Linear Algebra

Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.

CAMBRIDGE MATHEMATICAL TEXTBOOKS

Cambridge Mathematical Textbooks is a program of undergraduate and beginning graduate level textbooks for core courses, new courses, and interdisciplinary courses in pure and applied mathematics. These texts provide motivation with plenty of exercises of varying difficulty, interesting examples, modern applications, and unique approaches to the material.

ADVISORY BOARD John B. Conway, *George Washington University* Gregory F. Lawler, *University of Chicago* John M. Lee, *University of Washington* John Meier, *Lafayette College* Lawrence C. Washington, *University of Maryland, College Park*

A complete list of books in the series can be found at www.cambridge.org/mathematics

Recent titles include the following:

Chance, Strategy, and Choice: An Introduction to the Mathematics of Games and Elections, S. B. Smith Set Theory: A First Course, D. W. Cunningham Chaotic Dynamics: Fractals, Tilings, and Substitutions, G. R. Goodson Introduction to Experimental Mathematics, S. Eilers & R. Johansen A Second Course in Linear Algebra, S. R. Garcia & R. A. Horn Exploring Mathematics: An Engaging Introduction to Proof, J. Meier & D. Smith A First Course in Analysis, J. B. Conway Introduction to Probability, D. F. Anderson, T. Seppäläinen & B. Valkó Linear Algebra, E. S. Meckes & M. W. Meckes

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Linear Algebra

ELIZABETH S. MECKES

Case Western Reserve University, Cleveland, OH, USA

MARK W. MECKES

Case Western Reserve University, Cleveland, OH, USA

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107177901 DOI: 10.1017/9781316823200

© Elizabeth S. Meckes and Mark W. Meckes 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United States of America by Sheridan Books, Inc, June 2018

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Meckes, Elizabeth S., author. | Meckes, Mark W., author.
Title: Linear algebra / Elizabeth S. Meckes (Case Western Reserve University, Cleveland, OH, USA), Mark W. Meckes (Case Western Reserve University, Cleveland, OH, USA).
Description: Cambridge : Cambridge University Press, [2018] | Includes bibliographical references and index.
Identifiers: LCCN 2017053812 | ISBN 9781107177901 (alk. paper)
Subjects: LCSH: Algebras, Linear-Textbooks.
Classification: LCC QA184.2 .M43 2018 | DDC 512/.5-dc23
LC record available at https://lccn.loc.gov/2017053812

ISBN 978-1-107-17790-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Juliette and Peter

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Contents

Preface		page xiii	
To t	he Student	xvii	
1	Linear Systems and Vector Spaces	1	
1.1	Linear Systems of Equations	1	
	Bread, Beer, and Barley	1	
	Linear Systems and Solutions	4	
1.2	Gaussian Elimination	9	
	The Augmented Matrix of a Linear System	9	
	Row Operations	11	
	Does it Always Work?	14	
	Pivots and Existence and Uniqueness of Solutions	18	
1.3	Vectors and the Geometry of Linear Systems	24	
	Vectors and Linear Combinations	24	
	The Vector Form of a Linear System	27	
	The Geometry of Linear Combinations	29	
	The Geometry of Solutions	33	
1.4	Fields	39	
	General Fields	39	
	Arithmetic in Fields	42	
	Linear Systems over a Field	44	
1.5	Vector Spaces	49	
	General Vector Spaces	49	
	Examples of Vector Spaces	53	
	Arithmetic in Vector Spaces	57	
2	Linear Maps and Matrices	63	
2.1	Linear Maps	63	
	Recognizing Sameness	63	
	Linear Maps in Geometry	65	
	Matrices as Linear Maps	67	
	Eigenvalues and Eigenvectors	69	

