
Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction

Machine learning is starting to take over decision-making in many aspects of

our life, including:

(a) keeping us safe on our daily commute in self-driving cars,

(b) making accurate diagnoses based on our symptoms and medical history,

(c) pricing and trading complex securities, and

(d) discovering new science, such as the genetic basis for various diseases.

But the startling truth is that these algorithms work without any sort of provable

guarantees on their behavior. When they are faced with an optimization

problem, do they actually find the best solution, or even a pretty good one?

When they posit a probabilistic model, can they incorporate new evidence

and sample from the true posterior distribution? Machine learning works

amazingly well in practice, but that doesn’t mean we understand why it works

so well.

If you’ve taken traditional algorithms courses, the usual way you’ve been

exposed to thinking about algorithms is through worst-case analysis. When you

have a sorting algorithm, you measure its running time based on how many

operations it takes on the worst possible input. That’s a convenient type of

bound to have, because it means you can say meaningful things about how

long your algorithm takes without ever worrying about the types of inputs you

usually give it.

But what makes analyzing machine learning algorithms, especially modern

ones, so challenging is that the types of problems they are trying to solve

really are NP-hard on worst-case inputs. When you cast the problem of finding

the parameters that best fit your data as an optimization problem, there are

instances where it is NP-hard to find a good fit. When you posit a probabilistic

model and want to use it to perform inference, there are instances where that

is NP-hard as well.

1

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 Introduction

In this book, we will approach the problem of giving provable guarantees

for machine learning by trying to find more realistic models for our data. In

many applications, there are reasonable assumptions we can make, based on

the context in which the problem came up, that can get us around these worst-

case impediments and allow us to rigorously analyze heuristics that are used

in practice, as well as design fundamentally new ways of solving some of the

central, recurring problems in machine learning.

To take a step back, the idea of moving beyond worst-case analysis is an idea

that is as old1 as theoretical computer science itself [95]. In fact, there are many

different flavors of what it means to understand the behavior of algorithms on

“typical” instances, including:

(a) probabilistic models for your input, or even hybrid models that combine

elements of worst-case and average-case analysis like semi-random

models [38, 71] or smoothed analysis [39, 130];

(b) ways to measure the complexity of your problem and ask for algorithms

that are fast on simple inputs, as in parameterized complexity [66]; and

(c) notions of stability that attempt to articulate what instances of your

problem have meaningful answers and are the ones you actually want to

solve [20, 32].

This is by no means an exhaustive list of topics or references. Regardless, in

this book, we will approach machine learning problems armed with these sorts

of insights about ways to get around intractability.

Ultimately, we hope that theoretical computer science and machine learn-

ing have a lot left to teach each other. Understanding why heuristics like

expectation- maximization or gradient descent on a nonconvex function work

so well in practice is a grand challenge for theoretical computer science. But to

make progress on these questions, we need to understand what types of models

and assumptions make sense in the context of machine learning. On the other

hand, if we make progress on these hard problems and develop new insights

about why heuristics work so well, we can hope to engineer them better. We

can even hope to discover totally new ways to solve some of the important

problems in machine learning, especially by leveraging modern tools in our

algorithmic toolkit.

In this book, we will cover the following topics:

(a) Nonnegative matrix factorization

(b) Topic modeling

1
After all, heuristics performing well on real life inputs are old as well (long predating modern
machine learning), hence so is the need to explain them.

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction 3

(c) Tensor decompositions

(d) Sparse recovery

(e) Sparse coding

(f) Learning mixtures models

(g) Matrix completion

I hope more chapters will be added in later versions as the field develops and

makes new discoveries.

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2

Nonnegative Matrix Factorization

In this chapter, we will explore the nonnegative matrix factorization problem.

It will be helpful to first compare it to the more familiar singular value

decomposition. In the worst case, the nonnegative matrix factorization problem

is NP-hard (seriously, what else did you expect?), but we will make domain-

specific assumptions (called separability) that will allow us to give provable

algorithms for an important special case of it. We then apply our algorithms to

the problem of learning the parameters of a topic model. This will be our first

case study in how to not back down in the face of computational intractability,

and to find ways around it.

