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Introduction to Maximum Likelihood

1.1 introduction to maximum likelihood

The method of maximum likelihood is more than a collection of statistical
models or even an estimation procedure. It is a unified way of thinking about
model construction, estimation, and evaluation. The study of maximum like-
lihood represents a transition in methodological training for social scientists.
It marks the point at which we possess the conceptual, mathematical, and
computational foundations for writing down our own statistical estimators that
can be custom-designed for our own research questions. A solid understanding
of the principles and properties of maximum likelihood is fundamental to more
advanced study, whether self-directed or formally course-based.

To begin our introduction to the maximum likelihood approach we present a
toy example involving the most hackneyed of statistics contrivances: coin flips.
We undertake this example to illustrate the mechanics of the likelihood with
maximal simplicity. We then move on to a more realistic problem: describing
the degree of association between two continuous variables. Least squares
regression – the portal through which nearly every researcher enters the realm
of applied statistics – is a common tool for describing such a relationship. Our
goal is to introduce the broader likelihood framework for statistical inference,
showing that the familiar least squares estimator is, in fact, a special type
of maximum likelihood estimator. We then provide a more general outline
of the likelihood approach to model building, something we revisit in more
mathematical and computational detail in the next three chapters.

1.2 coin flips and maximum likelihood

Three friends are trying to decide between two restaurants, an Ethiopian
restaurant and a brewpub. Each is indifferent, since none of them has previously
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4 Introduction to Maximum Likelihood

eaten at either restaurant. They each flip a single coin, deciding that a heads
will indicate a vote for the brewpub. The result is two heads and one tails. The
friends deposit the coin in the parking meter and go to the brewpub.

We might wonder whether the coin was, in fact, fair. As a data analysis
problem, these coin flips were not obtained in a traditional sampling frame-
work, nor are we interested in making inferences about the general class of
restaurant coin flips. Rather, the three flips of a single coin are all the data
that exist, and we just want to know how the decision was taken. This is
a binary outcomes problem. The data are described by the following set in
which 1 represents heads: {1, 1, 0}. Call the probability of a flip in favor of
eating at the brewpub θ ; the probability of a flip in favor of eating Ethiopian
is thereby 1 − θ . In other words, we assume a Bernoulli distribution for a
coin flip.

In case you were wondering … 1.1 Bernoulli distribution

Let Y ∈ {0, 1}. Suppose Pr(Y = 1) = θ . We say that Y follows a
Bernoulli distribution with parameter θ :

Y ∼ fB(y; θ) =
{

θy(1 − θ)1−y ∀ y ∈ {0, 1},
0 otherwise

with E[Y] = θ and var(Y) = θ(1 − θ).

What value of the parameter, θ , best describes the observed data? Prior
experience may lead us to believe that coin flips are equiprobable; θ̂ = 0.5
seems a reasonable guess. Further, one might also reason that since there are
three pieces of data, the probability of the joint outcome of three flips is
0.53 = 0.125. This may be a reasonable summary of our prior expectations,
but this calculation fails to take advantage of the actual data at hand to inform
our estimate.

A simple tabulation reveals this insight more clearly. We know that in this
example, θ is defined on the interval [0, 1], i.e., 0 ≤ θ ≤ 1. We also know that
unconditional probabilities compound themselves so that the probability of a
head on the first coin toss times the probability of a head on the second times the
probability of tails on the third produces the joint probability of the observed
data: θ×θ×(1−θ). Given this expression we can easily calculate the probability
of getting the observed data for different values of θ . Computationally, the
results are given by Pr(y1 | θ̂ ) × Pr(y2 | θ̂ ) × Pr(y3 | θ̂ ), where yi is the value of
each observation, i ∈ {1, 2, 3} and | θ̂ is read, “given the proposed value of θ .”
Table 1.1 displays these calculations in increments of 0.1.
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1.2 Coin Flips and Maximum Likelihood 5

table1.1 Choosing a restaurant with three flips of a
fair coin?

Observed Data

y θ̂ θ1s × (1 − θ)0s fB(y | θ̂ )

{1, 1, 0} 0.00 0.002 × (1 − 0.00)1 0.000

{1, 1, 0} 0.10 0.102 × (1 − 0.10)1 0.009

{1, 1, 0} 0.20 0.202 × (1 − 0.20)1 0.032

{1, 1, 0} 0.30 0.302 × (1 − 0.30)1 0.063

{1, 1, 0} 0.40 0.402 × (1 − 0.40)1 0.096

{1, 1, 0} 0.50 0.502 × (1 − 0.50)1 0.125

{1, 1, 0} 0.60 0.602 × (1 − 0.60)1 0.144

{1, 1, 0} 0.67 0.672 × (1 − 0.67)1 0.148

{1, 1, 0} 0.70 0.702 × (1 − 0.70)1 0.147

{1, 1, 0} 0.80 0.802 × (1 − 0.80)1 0.128

{1, 1, 0} 0.90 0.902 × (1 − 0.90)1 0.081

{1, 1, 0} 1.00 1.002 × (1 − 0.00)1 0.000

The a priori guess of 0.5 turns out not to be the most likely to have generated
these data. Rather, the value of 2

3 is the most likely value for θ . It is not
necessary to do all of this by guessing values of θ . This case can be solved
analytically.