viii

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Contents

2.2 More on Linear Maps 76 Isomorphism 76 Properties of Linear Maps 86 The Matrix of a Linear Map 83 Some Linear Maps on Function and Sequence Spaces 86 2.3 Matrix Multiplication 90 Definition of Matrix Multiplication 90 Other Ways of Looking at Matrix Multiplication 91 Matrix Inverses 92 2.4 Row Operations and the LU Decomposition 100 Row Operations and Matrix Multiplication 102 Inverting Matrices via Row Operations 107 The LU Decomposition 107 Row Operations and Matrix Multiplication 102 Inverting Matrices via Row Operations 107 The LU Decomposition 107 Range 114 Range 114 Renel, and Eigenspaces 122 Solution Spaces 122 Linear Codes 122 Linear Independence, Bases, and Coordinates 140 Linear Independence 142 The Linear Dependence Lemma 144 Linear Independence 144			
Isomorphism76Properties of Linear Maps86The Matrix of a Linear Map83Some Linear Maps on Function and Sequence Spaces862.3Matrix Multiplication90Definition of Matrix Multiplication92Other Ways of Looking at Matrix Multiplication93The Transpose96Matrix Inverses972.4Row Operations and Matrix Multiplication102Row Operations and Matrix Multiplication102Inverting Matrices via Row Operations105The LU Decomposition1072.5Range, Kernel, and Eigenspaces116Eigenspaces122Solution Spaces1222.6Error-correcting Linear Codes122Linear Codes122Error-correcting Codes133The Hamming Code1343Linear Independence144And Linear Independence144The Linear Dependence of Eigenvectors1443.1Linear Independence of Eigenvectors1463.2Bases of Vector Spaces155Bases of Vector Spaces155Bases and Linear Maps1553.3Dimension of a Vector Space156The Dimension of a Vector Spaces156Dimension of a Vector Spaces156Dimension of a Vector Spaces156Dimension of a Vector Spaces156Dimension of a Vector Spaces157Anak and Nullity177The Rank and Nullity of Maps and Matrices<		-	73
Properties of Linear Maps80The Matrix of a Linear Map83Some Linear Maps on Function and Sequence Spaces862.3Matrix Multiplication90Definition of Matrix Multiplication90Other Ways of Looking at Matrix Multiplication91The Transpose96Matrix Inverses972.4Row Operations and the LU Decomposition102Inverting Matrices via Row Operations102The LU Decomposition107The LU Decomposition107The LU Decomposition107Z.5Range, Kernel, and Eigenspaces114Kernel116Eigenspaces122Solution Spaces122Solution Spaces122Linear Codes123The Hamming Code1343Linear Independence142The Linear Independence142The Linear Independence142The Linear Independence144Sizes156Bases of Vector Spaces156Bases of Vector Spaces156Bases and Linear Maps1553.1Dimension of a Vector Space156Bases and Linear Maps1553.3Dimension of a Vector Spaces156Dimension of a Vector Spaces156 <td>2.2</td> <td>*</td> <td>78</td>	2.2	*	78
The Matrix of a Linear Map83 Some Linear Maps on Function and Sequence Spaces862.3 Matrix Multiplication90 Definition of Matrix Multiplication90 Other Ways of Looking at Matrix Multiplication91 The Transpose0 The Transpose96 Matrix Inverses972.4 Row Operations and the LU Decomposition102 Row Operations and Matrix Multiplication102 The Transpose1.1 Verting Matrices via Row Operations102 Row Operations and Matrix Multiplication103 The LU Decomposition2.5 Range, Kernel, and Eigenspaces114 Eigenspaces114 Eigenspaces2.6 Error-correcting Linear Codes122 Error-detecting Codes133 The Hamming Code3 Linear Independence, Bases, and Coordinates144 Eigenspaces144 Eigenspaces3 Linear Independence144 Eigenspaces144 Eigenspaces3.1 Linear Independence144 Eigenspaces144 Eigenspaces3.2 Bases155 Bases of Vector Spaces155 Bases3.3 Dimension166 The Dimension of a Vector Space155 Eigenspaces3.4 Rank and Nullity172 The Rank and Nullity of Maps and Matrices172		*	78
Some Linear Maps on Function and Sequence Spaces862.3Matrix Multiplication90Definition of Matrix Multiplication90Other Ways of Looking at Matrix Multiplication93The Transpose96Matrix Inverses972.4Row Operations and the LU Decomposition102Row Operations and Matrix Multiplication102Inverting Matrices via Row Operations106The LU Decomposition1072.5Range, Kernel, and Eigenspaces116Kernel116Eigenspaces122Solution Spaces1232.6Error-correcting Linear Codes126Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1463.1Linear Independence Lemma146Linear Independence of Eigenvectors1463.3Dimension of a Vector Space155Bases of Vector Spaces155Bases and Linear Maps1553.3Dimension of a Vector Space156Dimension Asses, and Subspaces156Jases and Linear Maps1553.4Rank and Nullity of Maps and Matrices172		* *	80
2.3 Matrix Multiplication 90 Definition of Matrix Multiplication 90 Other Ways of Looking at Matrix Multiplication 91 The Transpose 96 Matrix Inverses 97 2.4 Row Operations and the LU Decomposition 102 Row Operations and Matrix Multiplication 102 Inverting Matrices via Row Operations 109 The LU Decomposition 107 2.5 Range, Kernel, and Eigenspaces 114 Range 115 Kernel 118 Eigenspaces 122 Solution Spaces 122 2.6 Error-correcting Linear Codes 122 Linear Codes 122 Error-correcting Codes 130 Error-correcting Codes 132 The Hamming Code 134 3.1 Linear Independence, Bases, and Coordinates 140 Linear Independence of Eigenvectors 146 Linear Independence 142 The Linear Dependence Lemma 144 Linear Independence of Eigenvectors 146 S.2 Bases 156 Bases of Vector Spaces 156		*	
Definition of Matrix Multiplication90Other Ways of Looking at Matrix Multiplication93The Transpose96Matrix Inverses972.4Row Operations and the LU Decomposition102Row Operations and Matrix Multiplication102Inverting Matrices via Row Operations102The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range118Eigenspaces122Solution Spaces122Linear Codes122Linear Codes122Error-correcting Linear Codes132The Hamming Code133The Hamming Code1343.1Linear Independence144Linear Independence of Eigenvectors1443.2Bases155Bases of Vector Spaces155Bases of Vector Spaces155Bases and Linear Maps1553.3Dimension of a Vector Space155Dimension, Bases, and Subspaces157Arak and Nullity172The Rank and Nullity of Maps and Matrices172		* * *	
Other Ways of Looking at Matrix Multiplication93The Transpose94Matrix Inverses972.4Row Operations and the LU Decomposition107Row Operations and Matrix Multiplication107Inverting Matrices via Row Operations107The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range115Kernel118Eigenspaces122Solution Spaces1232.6Error-correcting Linear Codes122Linear Codes125Error-correcting Codes133The Hamming Code1343.1Linear Independence144Linear Independence144Linear Independence of Eigenvectors1443.2Bases155Bases of Vector Spaces155Bases and Linear Maps1553.3Dimension of a Vector Space165Dimension, Bases, and Subspaces1653.4Rank and Nullity of Maps and Matrices172The Rank and Nullity of Maps and Matrices172	2.3		
The Transpose96 Matrix Inverses2.4Row Operations and the LU Decomposition102 Row Operations and Matrix Multiplication102Row Operations and Matrix Multiplication103Inverting Matrices via Row Operations105 The LU Decomposition2.5Range, Kernel, and Eigenspaces114 KernelRange115 Kernel116 Eigenspaces2.6Error-correcting Linear Codes122 Error-correcting CodesLinear Codes122 Error-correcting Codes133 The Hamming Code3Linear Independence, Bases, and Coordinates140 Coordinates3.1Linear Independence142 The Linear Dependence I Eigenvectors3.2Bases150 Bases of Vector Spaces3.3Dimension165 Dimension of a Vector Space3.4Rank and Nullity172 The Rank and Nullity of Maps and Matrices		*	