2.1 Introduction

In order to better understand the motivations behind the nonnegative matrix

factorization problem and why it is useful in applications, it will be helpful

to first introduce the singular value decomposition and then compare the two.

Eventually, we will apply both of these to text analysis later in this section.

The Singular Value Decomposition

The singular value decomposition (SVD) is one of the most useful tools in

linear algebra. Given an m × n matrix M, its singular value decomposition is

written as

M = U�VT

where U and V are orthonormal and � is a rectangular matrix with nonzero

entries only along the diagonal, and its entries are nonnegative. Alternatively,

we can write

4

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1 Introduction 5

M =

r∑

i=1

σiuiv
T
i

where ui is the ith column of U, vi is the ith column of V , and σi is the ith

diagonal entry of �. Throughout this section we will fix the convention that

σ1 ≥ σ2 ≥ . . . ≥ σr > 0. In this case, the rank of M is precisely r.

Throughout this book, we will have occasion to use this decomposition as

well as the (perhaps more familiar) eigendecomposition. If M is an n×n matrix

and is diagonalizable, its eigendecomposition is written as

M = PDP−1

where D is diagonal. For now, the important facts to remember are:

(1) Existence: Every matrix has a singular value decomposition, even

if it is rectangular. In contrast, a matrix must be square to have an

eigendecomposition. Even then, not all square matrices can be

diagonalized, but a sufficient condition under which M can be

diagonalized is that all its eigenvalues are distinct.

(2) Algorithms: Both of these decompositions can be computed efficiently.

The best general algorithms for computing the singular value

decomposition run in time O(mn2) if m ≥ n. There are also faster

algorithms for sparse matrices. There are algorithms to compute an

eigendecomposition in O(n3) time and there are further improvements

based on fast matrix multiplication, although it is not clear whether such

algorithms are as stable and practical.

(3) Uniqueness: The singular value decomposition is unique if and only if its

singular values are distinct. Similarly, the eigendecomposition is unique if

and only if its eigenvalues are distinct. In some cases, we will only need

that the nonzero singular values/eigenvalues are distinct, because we can

ignore the others.

Two Applications

Two of the most important properties of the singular value decomposition are

that it can be used to find the best rank k approximation and that it can be used

for dimension reduction. We explore these next. First, let’s formalize what we

mean by the best rank k approximation problem. One way to do this is to work

with the Frobenius norm:

Definition 2.1.1 (Frobenius norm) ‖M‖F =

√∑
i,j M2

i,j

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 2 Nonnegative Matrix Factorization

It is easy to see that the Frobenius norm is invariant under rotations. For

example, this follows by considering each of the columns of M separately

as a vector. The square of the Frobenius norm of a matrix is the sum of

squares of the norms of its columns. Then left-multiplying by an orthogonal

matrix preserves the norm of each of its columns. An identical argument holds

for right-multiplying by an orthogonal matrix (but working with the rows

instead). This invariance allows us to give an alternative characterization of

the Frobenius norm that is quite useful:

‖M‖F = ‖UTMV‖F = ‖�‖F =

√∑
σ 2

i

The first equality is where all the action is happening and uses the rotational

invariance property we established above.

Then the Eckart–Young theorem asserts that the best rank k approximation

to some matrix M (in terms of Frobenius norm) is given by its truncated

singular value decomposition:

Theorem 2.1.2 (Eckart–Young) argmin
rank(B)≤k

‖M − B‖F =
∑k

i=1 σiuiv
T
i

Let Mk be the best rank k approximation. Then, from our alternative definition

of the Frobenius norm, it is immediate that ‖M − Mk‖F =

√∑r
i=k+1 σ 2

i .

