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Brief Introduction to Phylogenetic Estimation

The construction of evolutionary trees is one of the major steps in many biological research

studies. For example, evolutionary trees of different species tell us how the species evolved

from a common ancestor, and perhaps also shed insights into the morphology of their

common ancestors, the speed at which the different lineages evolved, how they and their

common ancestors adapted to different environmental conditions, etc.

Because the true evolutionary histories cannot be known and can only be estimated,

evolutionary trees are hypotheses about what has happened in the past. The tree in Figure

1.1 presents a hypothesis about the evolutionary history of a group of mammals and one

bird. According to this tree, cats and gray seals are more closely related to each other than

either is to blue whales, and cows are more closely related to blue whales than they are

to rats or opossums (or anything else in the figure). Not surprisingly, chickens (since they

are birds) are the outgroup, since the others are all mammals. The tree shown is the result

of a statistical analysis of molecular sequences taken from the genomes of these species.

Hence, the estimation of evolutionary trees, also known as phylogenetic reconstruction, is

a computational problem that involves statistical inference. Furthermore, because it is a

statistical inference problem, the accuracy of the tree depends on the model assumptions,

the method used to analyze the data, and the data themselves. In other words, the estimation
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Figure 1.1 (Figure 3.5 from Huson et al. (2010)) A hypothesis of the evolutionary tree of various

animals. The tree is rooted on the left, and has been estimated using molecular sequence data; branch

lengths are proportional to evolutionary distances, and not necessarily to time.
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4 Brief Introduction to Phylogenetic Estimation

of phylogenies is complicated and difficult. How this phylogeny construction is done, and

how to do it better, is the point of this text.

Most modern phylogenetic estimation uses molecular sequence data (typically DNA

sequences, which can be considered strings over the nucleotide alphabet {A,C,T,G}), and

computes a tree from the set. While there are many ways to compute trees from a set of

sequences, understanding when the methods are likely to be accurate requires having some

kind of model for how the sequences relate to each other, and more specifically how they

evolved from a common ancestor.

DNA sequences evolve under fairly complicated processes. At the simplest level, these

sequences evolve down trees under processes in which single nucleotides are substituted

by other single nucleotides. Many stochastic models have been developed to describe

the evolution of sequences down trees under these substitution-only models, and most

phylogenetic estimation is based on these models.

However, sequence evolution is more complicated than this. For example, many

sequences for the same gene have different lengths, with the changes in length due to

processes such as insertions and deletions (jointly called indels) of nucleotides, and in

some cases duplications or rearrangements of regions within the sequences. Multiple

sequence alignments are used to put the sequences into a matrix form so that each column

has nucleotides that have a common ancestor, which are then used in phylogeny estimation.

Stochastic models to describe sequence evolution have been developed that extend the

simpler substitution-only models to include indel events, and are sometimes used to co-

estimate alignments and trees.

Genome-scale evolution is even more complicated, since different parts of the genome

can evolve under more complicated processes than the models that govern individual por-

tions of the genomes. In particular, due to processes such as incomplete lineage sort-

ing, gene duplication and loss, horizontal gene transfer, hybridization, and recombination,

different parts of the genome can evolve down different trees (Maddison, 1997). Again,

stochastic models have been developed to describe genome-scale evolution, and are used

to estimate genome-scale phylogenies in the presence of one or more of these processes.

Thus, phylogeny estimation is addressed largely through statistical inference under an

assumed stochastic model of evolution. While biologically realistic models are fairly com-

plicated, the basic techniques that are used can be described even in the context of very

simple models. In this chapter, we introduce the key concepts, issues, and techniques in

phylogeny estimation in the context of a very simple binary model of sequence evolution.

1.1 The Cavender–Farris–Neyman Model

The Cavender–Farris–Neyman (CFN) model describes how a trait (which can either be

present or absent) evolves down a tree (Neyman, 1971; Farris, 1973; Cavender, 1978).

Hence, a CFN model has a rooted binary tree T (i.e., a tree in which every node is either a

leaf or has two children) with numerical parameters that describe the evolutionary process

of a trait. Under the CFN model, the probability of absence (0) or presence (1) is the same
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1.1 The Cavender–Farris–Neyman Model 5

at the root, but the state can change on the edges (also called branches) of the tree. Thus, we

associate a parameter p(e) to every edge e in the tree, where p(e) denotes the probability

that the endpoints of the edge e have different states. In other words, p(e) is the probability

of changing state (from 1 to 0, or vice versa). For reasons that we will explain later, we

require that 0 < p(e)< 0.5.