Matrix Inverses972.4Row Operations and the LU Decomposition102Row Operations and Matrix Multiplication102Inverting Matrices via Row Operations109The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range115Kernel116Eigenspaces120Solution Spaces122Linear Codes122Error-correcting Linear Codes122Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear Independence144Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases150Bases and Linear Maps1553.3Dimension166The Dimension of a Vector Space165Dimension, Bases, and Subspaces1673.4Rank and Nullity of Maps and Matrices172			
2.4 Row Operations and the LU Decomposition 107 Row Operations and Matrix Multiplication 107 Inverting Matrices via Row Operations 107 The LU Decomposition 107 2.5 Range, Kernel, and Eigenspaces 114 Range 115 Kernel 116 Eigenspaces 122 Solution Spaces 122 Linear Codes 129 Linear Codes 130 Error-correcting Codes 132 The Hamming Code 134 3.1 Linear Independence, Bases, and Coordinates 144 The Linear Dependence Lemma 145 Linear Independence 144 The Linear Dependence Lemma 145 Linear Independence of Eigenvectors 146 S.2 Bases 155 Bases of Vector Spaces 155 Bases and Linear Maps 155 3.3 Dimension 166 The Dimension of a Vector Space 165 Dimension, Bases, and Subspaces 165 J.4 Rank and Nullity of Maps and Matrices 172 <td></td> <td></td> <td></td>			
Row Operations and Matrix Multiplication102Inverting Matrices via Row Operations109The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range115Kernel116Eigenspaces122Solution Spaces1222.6Error-correcting Linear Codes125Linear Codes126Error-correcting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases156Bases of Vector Spaces155Bases and Linear Maps1553.3Dimension166The Dimension of a Vector Spaces166Dimension, Bases, and Subspaces1673.4Rank and Nullity of Maps and Matrices172			97
Inverting Matrices via Row Operations109The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range115Kernel118Eigenspaces120Solution Spaces1222.6Error-correcting Linear Codes125Linear Codes125Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence142Redundancy146Linear Independence of Eigenvectors1463.2Bases155Bases of Vector Spaces156Properties of Bases155Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity of Maps and Matrices172	2.4		102
The LU Decomposition1072.5Range, Kernel, and Eigenspaces114Range115Kernel116Eigenspaces120Solution Spaces1222.6Error-correcting Linear Codes129Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases155Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity of Maps and Matrices172		* *	102
2.5Range, Kernel, and Eigenspaces114Range115Kernel116Eigenspaces120Solution Spaces1222.6Error-correcting Linear Codes129Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Inverting Matrices via Row Operations	105
Range115Kernel116Eigenspaces120Solution Spaces122Solution Spaces1232.6Error-correcting Linear Codes129Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear Independence140Redundancy140Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		The LU Decomposition	107
Kernel118Eigenspaces120Solution Spaces1232.6Error-correcting Linear Codes129Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces163Dimension, Bases, and Subspaces1633.4Rank and Nullity of Maps and Matrices172	2.5	Range, Kernel, and Eigenspaces	114
Eigenspaces120Solution Spaces1232.6Error-correcting Linear Codes129Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence1403.1Linear Independence1403.1Linear Independence1403.1Linear Independence1403.1Linear Independence1403.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces163Dimension, Bases, and Subspaces1653.4Rank and Nullity of Maps and Matrices172		Range	115
Solution Spaces1232.6Error-correcting Linear Codes129Linear Codes130Error-detecting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Kernel	118
2.6Error-correcting Linear Codes129Linear Codes130Error-detecting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence Lemma149Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases150Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Eigenspaces	120
Linear Codes129Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces163Dimension, Bases, and Subspaces1633.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Solution Spaces	123
Error-detecting Codes130Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma146Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172	2.6	Error-correcting Linear Codes	129
Error-correcting Codes133The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma144Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1523.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Linear Codes	129
The Hamming Code1343Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Error-detecting Codes	130
3Linear Independence, Bases, and Coordinates1403.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Error-correcting Codes	133
3.1Linear (In)dependence140Redundancy140Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		The Hamming Code	134
Redundancy140Linear Independence142The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces167Dimension, Bases, and Subspaces1673.4Rank and Nullity of Maps and Matrices172	3	Linear Independence, Bases, and Coordinates	140
Linear Independence142The Linear Dependence Lemma142Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172	3.1	Linear (In)dependence	140
The Linear Dependence Lemma145Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Spaces163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Redundancy	140
Linear Independence of Eigenvectors1463.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1523.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Linear Independence	142
3.2Bases150Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1553.3Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		The Linear Dependence Lemma	145
Bases of Vector Spaces150Properties of Bases152Bases and Linear Maps1523.3 Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4 Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Linear Independence of Eigenvectors	146
Properties of Bases152Bases and Linear Maps1523.3 Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4 Rank and Nullity172The Rank and Nullity of Maps and Matrices172	3.2	Bases	150
Bases and Linear Maps1553.3 Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4 Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Bases of Vector Spaces	150
3.3 Dimension162The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4 Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Properties of Bases	152
The Dimension of a Vector Space163Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		Bases and Linear Maps	155
Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172	3.3	Dimension	162
Dimension, Bases, and Subspaces1673.4Rank and Nullity172The Rank and Nullity of Maps and Matrices172		The Dimension of a Vector Space	163
3.4 Rank and Nullity172The Rank and Nullity of Maps and Matrices172			167
The Rank and Nullity of Maps and Matrices172	3.4	*	172
		•	172
		The Rank–Nullity Theorem	175