In fact, the same statement – that the best rank k approximation to M is its

truncated singular value decomposition – holds for any norm that is invariant

under rotations. As another application, consider the operator norm:

Definition 2.1.3 (operator norm) ‖M‖ = max‖x‖≤1 ‖Mx‖

It is easy to see that the operator norm is also invariant under rotations and,

moreover, ‖M‖ = σ1, again using the convention that σ1 is the largest singular

value. Then the Eckart–Young theorem with respect to the operator norm

asserts:

Theorem 2.1.4 (Eckart–Young) argmin
rank(B)≤k

‖M − B‖ =
∑k

i=1 σiuiv
T
i

Again, let Mk be the best rank k approximation. Then ‖M − Mk‖ = σk+1. As

a quick check, if k ≥ r then σk+1 = 0, and the best rank k approximation is

exact and has no error (as it should). You should think of this as something you

can do with any algorithm to compute the singular value decomposition of M –

you can find the best rank k approximation to it with respect to any rotationally

invariant norm. In fact, it is remarkable that the best rank k approximation in

many different norms coincides! Moreover, the best rank k approximation to

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1 Introduction 7

M can be obtained directly from its best rank k + 1 approximation. This is not

always the case, as we will see in the next chapter when we work with tensors.

Next, we give an entirely different application of the singular value decom-

position in the context of data analysis before we move on to applications of it

in text analysis. Recall that M is an m×n matrix. We can think of it as defining

a distribution on n-dimensional vectors, which we obtain from choosing one

of its columns uniformly at random. Further suppose that E[x] = 0; i.e., the

columns sum to the all-zero vector. Let Pk be the space of all projections onto

a k-dimensional subspace.

Theorem 2.1.5 argmax
P∈Pk

E[‖Px‖2] =
∑k

i=1 uiu
T
i

This is another basic theorem about the singular value decomposition, and

from it we can readily compute the k-dimensional projection that maximizes

the projected variance. This theorem is often invoked in visualization, where

one can visualize high-dimensional vector data by projecting it to a more

manageable lower-dimensional subspace.

Latent Semantic Indexing

Now that we have developed some of the intuition behind the singular value

decomposition, we will see an application of it to text analysis. One of the

central problems in this area (and one that we will return to many times) is this:

given a large collection of documents, we want to extract some hidden thematic

structure. Deerwester et al. [60] invented latent semantic indexing (LSI) for this

purpose, and their approach was to apply the singular value decomposition to

what is usually called the term-by-document matrix:

Definition 2.1.6 The term-by-document matrix M is an m × n matrix where

each row represents a word and each column represents a document where

Mi,j =
count of word i in document j

total number of words in document j
.

There are many popular normalization conventions, and here we have chosen

to normalize the matrix so that each of its columns sums to one. In this way,

we can interpret each document as a probability distribution on words. Also,

in constructing the term-by-document matrix, we have ignored the order in

which the words occur. This is called a bag-of-words representation, and the

justification for it comes from a thought experiment. Suppose I were to give

you the words contained in a document, but in a jumbled order. It should still

be possible to determine what the document is about, and hence forgetting all

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 2 Nonnegative Matrix Factorization

notions of syntax and grammar and representing a document as a vector loses

some structure, but should preserve enough of the information to make many

basic tasks in text analysis still possible.

Once our data is in vector form, we can make use of tools from linear

algebra. How can we measure the similarities between two documents? The

naive approach is to base our similarity measure on how many words they

have in common. Let’s try

〈Mi, Mj〉.

This quantity computes the probability that a randomly chosen word w from

document i and a randomly chosen word w′ from document j are the same. But

what makes this a bad measure is that when documents are sparse, they may not

have many words in common just by accident because of the particular words

each author chose to use to describe the same types of things. Even worse,

some documents could be deemed to be similar because they contain many of

the same common words, which have little to do with what the documents are

actually about.

Deerwester et al. [60] proposed to use the singular value decomposition of

M to compute a more reasonable measure of similarity, and one that seems

to work better when the term-by-document matrix is sparse (as it usually is).

Let M = U�VT and let U1...k and V1...k be the first k columns of U and V ,

respectively. The approach is to compute

〈UT
1...kMi, UT

1...kMj〉

for each pair of documents. The intuition is that there are some topics that occur

over and over again in the collection of documents. And if we could represent

each document Mi on the basis of topics, then their inner product on that basis

would yield a more meaningful measure of similarity. There are some models –

i.e., hypotheses for how the data is stochastically generated – where it can be

shown that this approach provably recovers the true topics [118]. This is the

ideal interaction between theory and practice – we have techniques that work

(somewhat) well, and we can analyze/justify them.

