Contents

Preface to the Second Edition page xi
Preface to the First Edition xiii
How To Use This Book xv

Part I Introduction

1 Concepts in Quantum Shannon Theory 3
 1.1 Overview of the Quantum Theory 7
 1.2 The Emergence of Quantum Shannon Theory 11

2 Classical Shannon Theory 26
 2.1 Data Compression 26
 2.2 Channel Capacity 35
 2.3 Summary 49

Part II The Quantum Theory 51

3 The Noiseless Quantum Theory 53
 3.1 Overview 54
 3.2 Quantum Bits 54
 3.3 Reversible Evolution 60
 3.4 Measurement 67
 3.5 Composite Quantum Systems 73
 3.6 Entanglement 81
 3.7 Summary and Extensions to Qudit States 93
 3.8 Schmidt Decomposition 98
 3.9 History and Further Reading 100

4 The Noisy Quantum Theory 101
 4.1 Noisy Quantum States 102
 4.2 Measurement in the Noisy Quantum Theory 114
 4.3 Composite Noisy Quantum Systems 117
 4.4 Quantum Evolutions 129
 4.5 Interpretations of Quantum Channels 141
 4.6 Quantum Channels are All-Encompassing 143
 4.7 Examples of Quantum Channels 154
Contents

4.8 Summary
4.9 History and Further Reading

5 The Purified Quantum Theory
5.1 Purification
5.2 Isometric Evolution
5.3 Coherent Quantum Instrument
5.4 Coherent Measurement
5.5 History and Further Reading

Part III Unit Quantum Protocols
6 Three Unit Quantum Protocols
6.1 Non-Local Unit Resources
6.2 Protocols
6.3 Optimality of the Three Unit Protocols
6.4 Extensions for Quantum Shannon Theory
6.5 Three Unit Qudit Protocols
6.6 History and Further Reading

7 Coherent Protocols
7.1 Definition of Coherent Communication
7.2 Implementations of a Coherent Bit Channel
7.3 Coherent Dense Coding
7.4 Coherent Teleportation
7.5 Coherent Communication Identity
7.6 History and Further Reading

8 Unit Resource Capacity Region
8.1 The Unit Resource Achievable Region
8.2 The Direct Coding Theorem
8.3 The Converse Theorem
8.4 History and Further Reading

Part IV Tools of Quantum Shannon Theory
9 Distance Measures
9.1 Trace Distance
9.2 Fidelity
9.3 Relations between Trace Distance and Fidelity
9.4 Gentle Measurement
9.5 Fidelity of a Quantum Channel
9.6 The Hilbert–Schmidt Distance Measure
9.7 History and Further Reading

© in this web service Cambridge University Press
www.cambridge.org
Table of Contents

10 Classical Information and Entropy
- 10.1 Entropy of a Random Variable 268
- 10.2 Conditional Entropy 273
- 10.3 Joint Entropy 274
- 10.4 Mutual Information 275
- 10.5 Relative Entropy 276
- 10.6 Conditional Mutual Information 278
- 10.7 Entropy Inequalities 279
- 10.8 Near Saturation of Entropy Inequalities 291
- 10.9 Classical Information from Quantum Systems 297
- 10.10 History and Further Reading 299

11 Quantum Information and Entropy
- 11.1 Quantum Entropy 301
- 11.2 Joint Quantum Entropy 306
- 11.3 Potential yet Unsatisfactory Definitions of Conditional Quantum Entropy 309
- 11.4 Conditional Quantum Entropy 311
- 11.5 Coherent Information 313
- 11.6 Quantum Mutual Information 315
- 11.7 Conditional Quantum Mutual Information 318
- 11.8 Quantum Relative Entropy 321
- 11.9 Quantum Entropy Inequalities 327
- 11.10 Continuity of Quantum Entropy 339
- 11.11 History and Further Reading 345

12 Quantum Entropy Inequalities and Recoverability
- 12.1 Recoverability Theorem 347
- 12.2 Schatten Norms and Complex Interpolation 348
- 12.3 Petz Recovery Map 353
- 12.4 Rényi Information Measure 355
- 12.5 Proof of the Recoverability Theorem 359
- 12.6 Refinements of Quantum Entropy Inequalities 362
- 12.7 History and Further Reading 366

