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1 An Introduction
to Empirical Modeling

1.1 Introduction

Empirical modeling, broadly speaking, refers to the process, methods, and strategies

grounded on statistical modeling and inference whose primary aim is to give rise to “learn-

ing from data” about stochastic observable phenomena, using statistical models. Real-world

phenomena of interest are said to be “stochastic,” and thus amenable to statistical modeling,

when the data they give rise to exhibit chance regularity patterns, irrespective of whether

they arise from passive observation or active experimentation. In this sense, empirical

modeling has three crucial features:

(a) it is based on observed data that exhibit chance regularities;

(b) its cornerstone is the concept of a statistical model that decribes a probabilistic

generating mechanism that could have given rise to the data in question;

(c) it provides the framework for combining the statistical and substantive informa-

tion with a view to elucidating (understanding, predicting, explaining) phenomena of

interest.

Statistical vs. substantive information. Empirical modeling across different disciplines

involves an intricate blending of substantive subject matter and statistical information. The

substantive information stems from a theory or theories pertaining to the phenomenon of

interest that could range from simple conjectures to intricate substantive (structural) mod-

els. Such information has an important and multifaceted role to play by demarcating the

crucial aspects of the phenomenon of interest (suggesting the relevant variables and data),

as well as enhancing the learning from data when it meliorates the statistical information

without belying it. In contrast, statistical information stems from the chance regularities in

data. Scientific knowledge often begins with substantive conjectures based on subject matter

information, but it becomes knowledge when its veracity is firmly grounded in real-world

data. In this sense, success in “learning from data” stems primarily from a harmonious blend-

ing of these two sources of information into an empirical model that is both statistically and

substantively “adequate”; see Sections 1.5 and 1.6.
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2 An Introduction to Empirical Modeling

Empirical modeling as curve-fitting. The current traditional perspective on empirical mod-

eling largely ignores the above distinctions by viewing the statistical problem as “quantifying

theoretical relationships presumed true.” From this perspective, empirical modeling is

viewed as a curve-fitting problem, guided primarily by goodness-of-fit. The substantive

model is often imposed on the data in an attempt to quantify its unknown parameters. This

treats the substantive information as established knowledge, and not as tentative conjec-

tures to be tested against data. The end result of curve-fitting is often an estimated model

that is misspecified, both statistically (invalid probabilistic assumptions) and substantively;

it doesn’t elucidate sufficiently the phenomenon of interest. This raises a thorny problem

in philosophy of science known as Duhem’s conundrum (Mayo, 1996), because there is

no principled way to distinguish between the two types of misspecification and apportion

blame. It is argued that the best way to address this impasse is (i) to disentangle the sta-

tistical from the substantive model by unveiling the probabilistic assumptions (implicitly

or explicitly) imposed on the data (the statistical model) and (ii) to separate the modeling

from the inference facet of empirical modeling. The modeling facet includes specifying and

selecting a statistical model, as well as appraising its adequacy (the validity of its proba-

bilistic assumptions) using misspecification testing. The inference facet uses a statistically

adequate model to pose questions of substantive interest to the data. Crudely put, conflating

the modeling with the inference facet is analogous to mistaking the process of constructing a

boat to preset specifications with sailing it in a competitive race; imagine trying to construct

the boat while sailing it in a competitive race.

Early cautionary note. It is likely that some scholars in empirical modeling will mock and

criticize the introduction of new terms and distinctions in this book as “mounds of gratu-

itous jargon,” symptomatic of an ostentatious display of pedantry. As a pre-emptive response

to such critics, allow me to quote R. A. Fisher’s 1931 reply to Arne Fisher’s [American

mathematician/statistician] complaining about his

“introduction in statistical method of some outlandish and barbarous technical terms. They stand

out like quills upon the porcupine, ready to impale the sceptical critic. Where, for instance, did

you get that atrocity, a statistic?”

His serene response was:

I use special words for the best way of expressing special meanings. Thiele and Pearson were

quite content to use the same words for what they were estimating and for their estimates of it.

Hence the chaos in which they left the problem of estimation. Those of us who wish to distinguish

the two ideas prefer to use different words, hence ‘parameter’ and ‘statistic’. No one who does not

feel this need is under any obligation to use them. Also, to Hell with pedantry. (Bennett, 1990,

pp. 311–313) [emphasis added]

A bird’s-eye view of the chapter. The rest of this chapter elaborates on the crucial features

of empirical modeling (a)–(c). In Section 1.2 we discuss the meaning of stochastic observ-

able phenomena and why such phenomena are amenable to empirical modeling. Section 1.3

focuses on the relationship between data from stochastic phenomena and statistical models.