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Cont	ents	
	Course and the Daula Mallita Theorem	170
	Consequences of the Rank–Nullity Theorem Linear Constraints	178 181
3.5	Coordinates	185
5.5	Coordinate Representations of Vectors	185
	Matrix Representations of Linear Maps	185
	Eigenvectors and Diagonalizability	107
	Matrix Multiplication and Coordinates	191
3.6	Change of Basis	195
5.0	Change of Basis Matrices	199
		203
	Similarity and Diagonalizability Invariants	203
27		206
3.7	Triangularization	215
	Eigenvalues of Upper Triangular Matrices	
	Triangularization	218
4	Inner Products	225
4.1	Inner Products	225
	The Dot Product in \mathbb{R}^n	225
	Inner Product Spaces	226
	Orthogonality	229
	More Examples of Inner Product Spaces	233
4.2	Orthonormal Bases	239
	Orthonormality	239
	Coordinates in Orthonormal Bases	241
	The Gram–Schmidt Process	244
4.3	Orthogonal Projections and Optimization	252
	Orthogonal Complements and Direct Sums	252
	Orthogonal Projections	255
	Linear Least Squares	259
	Approximation of Functions	260
4.4	Normed Spaces	266
	General Norms	267
	The Operator Norm	269
4.5	Isometries	276
	Preserving Lengths and Angles	276
	Orthogonal and Unitary Matrices	281
	The QR Decomposition	283
5	Singular Value Decomposition and the Spectral Theorem	289
5.1	Singular Value Decomposition of Linear Maps	289
	Singular Value Decomposition	289
	Uniqueness of Singular Values	293

