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1 Introduction

Dynamics is traditionally defined as the classical study of motion with respect to the

physical causes of motion, that is, forces and moments. Kinematics, on the other hand,

is concerned with the study of motion without respect to the underlying physical causes.

In this sense, kinematics is really a fundamental prerequisite upon which dynamics is

constructed.

For the purposes of this text, the terms dynamics and mechanics are taken to be syn-

onymous. The choice of which term is used is based more on the academic community

than on a strict technical distinction. The engineering community typically adopts the

term dynamics and the physics and applied mathematics communities typically adopt

the term mechanics. The term dynamics is predominantly used in this text.

1.1 Historical Background

Interest in the dynamics of linked multibody systems has existed throughout much of

recorded human history. As an example, representations of the human form in art have

included anthropomorphic constructions made up of mechanical elements like those

depicted in Giovanni Braccelli’s Bizzarie di Varie Figure published in 1624 (see Fig-

ure 1.1). Braccelli’s art coincided with the birth of the mechanical philosophy of René

Descartes, Pierre Gassendi, and others. The mechanical philosophy sought to describe

physical phenomena in terms of intricate mechanisms. Decades after the birth of the

mechanical philosophy, a systematic theory of mechanics began to flourish with New-

tonian mechanics.

Analytical dynamics (historically referred to as analytical mechanics) is identified

with a number of formulations of classical mechanics that arose after Isaac Newton

published his Philosophiae Naturalis Principia Mathematica in 1687. The cornerstones

of Newtonian mechanics are his laws of motion, which were applied to point masses.

From a modern perspective, Newton’s second law can be seen more generally as a con-

servation law, specifically, as a law of conservation of momentum. As such, Newtonian

mechanics, and its extension to extended (rigid) bodies by Leonhard Euler, are based on

two fundamental conservation principles: (1) the conservation of translational momen-

tum and (2) the conservation of angular momentum.
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2 Introduction

Figure 1.1 Anthropomorphic forms adapted from plate no. 12 of Bizzarie di Varie Figure, 1624,

by Giovanni Battista Braccelli, Livorno, Library of Congress Lessing J. Rosenwald Collection.

Braccelli’s Mannerist-styled work consists of a set of 50 etchings depicting anthropomorphic

mechanical figures like this one. The human form has long been an inspiration in the study of

mechanical systems.

In contrast to the conservation principles underlying the Newton-Euler mechanics,

the analytical dynamics that followed were based on variational principles. The conser-

vation of vector quantities like translational and angular momentum was replaced with

principles rooted in the variation of scalar quantities like work and energy. An important

precursor to the subsequent development of variational mechanics was the concept of

the vis viva (living force) proposed by Gottfried Leibniz, a contemporary of Newton.

The vis viva corresponds to our present notion of kinetic energy. In Leibniz’s mechan-

ics, momentum was replaced by kinetic energy and force was replaced by work of the

force (Lanczos 1986).

Development of variational mechanics required a mathematical tool beyond the basic

calculus of Newton and Leibniz. The calculus of variations, concerned with extremiz-

ing functionals (mappings of functions to scalar values), emerged as this tool. Johann

Bernoulli was the first to exploit the calculus of variations in solving the brachistochrone

curve problem. However, Euler is usually credited with the formal development of the

calculus of variations in his 1744 Methodus inveniendi.

Around the time of Euler’s Methodus inveniendi, in 1743, Jean Le Rond d’Alembert

published his Traité de dynamique. This articulated d’Alembert’s Principle of Virtual

Work. Although Johann Bernoulli is credited with first proposing the Principle of Vir-

tual Work for cases of static equilibrium, d’Alembert is credited with extending the

principle to dynamic equilibrium by interpreting the acceleration terms in Newton’s

equation of motion as inertial forces. The principle is based on the notion of virtual
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1.1 Historical Background 3

displacement, defined as an infinitesimal change of the system’s configuration coordi-

nates while time is frozen. The displacement is virtual because no actual displacement

occurs. Rather, a virtual displacement is used as a conceptual mechanism. D’Alembert’s

Principle can be viewed as a zeroth-order variational principle, as it is based on the

zeroth-order derivative of displacement.