Section 1.4, discusses several important issues relating to observed data, including their dif-

ferent measurement scales, nature, and accuracy. In Section 1.5 we discuss the important

notion of statistical adequacy: whether the postulated statistical model “accounts fully for”
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1.2 Stochastic Phenomena: A Preliminary View 3

the statistical systematic information in the data. Section 1.6 discusses briefly the connection

between a statistical model and the substantive information of interest.

1.2 Stochastic Phenomena: A Preliminary View

This section provides an intuitive explanation for the notion of a stochastic phenomenon as

it relates to the concept of a statistical model, discussed in the next section.

1.2.1 Chance Regularity Patterns

The chance regularities denote patterns that are usually revealed using a variety of graph-

ical techniques and careful preliminary data analysis. The essence of chance regularity, as

suggested by the term itself, comes in the form of two entwined features:

chance an inherent uncertainty relating to the occurrence of particular outcomes;

regularity discernible regularities associated with an aggregate of many outcomes.

T E R M I N O L O G Y: The term “chance regularity” is used in order to avoid possible confusion

with the more commonly used term “randomness.”

At first sight these two attributes might appear to be contradictory, since “chance” is often

understood as the absence of order and “regularity” denotes the presence of order. However,

there is no contradiction because the “disorder” exists at the level of individual outcomes

and the order at the aggregate level. The two attributes should be viewed as inseparable for

the notion of chance regularity to make sense.

Example 1.1 To get some idea about “chance regularity” patterns, consider the data given

in Table 1.1.

Table 1.1 Observed data

3 10 11 5 6 7 10 8 5 11 2 9 9 6 8 4 7 6 5 12

7 8 5 4 6 11 7 10 5 8 7 5 9 8 10 2 7 3 8 10

11 8 9 5 7 3 4 9 10 4 7 4 6 9 7 6 12 8 11 9

10 3 6 9 7 5 8 6 2 9 6 4 7 8 10 5 8 7 9 6

5 7 7 6 12 9 10 4 8 6 5 4 7 8 6 7 11 7 8 3

A glance at Table 1.1 suggests that the observed data constitute integers between 2 and 12,

but no real patterns are apparent, at least at first sight. To bring out any chance regularity

patterns we use a graph as shown in Figure 1.1, t-plot: {(t, xt), t = 1, 2, . . . , n}.

The first distinction to be drawn is that between chance regularity patterns and determin-

istic regularities that is easy to detect.

Deterministic regularity. When a t-plot exhibits a clear pattern which would enable one

to predict (guess) the value of the next observation exactly, the data are said to exhibit

deterministic regularity. The easiest way to think about deterministic regularity is to visualize
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Fig. 1.1 t-Plot of a sequence of 100 observations
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Fig. 1.2 Graph of x = 1.5 cos((Ã/3)t+(Ã/3))

the graphs of mathematical functions. If a t-plot of data can be depicted by a mathematical

function, the numbers exhibit deterministic regularity; see Figure 1.2.

In contrast to deterministic regularities, to detect chance patterns one needs to perform a

number of thought experiments.

Thought experiment 1–Distribution regularity. Associate each observation with identical

squares and rotate Figure 1.1 anti-clockwise by 90ç, letting the squares fall vertically to form

a pile on the x-axis. The pile represents the well-known histogram (see Figure 1.3).

The histogram exhibits a clear triangular shape, reflecting a form of regularity often

associated with stable (unchanging) relative frequencies (RF) expressed as percentages
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Fig. 1.3 Histogram of the data in Figure 1.1

(%). Each bar of the histogram represents the frequency of each of the integers 2–12.

For example, since the value 3 occurs five times in this data set, its relative frequency is

RF(3)=5/100 = .05. The relative frequency of the value 7 is RF(7)=17/100 = .17, which is

the highest among the values 2–12. For reasons that will become apparent shortly, we name

this discernible distribution regularity.

[1] Distribution: After a large enough number of trials, the relative frequency of the

outcomes forms a seemingly stable distribution shape.

Thought experiment 2. In Figure 1.1, one would hide the observations beyond a certain

value of the index, say t = 40, and try to guess the next outcome on the basis of the observa-

tions up to t = 40. Repeat this along the x-axis for different index values and if it turns out

that it is more or less impossible to use the previous observations to narrow down the poten-

tial outcomes, conclude that there is no dependence pattern that would enable the modeler

to guess the next observation (within narrow bounds) with any certainty. In this experiment

one needs to exclude the extreme values of 2 and 12, because following these values one

is almost certain to get a value greater and smaller, respectively. This type of predictability

is related to the distribution regularity mentioned above. For reference purposes we name

the chance regularity associated with the unpredictability of the next observation given the

previous observations.