Under the CFN model, a trait (which is also called a “character”) evolves down the

tree under this random process, and hence attains a state at every node in the tree, and in

particular at the leaves of the tree. You could write a computer program for a CFN model

tree that would generate 0s and 1s at the leaves of the tree; thus, CFN is a generative model.

Each time you ran the program you would get another pattern of 0s and 1s at the leaves of

the tree. Thus, if you repeated the process ten times, each time independently generating a

new trait down the tree, you would produce sequences of length ten at the leaves of the tree.

The task of phylogenetic estimation is generally the inference of the tree from the

sequences we see at the leaves of the tree. To do this, we assume that we know something

about the sequence evolution model that generated the data. For example, we might assume

(whether rightly or wrongly) that the sequences we see were generated by some unknown

CFN model tree. Then, we would use what we know about CFN models to estimate the

tree. Thus, we can also treat the CFN model as a tool for inference; i.e., CFN can be an

inferential model. However, suppose we were lucky and the sequences we observe were, in

fact, generated by some CFN model tree. Would we be able to reconstruct the tree T from

the sequences?

To do this inference, we would assume that each of the sites (i.e., positions) in the

sequences we observe had evolved down the same tree, and that each of them had evolved

identically and independently (i.i.d.). It should be obvious that the ability to infer the tree

correctly requires having enough data – i.e., long enough sequences – since otherwise we

just can’t distinguish between trees. For example, if we have 100 sequences, each of length

one, there just isn’t enough information to select the true tree with any level of confidence.

Therefore, we ask “If sequence length were not an issue, so that we had sequences that were

extremely long, would we have enough information in the input sequences to construct the

tree exactly with high probability?” We can also formulate this more precisely, as “Suppose

M is a method for constructing trees from binary sequences, (T,Θ) is a CFN model tree, and

ε > 0. Is there a constant k > 0 such that the probability that M returns T given sequences

of length at least k is at least 1− ε?”

A positive answer to this question would imply that for any level of confidence that is

desired, there is some sequence length so that the method M would be accurate with that

desired probability given sequences of at least that length. A positive answer also indicates

that M has this property for all CFN model trees, and not just for some. A method M for

which the answer is Yes is said to be statistically consistent under the CFN model. Thus,

what we are actually asking is: Are there any statistically consistent methods for the CFN

model?
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6 Brief Introduction to Phylogenetic Estimation

1.2 An Analogy: Determining Whether a Coin is Biased Toward Heads or Tails

Let’s consider a related but obviously simpler question. Suppose you have a coin that is

biased either toward heads or toward tails, but you don’t know which. Can you run an

experiment to figure out which type of coin you have?

After a little thought, the answer may seem obvious – toss the coin many times, and

see whether heads comes up more often than tails. If it does, say the coin is biased toward

heads; otherwise, say it is biased toward tails. The probability that you guess correctly will

approach 1 as you increase the number of coin tosses. We express this statement by saying

that this method is a statistically consistent technique for determining which way the coin is

biased (toward heads or toward tails). However, the probability of being correct will clearly

depend on the number of coin tosses, so you may need to toss it many times before the

probability that you answer correctly will be high.

Now suppose you don’t get to toss the coin yourself, but are instead shown a sequence of

coin tosses of some length that is chosen by someone else. Now, you can still guess whether

the coin is biased toward heads or tails, but the probability of being correct may be small

if the coin is not tossed enough times. Note that for this problem – deciding whether the

coin is biased toward heads or tails – you will either be 100 percent correct or 100 percent

wrong. The reason you can be 100 percent correct is that there are only a finite number of

choices. Note also that the probability of being 100 percent correct can be high, but will

never actually be equal to 1; in other words, for any finite number of times you can toss

the coin, you will always have some probability of error. Also, the probability of error will

depend on how many coin tosses you have and the probability of heads for that coin!

The problem changes in interesting ways if you want to estimate the actual probability

of a head for that coin, instead of just whether it is biased toward heads or toward tails.