It should be noted that with the advent of analytical dynamics and variational princi-

ples like d’Alembert’s, the concept of generalized coordinates became relevant. As the

name implies, these coordinates are a generalization of the Cartesian coordinates used

in Newton-Euler mechanics, whereby any consistent set of parameters that uniquely

describe the configuration of the system can be chosen. The vector space defined by

these generalized coordinates forms the configuration space of the system.

Following d’Alembert’s Principle, the monumental work of Joseph-Louis Lagrange

(born Giuseppe Lodovico Lagrangia) resulted in what is now known as Lagrangian

mechanics. Together with contributions from Euler and William Rowan Hamilton, the

Euler-Lagrange equations emerged as a logical consequence of Hamilton’s Principle

of Least Action. Disentangling the individual contributions of these three eminent

mechanicians with respect to Lagrangian mechanics can be a bit tedious. Consequently,

we will not proceed in chronological order when discussing this.

Hamilton’s Principle of Least Action has been referred to as “the most direct and

most natural transformation of d’Alembert’s into a minimum principle” (Lanczos 1986,

p. 111). The principle states that the path of a system in configuration space during a

time interval is such that the action is stationary under all path variations. The action is

defined as the integral of the Lagrangian over the time interval, where the Lagrangian is

defined as the difference between the kinetic and potential energies of the system. The

Euler-Lagrange equations of motion for the system emerge directly from this principle.

Lagrange published his seminal work, Mécanique analytique, in 1788, formalizing these

ideas into what is now known as Lagrangian mechanics.

Hamilton’s reformulation of Lagrangian mechanics, published in 1833, constitutes

what is now known as Hamiltonian mechanics. This reformulation involves a transfor-

mation of the Euler-Lagrange equations from a set of second-order differential equa-

tions in the generalized coordinates to a set of first-order differential equations in the

generalized coordinates and generalized momenta. The Hamiltonian is defined as a new

invariant corresponding to the total energy. Hamilton’s equations written in terms of the

Hamiltonian are known as Hamilton’s canonical equations.

Up to this point, the historical flow of the variational principles of mechanics has

followed the path from d’Alembert’s Principle to Hamilton’s Principle to the Euler-

Lagrange equations and, finally, to Hamilton’s canonical equations. It was mentioned

that d’Alembert’s Principle can be viewed as a zeroth-order variational principle. Holo-

nomic constraints, which take the form of algebraic functions of the generalized coor-

dinates and possibly time, can be inherently addressed by zeroth-order variational prin-

ciples using the method of Lagrange multipliers.

Higher-order variational principles have also been proposed. One of the advan-

tages of higher-order variational principles is the ability to address nonholonomic con-

straints, which take the form of algebraic functions of the higher-order derivatives of the
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4 Introduction

Figure 1.2 Historical progression of key principles of analytical dynamics. The variational

principles, which form the basis of analytical dynamics, are comprised of a number of

formulations that arose after Newton’s mechanics.

generalized coordinates (generalized velocities and accelerations) and possibly time.

The first-order variational principle, published by Philip E. B. Jourdain in 1909, is

based on the notion of virtual velocity. Virtual power assumes the role that virtual

work assumes in d’Alembert’s Principle. Subsequent developments by Thomas Kane in

1961 essentially rediscovered Jourdain’s Principle. Kane’s approach extended Jourdain’s

approach to rigid bodies and introduced quasi-velocities to implicitly handle nonholo-

nomic constraints.