ix

Х

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Cont	tents	
5.2	Singular Value Decomposition of Matrices	29
	Matrix Version of SVD	29
	SVD and Geometry	30
	Low-rank Approximation	30
5.3	Adjoint Maps	31
	The Adjoint of a Linear Map	31
	Self-adjoint Maps and Matrices	31
	The Four Subspaces	31
	Computing SVD	31
5.4	The Spectral Theorems	32
	Eigenvectors of Self-adjoint Maps and Matrices	32
	Normal Maps and Matrices	32
	Schur Decomposition	32
6	Determinants	33
6.1	Determinants	33
	Multilinear Functions	33
	The Determinant	33
	Existence and Uniqueness of the Determinant	33
6.2	Computing Determinants	34
	Basic Properties	34
	Determinants and Row Operations	34
	Permutations	35
6.3	Characteristic Polynomials	35
	The Characteristic Polynomial of a Matrix	35
	Multiplicities of Eigenvalues	36
	The Cayley-Hamilton Theorem	36
6.4	Applications of Determinants	36
	Volume	36
	Cramer's Rule	37
	Cofactors and Inverses	37
Арр	endix	37
A.1	Sets and Functions	37
	Basic Definitions	37
	Composition and Invertibility	38
A.2	Complex Numbers	38
A.3	Proofs	38
	Logical Connectives	38
	Quantifiers	38
	Contrapositives, Counterexamples, and Proof by Contradiction	38
	Proof by Induction	38

Contents		
Addendum	390	
Hints and Answers to Selected Exercises	391	
Index	423	

Preface

It takes some chutzpah to write a linear algebra book. With so many choices already available, one must ask (and our friends and colleagues did): what is new here?

The most important context for the answer to that question is the intended audience. We wrote the book with our own students in mind; our linear algebra course has a rather mixed audience, including majors in mathematics, applied mathematics, and our joint degree in mathematics and physics, as well as students in computer science, physics, and various fields of engineering. Linear algebra will be fundamental to most if not all of them, but they will meet it in different guises; this course is furthermore the only linear algebra course most of them will take.