However, it’s pretty straightforward what you should do – toss the coin as many times as

you can, and report the fraction of the coin tosses that come up heads. Note that in this

problem your estimations of the probability of a head will generally have error. (For exam-

ple, if the probability of a head is irrational, then this technique can never be completely

correct.) Despite this, your estimate will converge to the true probability of a head as the

number of coin tosses increases. This is expressed by saying that the method is statistically

consistent for estimating the probability of a head.

The problem of constructing a CFN tree is very similar to the problem of determin-

ing whether a coin is biased toward heads or tails. There are only a finite number of

different trees on n distinctly labeled leaves, and you are asked to select from among

these. Then, if you have a sequence of samples of a random process, you are trying to

use the samples to select the tree from that finite set; this is very much like deciding

between the two types of biased coins. As we will show, it is possible to correctly con-

struct the CFN tree with arbitrarily high probability, given sufficiently long sequences

generated on the tree. The problem of constructing the substitution probabilities on the

edges of the CFN tree is similar to the problem of determining the actual probability of a

head, in that these are real-valued parameters, and so some error will always be expected.
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1.3 Estimating the Cavender–Farris–Neyman Tree 7

However, if good methods are used, then as the sequence lengths increase the error in the

estimated substitution probabilities will decrease, and the estimates will converge to the

true values.

While estimating the numeric parameters of a CFN model tree is important for many

tasks, we’ll focus here on the challenge of estimating the tree T , rather than the numeric

parameters. We describe some techniques for estimating this tree from binary sequences,

and discuss whether they can estimate the tree correctly with high probability, given suffi-

ciently long sequences.

1.3 Estimating the Cavender–Farris–Neyman Tree

Recall that the CFN model tree is a pair (T,θ) where T is the rooted binary tree with

leaves labelled s1,s2, . . . ,sn and θ provides the values of p(e) for every edge e ∈ E(T). The

CFN model tree describes the evolution of a sequence down the tree, where every site (i.e.,

position) within the sequence evolves down the model tree identically and independently.

Thus the substitution probabilities p(e) on each edge describe the evolutionary process

operating on each site in the sequence.

However, this stochastic process can also be described differently, and in a way that

is helpful for understanding why some methods can have good statistical properties for

estimating CFN model trees. Under the CFN model, the number of substitutions on an edge

is modeled by a Poisson random variable N(e) with expected value λ (e). Thus, if N(e) = 0,

then there is no substitution on the edge, while if N(e) = 1, then there is a substitution on

the edge. Furthermore, if N(e) is even then the endpoints of the edge have the same state,

while if N(e) is odd then the endpoints of the edge have different states; hence, p(e) is the

probability that N(e) is odd, since we only observe a change on the edge if there is an odd

number of substitutions.

Using λ (e) (the expected value of N(e)) instead of p(e) turns out to be very useful in

developing methods for phylogeny estimation. Note that 0 < λ (e) for all e since p(e)> 0.

Using the properties of Poisson random variables, it can be shown that

λ (e) =−
1

2
ln(1−2p(e)).

Note that as p(e)→ 0.5, λ (e)→ ∞.

1.3.1 Estimating the CFN Tree When Evolution is Clocklike

An assumption that is sometimes made is that sequence evolution is clocklike (also referred

to as obeying the strict molecular clock), which means that the expected number of

changes is proportional to time. If we assume that the leaves represent extant (i.e., living)

species, then under the assumption of a strict molecular clock, the total expected number

of changes from the root to any leaf is the same. Under the assumption of a strict molecular
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8 Brief Introduction to Phylogenetic Estimation

Inferring Clocklike Evolution 

If |S| = 2, make the taxa in S siblings 

If |S| > 2 then 

find pair x,y of closest taxa;  

Recurse on S\{y} 

Insert y as sibling to x 

Return tree 
a b c d e

Figure 1.2 Constructing trees when evolution is clocklike. We show a cartoon of a model tree, with

branch lengths drawn proportional to the expected number of changes. When evolution is clocklike, as

it is for this cartoon model, simple techniques such as the one described in the figure will reconstruct

the model tree with probability that converges to 1 as the sequence length increases.

clock, the matrix of expected distances between the leaves in the tree has properties that

make it “ultrametric”:

Definition 1.1 An ultrametric matrix is an n× n matrix M corresponding to distances

between the leaves in a rooted edge-weighted tree T (with non-negative edge weights)

where the sum of the edge weights in the path from the root to any leaf of T does not

depend on the selected leaf.