Jourdain’s Principle was influenced by Carl Friedrich Gauss’s second-order varia-

tional principle, based on the notion of virtual accelerations, published in 1829. Gauss

used the notion of virtual acceleration to establish a true minimum principle known

as Gauss’s Principle of Least Constraint, which minimizes the quadratic form known

as the Gauss function. Heinrich Rudolf Hertz reinterpreted a special case of Gauss’s

Principle as the Principle of Least Curvature in 1894. Subsequent developments by

Josiah Willard Gibbs (1879), Paul Appell (1900), and others led to the Gibbs-Appell

equations, which have their lineage in Gauss’s Principle. The Gibbs-Appell equations,
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1.2 Devices That Illustrate Principles of Analytical Dynamics 5

like Kane’s equations, make use of quasi-variables – in this case quasi-accelerations –

to implicitly handle nonholonomic constraints. Although they derive from variational

principles of different order, the Gibbs-Appell equations and Kane’s equations can be

viewed as identical. However, because the Gibbs-Appell equations are derived from a

second-order variational principle, they can be stated in a concise form as the gradient of

a scalar function, known as the Gibbs function, with respect to the quasi-accelerations.

The Gibbs function can be related to the Gauss function.

Figure 1.2 summarizes the historical progression of some of the key principles of

analytical dynamics that are covered in this book. I have by no means presented an

exhaustive history, and the interested reader is referred to Dugas’s excellent history of

mechanics (Dugas 1988), which addresses ancient through modern developments in

mechanics.

1.2 Devices That Illustrate Principles of Analytical Dynamics

Before jumping into a formal exposition of analytical dynamics, we will look at some

motivating examples. Toys and other objects of amusement tend to make the most com-

pelling examples. The reader is encouraged to refer back to these when encountering

similar detailed technical examples presented in the subsequent chapters.

Figure 1.3 displays some devices composed of branching kinematic chains. A mod-

ified double pendulum (top), the Swinging Sticks Kinetic Energy Sculpture by BTS

Trading GmbH, exhibits chaotic motion characterized by a sensitive dependence on ini-

tial conditions. As with all real-world mechanical systems, it dissipates energy; however,

in this example, the double pendulum gives the illusion of perpetual motion through

the use of electromagnetic coils mounted in the base and permanent neodymium rare-

earth magnets mounted in the arms. The electromagnets measure the speed of the rotat-

ing arms and impart additional kinetic energy into the system. The gimbaled Super

Precision Gyroscope distributed by Gyroscope.com (bottom left) consists of a high-

speed rotor mounted, in this case, on a two-axis gimbal. The rotor on a high-speed gyro-

scope is precisely balanced and mounted on low-friction bearings to demonstrate the

conservation of angular momentum (see the example in Section 5.3.5). Similar to the

Swinging Sticks Kinetic Energy Sculpture is the Chaos Machine by Fat Brain Toys, a

reconfigurable tree-structured mechanism (bottom right). This simple device illustrates

the complex motion characteristic of multilink kinematic chains.

Figure 1.4 displays some devices that operate under holonomic constraints. These

constraints are discussed in detail in later chapters. The holonomically constrained

devices shown here all involve loop closures that can be represented as algebraic condi-

tions on the configuration coordinates. The Falcon (top), by Novint Technologies Inc.,

is a haptic (force feedback) game controller based on the kinematics of the Delta parallel

robot (Clavel 1991). Three translational degrees of freedom are provided by the kine-

matic structure of the Falcon, which uses four-bar parallelogram linkages in the three

arms to maintain the fixed orientation of the end effector. Three actuators mounted in
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6 Introduction

Figure 1.3 Some devices composed of branching kinematic chains. (Top) The Swinging Sticks

Kinetic Energy Sculpture by BTS Trading GmbH. (Bottom Left) A gimbaled Super Precision

Gyroscope distributed by Gyroscope.com. (Bottom Right) The Chaos Machine by Fat Brain

Toys. All images © 2016 Vincent De Sapio.

the base allow the device to provide force feedback to the user. The Hoberman Sphere

(bottom left) is a collapsing spherical structure made up of six rings, each of which

comprises a series of connected four-bar parallelogram linkages that produce scissor-

like motion. The overall structure has 1 degree of freedom and is able to radially expand

and contract. A Stirling engine (bottom right), produced by Wiggers Stirling HeiBluft

Modellbau, makes use of closed chain slider-crank and four-bar linkages to convert

reciprocating piston motion into rotational motion of a flywheel.