Most introductory linear algebra books fall into one of two categories: books written in the style of a freshman calculus text and aimed at teaching students to do computations with matrices and column vectors, or full-fledged "theoremproof" style rigorous math texts, focusing on abstract vector spaces and linear maps, with little or no matrix computation. This book is different. We offer a unified treatment, building both the basics of computation and the abstract theory from the ground up, emphasizing the connections between the matrix-oriented viewpoint and abstract linear algebraic concepts whenever possible. The result serves students better, whether they are heading into theoretical mathematics or towards applications in science and engineering. Applied math students will learn Gaussian elimination and the matrix form of singular value decomposition (SVD), but they will also learn how abstract inner product space theory can tell them about expanding periodic functions in the Fourier basis. Students in theoretical mathematics will learn foundational results about vector spaces and linear maps, but they will also learn that Gaussian elimination can be a useful and elegant theoretical tool.

Key features of this book include:

• Early introduction of linear maps: Our perspective is that mathematicians invented vector spaces so that they could talk about linear maps; for this reason, we introduce linear maps as early as possible, immediately after the introduction of vector spaces.

xiv Preface

- Key concepts referred to early and often: In general, we have introduced topics we see as central (most notably eigenvalues and eigenvectors) as early as we could, coming back to them again and again as we introduce new concepts which connect to these central ideas. At the end of the course, rather than having just learned the definition of an eigenvector a few weeks ago, students will have worked with the concept extensively throughout the term.
- Eases the transition from calculus to rigorous mathematics: Moving beyond the more problem-oriented calculus courses is a challenging transition; the book was written with this transition in mind. It is written in an accessible style, and we have given careful thought to the motivation of new ideas and to parsing difficult definitions and results after stating them formally.
- Builds mathematical maturity: Over the course of the book, the style evolves from extremely approachable and example-oriented to something more akin to the style of texts for real analysis and abstract algebra, paving the way for future courses in which a basic comfort with mathematical language and rigor is expected.
- Fully rigorous, but connects to computation and applications: This book was written for a proof-based linear algebra course, and contains the necessary theoretical foundation of linear algebra. It also connects that theory to matrix computation and geometry as often as possible; for example, SVD is considered abstractly as the existence of special orthonormal bases for a map; from a geometric point of view emphasizing rotations, reflections, and distortions; and from a more computational point of view, as a matrix factorization. Orthogonal projection in inner product spaces is similarly discussed in theoretical, computational, and geometric ways, and is connected with applied minimization problems such as linear least squares for curve-fitting and approximation of smooth functions on intervals by polynomials.
- Pedagogical features: There are various special features aimed at helping students learn to read a mathematics text: frequent "Quick Exercises" serve as checkpoints, with answers upside down at the bottom of the page. Each section ends with a list of "Key Ideas," summarizing the main points of the section. Features called "Perspectives" at the end of some chapters collect the various viewpoints on important concepts which have been developed throughout the text.
- Exercises: The large selection of problems is a mix of the computational and the theoretical, the straightforward and the challenging. There are answers or hints to selected problems in the back of the book.

The book begins with linear systems of equations over \mathbb{R} , solution by Gaussian elimination, and the introduction of the ideas of pivot variables and free variables. Section 1.3 discusses the geometry of \mathbb{R}^n and geometric viewpoints on linear systems. We then move into definitions and examples of abstract fields and vector spaces.

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

Preface

Chapter 2 is on linear maps. They are introduced with many examples; the usual cohort of rotations, reflections, projections, and multiplication by matrices in \mathbb{R}^n , and more abstract examples like differential and integral operators on function spaces. Eigenvalues are first introduced in Section 2.1; the representation of arbitrary linear maps on \mathbb{F}^n by matrices is proved in Section 2.2. Section 2.3 introduces matrix multiplication as the matrix representation of composition, with an immediate derivation of the usual formula. In Section 2.5, the range, kernel, and eigenspaces of a linear map are introduced. Finally, Section 2.6 introduces the Hamming code as an application of linear algebra over the field of two elements.

Chapter 3 introduces linear dependence and independence, bases, dimension, and the Rank–Nullity Theorem. Section 3.5 introduces coordinates with respect to arbitrary bases and the representation of maps between abstract vector spaces as matrices; Section 3.6 covers change of basis and introduces the idea of diagonalization and its connection to eigenvalues and eigenvectors. Chapter 3 concludes by showing that all matrices over algebraically closed fields can be triangularized.

Chapter 4 introduces general inner product spaces. It covers orthonormal bases and the Gram–Schmidt algorithm, orthogonal projection with applications to least squares and function approximation, normed spaces in general and the operator norm of linear maps and matrices in particular, isometries, and the QR decomposition.