Constructing trees from ultrametric matrices is much easier than the general problem of

constructing trees from distance matrices that are not ultrametric. However, the assumption

of clocklike evolution may not hold on a given dataset, and is generally not considered

realistic (Li and Tanimura, 1987). Furthermore, the ability to reconstruct the tree using a

particular technique may depend on whether the evolutionary process is in fact clocklike.

Even though clocklike evolution is generally unlikely, there are some conditions where

evolution is close to clocklike. So, let’s assume we have a clocklike evolutionary process

operating on a CFN tree (T,θ), and so the total number of expected changes from the root

to any leaf is the same. We consider a very simple case where the tree T has three leaves,

a,b, and c. To reconstruct the tree T we need to be able to infer which pair of leaves are

siblings, from the sequences we observe at a,b, and c. How should we do this?

One very natural approach to estimating the tree would be to select as siblings the two

sequences that are the most similar to each other from the three possible pairs. Because

the sequence evolution model is clocklike, this technique will correctly construct rooted

three-leaf trees with high probability. Furthermore, the method can even be extended to

work on trees with more than three leaves, using recursion. For example, consider the

model tree given in Figure 1.2, where the branch lengths indicate the expected number

of substitutions on the branch. Note that this model tree is ultrametric. Thus, under this

model, the sequences at leaves a and b will be the most similar to each other of all the

possible pairs of sequences at the leaves of the tree. Hence, to estimate this tree, we would
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b c

a d e

Figure 1.3 Constructing evolutionary trees when evolution is not clocklike. We show a cartoon of

a model tree on five leaves, with branch lengths drawn proportionally to the expected number of

changes of a random site (i.e., position in the sequence alignment). Note that leaves b and c are

not siblings, but have the smallest evolutionary distance (measured in terms of expected number of

changes). Hence, methods that make the most similar sequences siblings will likely fail to reconstruct

the model tree, and the probability of failure will increase to 1 as the number of sites (i.e., sequence

length) increases.

first compare all pairs of sequences to find which pair is the most similar, and we’d select

a and b as this pair. We’d then correctly infer that species a and b are siblings. We could

then remove one of these two sequences (say, a), and reconstruct the tree on what remains.

Finally, we would add a into the tree we construct on b,c,d,e, by making it a sibling to b.

It is easy to see that a tree computed using this approach, which is a variant of the

UPGMA (Sokal and Michener, 1958) method (Unweighted Pair Group Method with Arith-

metic Mean), will converge to the true tree as the sequence length increases. That is, it is

possible to make mistakes in the construction of the tree – but the probability of making a

mistake decreases as the sequence length increases.

However, what if the evolutionary process isn’t clocklike? Suppose, for example, that

we have a three-leaf CFN model tree with leaves a,b, and c, in which a and b are siblings.

Suppose, however, that the substitution probabilities on the edges leading from the root to

b and c are extremely small, while the substitution probability on the single edge incident

with a is very large. Then, applying the technique described above would return the tree

with b and c siblings – i.e., the wrong tree. In other words, this simplified version of

UPGMA would converge to a tree other than the true tree as the sequence length increases.

This is clearly an undesirable property of a phylogeny estimation method, and is referred

to by saying the method is positively misleading. An example of a model tree where

UPGMA and its variants would not construct the correct tree – even as the sequence length

increases – is given in Figure 1.3; the probability of selecting b and c as the first sibling

pair would increase to 1 as the sequence length increases, and so UPGMA and its variants

would return the wrong tree.

Clearly, when there is no clock, then sequence evolution can result in datasets for which

the inference problem seems to be much harder. Furthermore, for the CFN and other
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10 Brief Introduction to Phylogenetic Estimation

sequence evolution models, if we drop the assumption of the molecular clock, the correct

inference of rooted three-leaf trees with high probability is not possible. In fact, the best

that can be hoped for is the correct estimation of the unrooted version of the model tree

with high probability.