[2] Independence: In a sequence of trials, the outcome of any one trial does not

influence and is not influenced by the outcome of any other.

Thought experiment 3. In Figure 1.1 take a wide enough frame (to cover the spread of the

fluctuations) that is also long enough (roughly less than half the length of the horizontal axis)

and let it slide from left to right along the horizontal axis, looking at the picture inside the

frame as it slides along. In cases where the picture does not change significantly, the data

exhibit the chance regularity we call homogeneity, otherwise heterogeneity is present; see
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6 An Introduction to Empirical Modeling

Chapter 5. Another way to view this pattern is in terms of the arithmetic average and the

variation around this average of the observations as we move from left to right. It appears

as though this sequential average and its variation are relatively constant around 7. More-

over, the variation around this constant average value appears to be within fixed bands. This

chance regularity can be intuitively described by the notion of homogeneity.

[3] Homogeneity: The probabilities associated with all possible outcomes remain the

same for all trials.

In summary, the data in Figure 1.1 exhibit the following chance regularity patterns:

[1] A triangular distribution; [2] Independence; [3] Homogeneity (ID).

It is important to emphasize that these patterns have been discerned directly from the

observed data without the use of any substantive subject matter information. Indeed, at this

stage it is still unknown what these observations represent or measure, but that does not pre-

vent one from discerning certain chance regularity patterns. The information conveyed by

these patterns provides the raw material for constructing statistical models aiming to ade-

quately account for (or model) this (statistical) information. The way this is achieved is to

develop probabilistic concepts which aim to formalize these patterns in a mathematical way

and provide canonical elements for constructing statistical models.

The formalization begins by representing the data as a set of n ordered numbers denoted

generically by x0:= (x1, x2, . . . , xn) . These numbers are in turn interpreted as a typical real-

ization of a finite initial segment X:= (X1, X2, . . . , Xn) of a (possibly infinite) sequence of

random variables {Xt, t = 1, 2, . . . , n, . . .} we call a sample X; note that the random vari-

ables are denoted by capital letters and observations by small letters. The chance regularity

patterns exhibited by the data are viewed as reflecting the probabilistic structure of {Xt, t =

1, 2, . . . , n, . . .}. For the data in Figure 1.1, the structure one can realistically ascribe to sam-

ple X is that they are independent and identically distributed (IID) random variables, with

a triangular distribution. These probabilistic concepts will be formalized in the next three

chapters to construct a statistical model that will take the simple form shown in Table 1.2.

Table 1.2 Simple statistical model

[D] Distribution Xt��(¿, Ã 2), xt * NX :=(2, . . . , 12), discrete triangular

[M] Dependence (X1, X2, . . . , Xn) are independent (I)

[H] Heterogeneity (X1, X2, . . . , Xn) are identically distributed (ID)

Note that ¿ = E(Xt) and Ã 2 = E(Xt 2¿)2 denote the mean and variance of Xt, respectively;

see Chapter 3.

It is worth emphasizing again that the choice of this statistical model, which aims to

account for the regularities in Figure 1.1, relied exclusively on the chance regularities, with-

out invoking any substantive subject matter information relating to the actual mechanism

that gave rise to the particular data. Indeed, the generating mechanism was deliberately

veiled in the discussion so far to make this point.
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1.2 Stochastic Phenomena: A Preliminary View 7

1.2.2 From Chance Regularities to Probabilities

The question that naturally arises is whether the available substantive information pertaining

to the mechanism that gave rise to the data in Figure 1.1 would affect the choice of a statisti-

cal model. Common sense suggests that it should, but it is not clear what its role should be.

Let us discuss that issue in more detail.

The actual data-generating mechanism (DGM). It turns out that the data in Table 1.1 were

generated by a sequence of n = 100 trials of casting two dice and adding the dots of the two

sides facing up. This game of chance was very popular in medieval times and a favorite pas-

time of soldiers waiting for weeks on end outside the walls of European cities they had under

siege, looking for the right opportunity to assail them. After thousands of trials these illiterate

soldiers learned empirically (folk knowledge) that the number 7 occurs more often than any

other number and that 6 occurs less often than 7 but more often than 5; 2 and 12 would occur

the least number of times. One can argue that these soldiers had an instinctive understanding

of the empirical relative frequencies summarized by the histogram in Figure 1.3.