When we have data on each of the trials (flips), the Bernoulli probability
model, fB, is a natural place to start. We will call the expression that describes
the joint probability of the observed data as function of the parameters
the likelihood function, denoted L(y; θ). We can use the tools of differential
calculus to solve for the maximum; we take the logarithm of the likelihood for
computational convenience:

L = θ2(1 − θ)1

logL = 2 log θ + 1 log(1 − θ)

∂ logL

∂θ
= 2

θ
− 1

(1 − θ)
= 0

θ̂ = 2

3
.

The value of θ that themaximizes the likelihood function is called themaximum
likelihood estimate, or MLE.

It is clear that, in this case, it does not matter who gets heads and who gets
tails. Only the number of heads out of three flips matters. When Bernoulli data
are grouped in such a way, we can describe them equivalently with the closely
related binomial distribution.
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6 Introduction to Maximum Likelihood

In case you were wondering … 1.2 Binomial distribution

Let Y ∼ fB(y;p) where Pr(Y = 1) = p. Suppose we take n
independent draws and let X =

∑n
i=1 Yi. We say that X follows a

binomial distribution with parameter θ = (n,p):

X ∼ fb(x;n,p)

Pr(X = k) =
{

(n
k

)

pk(1 − p)n−k ∀ k ∈ {0, . . . ,n},
0 ∀ k /∈ {0, . . . ,n}

where
(n
k

)

= n!
k!(n−k)! and with E[X] = np and var(X) = np(1 − p).

The Bernoulli distribution is a binomial distribution with n = 1.
Jacob Bernoulli was a Swiss mathematician who derived the

law of large numbers, discovered the mathematical constant e, and
formulated the eponymous Bernoulli and binomial distributions.

Analytically and numerically the MLE is equivalent whether derived using
the Bernoulli or binomial distribution with known n. Figure 1.1 illustrates the
likelihood function for Bernoulli/binomial data consisting of two heads and
one tail. The maximum occurs at θ̂ = 2/3.

1.3 samples and sampling distributions

Trying to decide whether the coin used to choose a restaurant is fair is a
problem of statistical inference. Many inferential approaches are plausible;
most catholic among them is the classical model based on asymptotic results
obtained by imagining repeated, independent samples drawn from a fixed
population.1 As a result, we often conceptualize statistics calculated from
samples as providing information on a population parameter. For example,
suppose x1, . . . ,xn comprise a random sample from a population with a mean
of μ and a variance of σ 2. It follows that the mean of this sample is a random
variable with a mean of μ and variance that is equal to σ 2/n.Why? This is true,
since the expected value of the mean of an independent sample is the mean of
the population from which the sample is drawn. The variance of the sample
is, similarly, equal to the variance of the population divided by the size of the
sample.2 This is demonstrated graphically in Figure 1.2.

1 In statistics, asymptotic analysis refers to theoretical results describing the limiting behavior of a

function as a value, typically the sample size, tends to infinity.
2 This is the most basic statement of the Central Limit Theorem. We state the theorem more

formally in Section 2.2.2.
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1.3 Samples and Sampling Distributions 7
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figure 1.1 The likelihood/probability of getting two heads in three coin tosses, over
various values of θ .

This basic result is often used to interpret output from statistical models
as if the observed data are a sample from a population for which the mean
and variance are unknown. We can use a random sample to calculate our
best guesses as to what those population values are. If we have either a large
enough random sample of the population or enough independent, random
samples – as in the American National Election Study or the Eurobarometer
surveys, for example – then we can retrieve good estimates of the population
parameters of interest without having to actually conduct a census of the entire
population. Indeed, most statistical procedures are based on the idea that they
perform well in repeated samples, i.e., they have good sampling distribution
properties.

Observed data in the social sciences frequently fail to conform to a “sample”
in the classical sense. They instead consist of observations on a particular
(nonrandom) selection of units, such as the 50 US states, all villages in
Afghanistan safe for researchers to visit, all the terror events that newspapers
choose to report, or, as in the example that follows, all the data available from
the World Bank on GDP and CO2 emissions from 2012. In such situations,
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8 Introduction to Maximum Likelihood

9.0 9.5 10.0 10.5 11.0

figure 1.2 Illustrating the Central Limit Theorem with a histogram of the means of
1,000 random samples of size 10 drawn from a population with mean of 10 and
variance of 1.

the basic sampling distribution result is more complicated to administer. To
salvage the classical approach, some argue for a conceptual sampling perspec-
tive. This often takes the form of a hypothetical: you have data on all 234
countries in the world at present, but these are just a sample from all the
possible worlds that might have existed. The implied conclusion is that you
can treat this as a random sample and gain leverage from the basic results
of sampling distributions and the asymptotic properties of the least squares
estimators.