Chapter 5 covers the singular value decomposition and the spectral theorem. We begin by proving the main theorem on the existence of SVD and the uniqueness of singular values for linear maps, then specialize to the matrix factorization. There is a general introduction to adjoint maps and their properties, followed by the Spectral Theorem in the Hermitian and normal cases. Geometric interpretation of SVD and truncations of SVD as low-rank approximation are discussed in Section 5.2. The four fundamental subspaces associated to a linear map, orthogonality, and the connection to the Rank–Nullity Theorem are discussed in Section 5.3.

Finally, Chapter 6 is on determinants. We have taken the viewpoint that the determinant is best characterized as the unique alternating multilinear form on matrices taking value 1 at the identity; we derive many of its properties from that characterization. We introduce the Laplace expansion, give an algorithm for computing determinants via row operations, and prove the sum over permutations formula. The last is presented as a nice example of the power of linear algebra: there is no long digression on combinatorics, but instead permutations are quickly identified with permutation matrices, and concepts like the sign of a permutation arise naturally as familiar linear algebraic constructions. Section 6.3 introduces the characteristic polynomial and the Cayley–Hamilton Theorem, and Section 6.4 concludes the chapter with applications of the determinant to volume and Cramer's rule.

In terms of student prerequisites, one year of calculus is sufficient. While calculus is not needed for any of the main results, we do rely on it for some examples and exercises (which could nevertheless be omitted). We do not expect students to XV

Cambridge University Press & Assessment 978-1-107-17790-1 — Linear Algebra Elizabeth S. Meckes , Mark W. Meckes Frontmatter <u>More Information</u>

xvi Preface

have taken a rigorous mathematics course before. The book is written assuming some basic background on sets, functions, and the concept of a proof; there is an appendix containing what is needed for the student's reference (or crash course).

Finally, some thanks are in order. To write a textbook that works in the classroom, it helps to have a classroom to try it out in. We are grateful to the CWRU Math 307 students from Fall 2014, Spring and Fall 2015, and Spring 2016 for their roles as cheerful guinea pigs.

A spectacular feature of the internet age is the ability to get help typesetting a book from someone half-way around the world (where it may in fact be 2 in the morning). We thank the users of tex.stackexchange.com for generously and knowledgeably answering every question we came up with.

We began the project of writing this book while on sabbatical at the Institut de Mathématiques de Toulouse at the University of Toulouse, France. We thank the Institut for its warm hospitality and the Simons Foundation for providing sabbatical support. We also thank the National Science Foundation and the Simons Foundation for additional support.

And lastly, many thanks to Sarah Jarosz, whose album *Build Me Up From Bones* provided the soundtrack for the writing of this book.

Elizabeth Meckes Mark Meckes

Cleveland, Ohio, USA

To the Student

This will be one of the most important classes you ever take. Linear algebra and calculus are the foundations of modern mathematics and its applications; the language and viewpoint of linear algebra is so thoroughly woven into the fabric of mathematical reasoning that experienced mathematicians, scientists, and engineers can forget it is there, in the same way that native speakers of a language seldom think consciously about its formal structure. Achieving this fluency is a big part of that nebulous goal of "mathematical maturity."

In the context of your mathematical education, this book marks an important transition. In it, you will move away from a largely algorithmic, problem-centered viewpoint toward a perspective more consciously grounded in rigorous theoretical mathematics. Making this transition is not easy or immediate, but the rewards of learning to think like a mathematician run deep, no matter what your ultimate career goals are. With that in mind, we wrote this book to be *read* – by you, the student. Reading and learning from an advanced mathematics text book is a skill, and one that we hope this book will help you develop.

There are some specific features of this book aimed at helping you get the most out of it. Throughout the book, you will find "Quick Exercises," whose answers are usually found (upside down) at the bottom of the page. These are exercises which you should be able to do fairly easily, but for which you may need to write a few lines on the back of an envelope. They are meant to serve as checkpoints; do them! The end of each section lists "Key Ideas," summarizing (sometimes slightly informally) the big picture of the section. Certain especially important concepts on which there are many important perspectives are summarized in features called "Perspectives" at the end of some chapters. There is an appendix covering the basics of sets, functions, and complex number arithmetic, together with some formal logic and proof techniques. And of course, there are many exercises. Mathematics isn't something to know, it's something to do; it is through the exercises that you really learn how.