Figure 1.5 displays some devices that operate under nonholonomic constraints. As

with holonomic constraints, we discuss nonholonomic constraints in detail in later chap-

ters. The nonholonomically constrained devices shown here all involve rolling/spinning

constraints that can be represented as algebraic conditions on the configuration
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1.2 Devices That Illustrate Principles of Analytical Dynamics 7

Figure 1.4 Some devices that operate under holonomic constraints. (Top) The Falcon haptic game

controller by Novint Technologies Inc. (Bottom Left) The Hoberman Sphere © 1993 Charles

Hoberman. (Bottom Right) A Stirling engine by Wiggers Stirling HeiBluft Modellbau. All

images © 2016 Vincent De Sapio.

velocities. Specifically, the no-slip rolling/spinning condition requires zero velocity of

the instantaneous material contact point of the device with the external surface. The

Euler’s Disk (top), distributed by Toysmith, illustrates the dynamics of a rolling/spinning

disk on a flat surface. The complex motion of the disk produces intricate traces, which

can be investigated in simulation (see an example in Section 6.2.5). Ollie (bottom left),

by Sphero Inc., is a two-wheeled robot controlled by a smartphone app. The wheels are

independently driven to allow steering and maneuvering. A gyroscope and accelerom-

eter are incorporated into the control unit for inertial sensing. Sphero SPRK edition

(bottom right), by Sphero Inc., is a spherical robot also controlled by a smartphone app.

Internal drive wheels and a stabilizer provide forward propulsion and maneuvering. As

with Ollie, a gyroscope and accelerometer are incorporated into the control unit for

inertial sensing.
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8 Introduction

Figure 1.5 Some devices that operate under nonholonomic constraints. (Top) Euler’s Disk by

Toysmith. (Bottom Left) Ollie by Sphero Inc. (Bottom Right) Sphero SPRK edition by Sphero

Inc. All images © 2016 Vincent De Sapio.

1.3 Scope of This Book

This book is intended to cover the foundations of analytical dynamics of discrete sys-

tems. By discrete systems, we mean systems made up of a discrete set of point masses or

rigid bodies, as opposed to continuous systems. Continuous systems are the subject of

continuum mechanics, which addresses infinite-dimensional deformable bodies, that is,

bodies with infinite degrees of freedom. The study of flexible multibody systems, which

include both rigid and deformable bodies, is an active area of research. Although such

systems are outside the scope of the main body of this book, the appendix addresses

some of the basics of the application of continuum mechanics to flexible multibody

systems.

The material covered in this book is intended for an an intermediate to advanced

graduate-level audience. As such, it is not intended as an introductory book on dynam-

ics or classical mechanics. Some of the topics covered, particularly higher-order varia-

tional principles, are not commonly covered in engineering dynamics texts. Preceding

the material on dynamics is a chapter providing a brief mathematical background in
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linear algebra, vectors and tensors, differential geometry, and optimization. A chapter on

the kinematics of discrete systems directly precedes the chapters devoted to dynamics.

Conservation principles are then addressed, followed by variational principles. Separate

chapters cover zeroth-, first-, and second-order principles.

The variational principles are based on a configuration space description compris-

ing generalized coordinates. After addressing these configuration space formulations,

we present a chapter based on an alternate, task space formulation of dynamics using

task coordinates. The following chapter presents applications to biomechanical systems.

Such systems are an active area of study, and this chapter is intended to provide a brief

introduction to system-level modeling of musculoskeletal and neuromuscular dynam-

ics. The final chapter provides a short survey of some analytical dynamics software.

This includes examples of general purpose mathematical software as well as dedicated

multibody dynamics software.

The subsequent chapters provide example problems that are worked out in detail.

The intention is to give the reader exposure to systematic approaches to applying the

concepts presented to practical examples, thereby reinforcing abstract concepts with

concrete applications.
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