Part of the problem with this line of attack is that it sets up the expectation
that we are using the observed data to learn about some larger, possibly hypo-
thetical, population. Standard inference frequently relies on this conception,
asking questions like “How likely are estimates at least as large as what we
found if, in the larger population, the ‘true value’ is 0?”We speak of estimates
as (non)significant by way of trying to demonstrate that they did not arise by
chance and really do reflect accurately the unobserved, underlying population
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1.4 Maximum Likelihood: An Overview 9

parameters. In the same way, we argue that the estimators we employ are
good if they produce unbiased estimates of population parameters. Thus we
conceptualize the problem as having estimates that are shifted around by
estimators and sample sizes.

But there is a different way to think about all of this, a way that is not only
completely different, but complementary at the same time.

In case you were wondering … 1.3 Bias and mean squared error

A statistical estimator is simply a formula or algorithm for calcu-
lating some unknown quantity using observed data. Let T(X) be an
estimator for θ . The bias of T(X), denoted bias(θ), is

bias(θ) = E[T(X)] − θ .

The mean squared error, MSE(θ), is given as

MSE(θ) = E[(T(X) − θ)2]

= var(T(X)) + bias(θ)2.

1.4 maximum likelihood: an overview

The principle of maximum likelihood is based on the idea that the observed
data (even if it is not a random sample) are more likely to have come about
as a result of a particular set of parameters. Thus, we flip the problem on
its head. Rather than consider the data as random and the parameters as
fixed, the principle of maximum likelihood treats the observed data as fixed
and asks: “What parameter values are most likely to have generated the
data?” Thus, the parameters are random variables. More formally, in the
likelihood framework we think of the joint probability of the data as a function
of parameter values for a particular density or mass function. We call this
particular conceptualization of the probability function the likelihood, since
it is being maximized with respect to the parameters, not on the sample data.
The MLEs are those that provide the density or mass function with the highest
likelihood of generating the observed data.

1.4.1 Maximum Likelihood: Specific

TheWorld Bank assembled data on gross domestic product and CO2 emissions
for many countries in 2012. These data are accessible directly from R via the
library WDI (Arel-Bundock, 2013). If we believe that CO2 pollution is a linear
function of economic activity, then we might propose the simple model Y =
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figure 1.3 2012 GDP per capita and CO2 emissions. The prediction equation is
shown as a straight line, with intercept and slope as reported in Table 1.2. The large
solid dot represents the United States and the length of the arrow is its residual value
given the model.

β0 +β1X+ε, where Y is the logged data on CO2 emissions and X is the logged
data on gross domestic product (GDP), both taken for 183 countries in the year
2012. The ε term represents the stochastic processes – sampling, measurement
error, and other omitted factors – that cause a particular country’s observed
CO2 emissions to deviate from the simple linear relationship.

A scatterplot of these data appear in Figure 1.3, with an estimate of the
linear relationship included as a straight line. The United States is high-
lighted for its CO2 emissions well in excess of what the linear relationship
expects, given its per capita GDP. The vertical arrow highlights this positive
residual.

How can we choose the parameters for the prediction line using maximum
likelihood? The first step in constructing any likelihood is the specification of
a probability distribution describing the outcome, Yi. Here we will turn to the
Gaussian distribution. If we assume that observations are independently and
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1.4 Maximum Likelihood: An Overview 11

identically distributed (iid) – they follow the same distribution and contain no
dependencies – then we write

Yi
iid∼ N (μi, σ

2). (1.1)

Equation 1.1 reads as “Yi is distributed iid normal with mean μi and variance
σ 2.” When used as a part of a likelihood model, we will adopt the following
notational convention:

Yi ∼ fN (yi;μi, σ
2).

In case you were wondering … 1.4 Gaussian (normal) distribution

We say that the random variable Y ∈ R follows a Gaussian (or
normal) distribution with parameter vector θ = (μ, σ 2) if the
probability distribution function can be written as

Y ∼ fN (y; θ) = 1√
2πσ 2

exp

[

− (y− μ)2

2σ 2

]

, (1.2)

with E[Y] = μ and var(Y) = σ 2. The special case in which μ = 0
and σ = 1 is called the standard normal distribution. The standard
normal density and distribution functions are written as φ(·) and
�(·), respectively.

The normal distribution was first derived by Karl Freidrich Gauss
and published in his 1810 monograph on celestial mechanics. In the
same volume, Gauss derived the least squares estimator and alluded
to the principle of maximum likelihood. Gauss, a child prodigy, has
long been lauded as the foremost mathematical mind since Newton.
Gauss’s image along with the formula and graph of the normal
distribution appeared on the German 10 mark banknote from 1989
until the mark was superseded by the Euro.

The Marquis de Laplace first proved the Central Limit Theorem
in which the mean of repeated random samples follows a Gaussian
distribution, paving the way for the distribution’s ubiquity in proba-
bility and statistics.

Next, we develop a model for the expected outcome – the mean – as
a function of covariates. We assume a linear relationship between (log) per
capita GDP and (log) CO2 emissions: Yi = β0 + β1xi + εi. This implies that
εi = yi−β0−β1xi. As a result, assuming that Yi is normal with μ = β0+β1xi is
equivalent to assuming that εi ∼ fN (εi; 0, σ

2). That is, assuming Y is iid normal
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