where, in what format, which indexes are provided to speed up

retrieval, etc. It is therefore highly DBMS-specific. We discuss internal data

models in Chapters 12 and 13.

Number

Number Number

0165854

D0R04A

D0T21A

0600 Naamsestraat 69, Leuven

Tiensestraat 115, Leuven

Naamsestraat 78, Leuven0365

0589

Principles of Database Management

Basic Programming

Big Data & Analytics

D0l69A

Bart Baesens

520, Fifth Avenue, NY

644, Wacker Drive, Chicago

1040 Market Street, SF Bart.Baesens@kuleuven.be

Wilfried Lemahieu Wilfried.Lemahieu@kuleuven.be

Seppe vanden Broucke Seppe.vandenbroucke@kuleuven.be

0157895

0168975

Name

Name

Address

Address

Email

STUDENT

COURSE BUILDING

Figure 1.3 Example database state.

Connections

In Chapter 3 we discuss

the EER and UML

conceptual data models

in more detail. Later

chapters cover logical

(and sometimes

external) data models:

the hierarchical and

CODASYL model in

Chapter 5, the relational

model in Chapters 6 and

7, the object-oriented

model in Chapter 8, the

extended relational

model in Chapter 9, the

XML data model in

Chapter 10 and various

NoSQL data models in

Chapter 11. Chapters 12

and 13 elaborate on

internal data models.

1.4 Elements of a Database System 9

www.cambridge.org/9781107186125
www.cambridge.org

Cambridge University Press
978-1-107-18612-5 — Principles of Database Management
Wilfried Lemahieu , Seppe vanden Broucke , Bart Baesens
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

The external data model contains various subsets of the data items in the logical model, also

called views, tailored toward the needs of specific applications or groups of users.

1.4.3 The Three-Layer Architecture

The three-layer architecture is an essential element of every database application and describes

how the different underlying data models are related.3 It is illustrated in Figure 1.4.

We start with the conceptual/logical layer. Here, we have the conceptual and logical data models.

Both focus on the data items, their characteristics, and relationships without bothering too much

about the actual physical DBMS implementation. The conceptual data model should be a user-

friendly, implementation-independent, and transparent data model, constructed in close collabor-

ation between the information architect and business user(s). It will be refined to a logical data

model based upon the implementation environment.

In the external layer we have the external data model, which includes views offering a window on

a carefully selected part of the logical data model. A view describes the part of the database that a

particular application or user group is interested in, hiding the rest of the database. It is used to

control data access and enforce security. The views will be tailored to the data needs of an

application or (group of) user(s). A view can serve one or more applications. Consider a view

offering only student information to a student registration application, or a view offering only

building information to a capacity planning application.

The internal layer includes the internal data model, which specifies how the data are stored or

organized physically. Ideally, changes in one layer should have no to minimal impact on the others.

It should be possible to physically reorganize the data with little impact on the conceptual/logical or

external layer (physical data independence). Likewise, changes to the conceptual/logical layer can

be made with minimal impact on the external layer (logical data independence). We elaborate on

both types of data independence in Section 1.5.1.

Figure 1.5 illustrates the three-layer architecture for a procurement business process. The

conceptual/logical layer defines the data items such as Product, Customer, Invoice, and Delivery.

The internal layer contains the physical storage details specifying how and where the data are stored.

The external layer has three views offering specific information to the finance, customer service, and

logistics departments. This three-layer database architecture has several advantages in efficiency,

maintenance, performance, security, etc.

1.4.4 Catalog

The catalog is the heart of the DBMS. It contains the data definitions, or metadata, of your database

application. It stores the definitions of the views, logical and internal data models, and synchronizes

these three data models to ensure their consistency.4

3 Some textbooks refer to the three-schema architecture instead of the three-layer architecture. We prefer the latter

since we are working with four data models (conceptual data model, logical data model, internal data model, and

external data model) spread across three layers. This should not be confused with a three-tier architecture, which we

discuss in Chapter 15.
4 The conceptual data model is typically not stored in the catalog.

10 1 Fundamental Concepts of Database Management

www.cambridge.org/9781107186125
www.cambridge.org