In this subsection we will attempt to reconstruct how this intuition was developed into

something more systematic using mathematization tools that eventually led to probabil-

ity theory. Historically, the initial step from the observed regularities to their probabilistic

formalization was very slow in the making, taking centuries to materialize; see Chapter 2.

The first crucial feature of the generating mechanism is its stochastic nature: at each trial

(the casting of two dice), the outcome (the sum of the dots of the sides) cannot be predicted

with any certainty. The only thing one can say with certainty is that the result of each trial will

be one of the numbers {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. It is also known that these numbers do

not occur equally often in this game of chance.

How does one explain the differences in the empirical relative frequency of occurrence

for the different numbers as shown in Figure 1.3? The first systematic account of the under-

lying mathematics behind Figure 1.3 was given by Gerolamo Cardano (1501–1576), who

lived in Milan, Italy. He was an Italian polymath, whose wide interests ranged from being a

mathematician, physician, biologist, chemist, astrologer/astronomer, to gambler.

The mathematization of chance regularities. Cardano reasoned that since each die has six

faces (1, 2, . . . , 6), if the die is symmetric and homogeneous, the probability of each outcome

is equal to 1/6, i.e.

Number of dots 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

When casting two dice (D1, D2), one has 36 possible outcomes associated with the different

pairings of these numbers (i, j), i, j = 1, 2, . . . , 6; see Table 1.3. That is, behind each

one of the possible events {2, 3, . . . , 12} there is a combination of elementary outcomes,

whose probability of occurrence could be used to explain the differences in their relative

frequencies.

The second crucial feature of the generating mechanism is that, under certain conditions,

all elementary outcomes (x, y) are equally likely to occur; each elementary outcome occurs

with probability 1/36. These conditions are of paramount importance in modeling stochastic
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8 An Introduction to Empirical Modeling

Table 1.3 Elementary outcomes: casting two dice

D1\D2 1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

phenomena, because they constitute the premises of inference. In this case they pertain to

the physical symmetry of the two dice and the homogeneity (sameness) of the replication

process. In the actual experiment giving rise to the data in Table 1.1, the dice were cast in

the same wooden box to secure a certain form of nearly identical conditions for each trial.

Going from these elementary outcomes to the recorded result z = x+y, it becomes clear

that certain events are more likely to occur than others, because they occur when different

combinations of the elementary outcomes arise (see Table 1.4). For instance, we know that

the number 2 can arise as the sum of a single combination of faces: {1, 1} – each die comes

up 1, hence Pr({1, 1}) = 1/36. The same applies to the number 12: Pr({6, 6}) = 1/36. On

the other hand, the number 3 can arise as the sum of two sets of faces: {(1, 2), (2, 1)} , hence

Pr({(1, 2), (2, 1)}) = 2/36. The same applies to the number 11: Pr({(6, 5), (5, 6)}) = 2/36. If

you do not find the above derivations straightforward do not feel too bad, because a giant of

eighteenth-century mathematics, Gottfried Leibniz (1646–1716), who developed differential

and integral calculus independently of Isaac Newton, made an elementary mistake when he

argued that Pr(z = 11) = Pr(z = 12) = 1/36; see Todhunter (1865, p. 48). The reason?

Leibniz did not understand clearly the notion of “the set of all possible distinct outcomes”

(Table 1.3)!

Continuing this line of thought, one can construct a probability distribution that relates

each event of interest with a certain probability of occurrence (see Figure 1.4). As we can

see, the outcome most likely to occur is the number 7. We associate the relative frequency

of occurrence with the underlying probabilities defining a probability distribution over all

possible results; see Chapter 3.

Table 1.4 Probability distribution: sum of two dice

Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

One can imagine Cardano sitting behind a makeshift table at a corner of Piazza del Duomo

in Milan inviting passers-by to make quick money by betting on events like C – the sum of

two dice being bigger than 9, and offering odds 3-to-1 against; three ways to lose and one

to win. He knew that based on Table 1.3, Pr(C) = 6/36. This meant that he would win

most of the time, since the relevant odds to be a fair game should have been 5-to-1. Prob-

abilistic knowledge meant easy money for this avid gambler and he was not ready to share
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Fig. 1.4 Probability distribution Fig. 1.5 Probability vs. relative frequency

it with the rest of the world. Although he published numerous books and pamphlets during

his lifetime, including his autobiography in lurid detail, his book about games of chance,

Liber de Ludo Aleae, written around 1564, was only published posthumously in 1663; see

Schwartz (2006).