1.3.2 Estimating the Unrooted CFN Tree when Evolution is Not Clocklike

We now discuss how to estimate the underlying unrooted CFN tree from sequences, without

assuming clocklike evolution. We will begin with an idealized situation, in which we have

something we will call “CFN model distances,” and show how we can construct the tree

from these distances. Afterwards, we will show how to construct the tree from estimated

distances rather than from model distances.

CFN model distances: Let (T,θ) be a CFN model tree on leaves s1,s2, . . . ,sn, so that T is

the rooted binary tree and θ gives all the edge parameters λ (e). Let λi,j denote the expected

number of changes for a random site on the path Pi,j between leaves si and sj in the CFN

model tree T; it follows that

λi,j = ∑
e∈Pi,j

λ (e).

The matrix λ is referred to as the CFN model distance matrix.

Note that by definition, λ is the matrix of path distances in a tree, where the path distance

between two leaves is the sum of the branch lengths and all branch lengths are positive.

Matrices that have this property have special mathematical properties, and in particular are

examples of additive matrices.

Definition 1.2 An n× n matrix M is additive if there is a tree T with leaves labeled

1,2, ...n and non-negative lengths (or weights) on the edges, so that the path distance

between i and j in T is equal to M[i, j]. An example of an additive matrix is given in

Figure 1.4.

In other words, additive matrices correspond to edge-weighted trees in which all edge

weights are non-negative; therefore, distance matrices arising from CFN model trees are

L1

L3 L4

L2
1

1

5 5

1 L1
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3 6

6
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Figure 1.4 Additive matrix and its edge-weighted tree.
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1.3 Estimating the Cavender–Farris–Neyman Tree 11

necessarily additive. Furthermore, CFN model trees have strictly positive branch lengths,

and this property additionally constrains the additive matrices corresponding to CFN model

trees and makes the inference of CFN model trees particularly easy to do. Techniques to

compute trees from additive distance matrices (and even from noisy versions of additive

distance matrices) are presented in Chapter 5, and briefly summarized here in the context

of CFN distance matrices.

Let’s consider the case where the CFN tree T has n ≥ 4 leaves, and that s1,s2,s3, and s4

are four of its leaves. Without loss of generality, assume the tree T has one or more internal

edges that separate s1 and s2 from s3 and s4. We describe this by saying that T induces

the quartet tree s1s2|s3s4. We first show how to compute the quartet tree on these leaves

induced by T , and then we will show how to use all these quartet trees to construct T .

Suppose we have the values of λ (e) for every edge in T and hence also the additive

matrix λ of path distances in the tree. Consider the three following pairwise sums:

• λ1,2 +λ3,4

• λ1,3 +λ2,4

• λ1,4 +λ2,3

Since the weights of the edges are all positive, the smallest of these three pairwise sums has

to be λ1,2 +λ3,4, since it covers all the edges of T connecting these four leaves except for

the ones on the path P separating s1,s2 from s3,s4. Furthermore, the two larger of the three

pairwise sums have to be identical, since they cover the same set of edges (every edge in T

connecting the four leaves is covered either once or twice, with only the edges in P covered

twice). Letting w(P) denote the total weight of the edges in the path P, and assuming that

T induces the quartet tree s1s2|s3s4,

λ1,2 +λ3,4 +2w(P) = λ1,3 +λ2,4 = λ1,4 +λ2,3.

Since λ (e) > 0 for every edge e, w(P) > 0. Hence, λ1,2 +λ3,4 is strictly smaller than the

other two pairwise sums.

The Four Point Condition is the statement that the two largest values of the three

pairwise sums are the same. Hence, the Four Point Condition holds for any additive matrix,

which allows branch lengths to be zero (as long as they are never negative). The additional

property that the smallest of the three pairwise sums is strictly smaller than the other two

is not part of the Four Point Condition, and can fail to hold on additive matrices. It is worth

noting that a matrix is additive if and only if it satisfies the Four Point Condition on every

four indices.

Now, if we are given a 4×4 additive matrix D that corresponds to a tree T with positive

branch weights, then we can easily compute T from D: We calculate the three pairwise

sums, we determine which of the three pairwise sums is the smallest, and use that one to

define the split for the four leaves into two sets of two leaves each. We refer to this method

as the Four Point Method.

Given an n×n additive matrix M with n ≥ 5 associated to a binary tree T with positive

branch lengths, we can construct T using a two-step technique that we now describe. In
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