However, there are many failings of latent semantic indexing that have

motivated alternative approaches. If we associate the top singular vectors with

topics, then

(1) topics are orthonormal.

However, topics like politics and finance actually contain many words in

common, so they cannot be orthonormal.

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1 Introduction 9

(2) topics contain negative values.

Hence, if a document contains such words, their contribution (to the topic)

could cancel out the contributions from other words. Moreover, a pair of

documents can be judged to be similar because of particular topics that they

are both not about.

Nonnegative Matrix Factorization

For exactly the failings we described in the previous section, nonnegative

matrix factorization is a popular alternative to the singular value decomposition

in many applications in text analysis. However, it has its own shortcomings.

Unlike the singular value decomposition, it is NP-hard to compute. And the

prevailing approach in practice is to rely on heuristics, with no provable

guarantees.

Definition 2.1.7 A nonnegative matrix factorization of inner-dimension r is a

decomposition

M = AW

where A is n × r, W is r × n, and both are entrywise nonnegative. Moreover,

let the nonnegative rank of M – denoted by rank+(M) – be the minimum r so

that such a factorization exists.

As we will see, this factorization, when applied to a term-by-document matrix,

can find more interpretable topics. Beyond text analysis, it has many other

applications in machine learning and statistics, including in collaborative filter-

ing and image segmentation. For now, let’s give an interpretation of a nonneg-

ative matrix factorization specifically in the context of text analysis. Suppose

we apply it to a term-by-document matrix. Then it turns out that we can always

put it in a convenient canonical form: Let D be a diagonal matrix where

Dj,j =

m∑

i=1

Ai,j

and further suppose that each Dj,j > 0. Then

Claim 2.1.8 Set Ã = AD−1 and W̃ = DW. Then

(1) Ã, W̃ are entrywise nonnegative and M = ÃW̃, and

(2) the columns of Ã and the columns of W̃ each sum to one.

We leave the proof of this claim as an exercise, but the hint is that property (2)

follows because the columns of M also sum to one.

www.cambridge.org/9781107184589
www.cambridge.org


Cambridge University Press
978-1-107-18458-9 — Algorithmic Aspects of Machine Learning
Ankur Moitra 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 2 Nonnegative Matrix Factorization

Hence we can, without loss of generality, assume that our nonnegative

matrix factorization M = AW is such that the columns of A and the columns of

W each sum to one. Then we can interpret this factorization as follows: Each

document is itself a distribution on words, and what we have found is

(1) a collection of r topics – the columns of A – that are themselves

distributions on words, and

(2) for each document i, a representation of it – given by Wi – as a convex

combination of r topics so that we recover its original distribution on

words.

Later on, we will get some insight into why nonnegative matrix factorization

is NP-hard. But what approaches are used in practice to actually compute such

a factorization? The usual approach is alternating minimization:

Alternating Minimization for NMF

Input: M ∈ R
m×n

Output: M ≈ A(N)W(N)

Guess entrywise nonnegative A(0) of dimension m × r

For i = 1 to N

Set W(i) ← argminW ‖M − A(i−1)W‖2
F s.t. W ≥ 0

Set A(i) ← argminA ‖M − AW(i)‖2
F s.t. A ≥ 0

End

Alternating minimization is quite general, and throughout this book we will

come back to it many times and find that problems we are interested in are

solved in practice using some variant of the basic approach above. However, it

has no provable guarantees in the traditional sense. It can fail by getting stuck

in a locally optimal solution that is much worse than the globally optimal one.

In fact, this is inevitable, because the problem it is attempting to solve really is

NP-hard.

However, in many settings we will be able to make progress by working

with an appropriate stochastic model, where we will be able to show that

it converges to a globally optimal solution provably. A major theme in this

book is to not take for granted heuristics that seem to work in practice “as

immutable,” because the ability to analyze them will itself provide new insights

into when and why they work, and also what can go wrong and how to

improve them.

www.cambridge.org/9781107184589
www.cambridge.org