The probability distribution in Table 1.4 represents a mathematical concept formulated to

model a particular form of chance regularity exhibited by the data in Figure 1.1 and sum-

marized by the histogram in Figure 1.3. A direct comparison between Figures 1.3 and 1.4,

by superimposing the latter on the former in Figure 1.5, confirms the soldiers’ intuition: the

empirical relative frequencies are very close to the theoretical probabilities. Moreover, if we

were to repeat the experiment 1000 times, the relative frequencies would have been even

closer to the theoretical probabilities; see Chapter 10. In this sense we can think of the his-

togram in Figure 1.3 as an empirical instantiation of the probability distribution in Figure 1.4.

Let us take the above formalization of the two-dice example one step further.

Example 1.2 When playing the two-dice game, the medieval soldiers used to gamble

on whether the outcome would be an odd or an even number (the Greeks introduced

these concepts around 300 BC), by betting on odd A = {3, 5, 7, 9, 11} or even B =

{2, 4, 6, 8, 10, 12} numbers. At first sight it looks as though the soldier betting on B would

have had a clear advantage since there are more even than odd numbers. The medieval sol-

diers, however, had folk knowledge that this was a fair bet! We can confirm that Pr(A)=Pr(B)

using the probabilities in Table 1.4 to derive those in Table 1.5:

Pr(A)= Pr(3) + Pr(5) + Pr(7) + Pr(9) + Pr(11) = 2
36

+ 4
36

+ 6
36

+ 4
36

+ 2
36

= 1
2

;

Pr(B)= Pr(2)+ Pr(4)+ Pr(6)+ Pr(8)+ Pr(10)+ Pr(12)= 1
36

+ 3
36

+ 5
36

+ 5
36

+ 3
36

+ 1
36

= 1
2

.

Table 1.5 Odd and even sum

Outcome A B

Probability .5 .5

The historical example credited with being the first successful attempt to go from empir-

ical relative frequencies (real world) to probabilities (mathematical world) is discussed

next.
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10 An Introduction to Empirical Modeling

1.2.2.1 Example 1.3: Chevalier de Mere’s Paradox7

Historically, the connection between a stable (unchanging) law of relative frequencies can

be traced back to the middle of the seventeenth century in an exchange of letters between

Pascal and Fermat; see Hacking (2006).

Chevalier de Mere’s paradox was raised in a letter from Pascal to Fermat on July 29,

1654 as one of the problems posed to him by de Mere (a French nobleman and a studious

gambler). De Mere observed the following empirical regularity:

P(at least one 6 in 4 casts of 1 die)> 1
2

> P(a double 6 in 24 casts with 2 dice)

on the basis of numerous repetitions of the game. This, however, seemed to contradict his

reasoning by analogy; hence the paradox.

De Mere’s false reasoning. He reasoned that the two probabilities should be identical

because one 6 in four casts of one die should be the same event as a double 6 in 24 casts of

two dice, since 4 is to 6 as 24 is to 36. False! Why?

Multiplication counting principle. Consider the sets S1, S2, . . . , Sk with n1, n2, . . . , nk ele-

ments, respectively. Then there are n1×n2× . . . ×nk ways to choose one element from S1,

then one element from S2, . . . , then one element from Sk.

In the case of two dice, the set of all possible outcomes is 6×6 = 62 = 36 (see Table 1.3).

To explain the empirical regularity observed by de Mere, one needs to assume equal prob-

ability (1/36) for each pair of numbers from 1 to 6 in casting two dice, and argue as in

Table 1.6. The two probabilities p = 0.4914039 and q = 0.5177469 confirm that de Mere’s

empirical frequencies were correct but his reasoning by analogy was erroneous. What ren-

dered the small difference of .026 in the two probabilities of empirical discernability is the

very large number of repetitions under more or less identical conditions. The mathematical

result underlying such stable long-run frequencies is known as the Law of Large Numbers

(Chapter 9).

Table 1.6 Explaining away de Mere’s paradox

One die (P(i) = 1
6

, i = 1, 2, . . . , 6) Two dice (P(i, j) = 1
36

, i, j =

1, 2, . . . , 6)

P(one 6) = 1
6

P(one (6,6)) = 1
36

P(one 6 in n casts) =
�

1
6

�n
P(one (6,6) in n casts) =

�

1
36

�n

P(no 6 in n casts) =
�

5
6

�n
P(no (6,6) in n casts) =

�

35
36

�n

P(at least one 6 in n casts) = 12( 5
6

)n = q P(at least one (6,6) in n casts) =

1 2 ( 35
36

)n = p

For n = 4, q = 1 2
�

5
6

�4
= 0.5177469 For n = 24, p = 1 2

�

35
36

�24
=

0.4914039
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