13 The Information of Quantum Channels
- 13.1 Mutual Information of a Classical Channel 372
- 13.2 Private Information of a Wiretap Channel 379
- 13.3 Holevo Information of a Quantum Channel 383
- 13.4 Mutual Information of a Quantum Channel 389
- 13.5 Coherent Information of a Quantum Channel 393
- 13.6 Private Information of a Quantum Channel 398
- 13.7 Summary 404
- 13.8 History and Further Reading 404
Contents

14 Classical Typicality

14.1 An Example of Typicality 407
14.2 Weak Typicality 408
14.3 Properties of the Typical Set 410
14.4 Application: Data Compression 412
14.5 Weak Joint Typicality 414
14.6 Weak Conditional Typicality 417
14.7 Strong Typicality 420
14.8 Strong Joint Typicality 429
14.9 Strong Conditional Typicality 431
14.10 Application: Channel Capacity Theorem 437
14.11 Concluding Remarks 442
14.12 History and Further Reading 442

15 Quantum Typicality

15.1 The Typical Subspace 444
15.2 Conditional Quantum Typicality 454
15.3 The Method of Types for Quantum Systems 464
15.4 Concluding Remarks 466
15.5 History and Further Reading 466

16 The Packing Lemma

16.1 Introductory Example 468
16.2 The Setting of the Packing Lemma 468
16.3 Statement of the Packing Lemma 471
16.4 Proof of the Packing Lemma 472
16.5 Derandomization and Expurgation 478
16.6 Sequential Decoding 480
16.7 History and Further Reading 485

17 The Covering Lemma

17.1 Introductory Example 487
17.2 Setting and Statement of the Covering Lemma 489
17.3 Operator Chernoff Bound 491
17.4 Proof of the Covering Lemma 495
17.5 History and Further Reading 501

Part V Noiseless Quantum Shannon Theory

18 Schumacher Compression

18.1 The Information-Processing Task 506
18.2 The Quantum Data Compression Theorem 508
18.3 Quantum Compression Example 512
Contents

18.4 Variations on the Schumacher Theme
18.5 Concluding Remarks
18.6 History and Further Reading

19 Entanglement Manipulation
19.1 Sketch of Entanglement Manipulation
19.2 LOCC and Relative Entropy of Entanglement
19.3 Entanglement Manipulation Task
19.4 The Entanglement Manipulation Theorem
19.5 Concluding Remarks
19.6 History and Further Reading

Part VI Noisy Quantum Shannon Theory

20 Classical Communication
20.1 Naive Approach: Product Measurements
20.2 The Information-Processing Task
20.3 The Classical Capacity Theorem
20.4 Examples of Channels
20.5 Superadditivity of the Holevo Information
20.6 Concluding Remarks
20.7 History and Further Reading

21 Entanglement-Assisted Classical Communication
21.1 The Information-Processing Task
21.2 A Preliminary Example
21.3 Entanglement-Assisted Capacity Theorem
21.4 The Direct Coding Theorem
21.5 The Converse Theorem
21.6 Examples of Channels
21.7 Concluding Remarks
21.8 History and Further Reading

22 Coherent Communication with Noisy Resources
22.1 Entanglement-Assisted Quantum Communication
22.2 Quantum Communication
22.3 Noisy Super-Dense Coding
22.4 State Transfer
22.5 Trade-off Coding
22.6 Concluding Remarks
22.7 History and Further Reading
Contents

23 Private Classical Communication
- 23.1 The Information-Processing Task
- 23.2 The Private Classical Capacity Theorem
- 23.3 The Direct Coding Theorem
- 23.4 The Converse Theorem
- 23.5 Discussion of Private Classical Capacity
- 23.6 History and Further Reading

24 Quantum Communication
- 24.1 The Information-Processing Task
- 24.2 No-Cloning and Quantum Communication
- 24.3 The Quantum Capacity Theorem
- 24.4 The Direct Coding Theorem
- 24.5 Converse Theorem
- 24.6 An Interlude with Quantum Stabilizer Codes
- 24.7 Example Channels
- 24.8 Discussion of Quantum Capacity
- 24.9 Entanglement Distillation
- 24.10 History and Further Reading

25 Trading Resources for Communication
- 25.1 The Information-Processing Task
- 25.2 The Quantum Dynamic Capacity Theorem
- 25.3 The Direct Coding Theorem
- 25.4 The Converse Theorem
- 25.5 Examples of Channels
- 25.6 History and Further Reading

26 Summary and Outlook
- 26.1 Unit Protocols
- 26.2 Noiseless Quantum Shannon Theory
- 26.3 Noisy Quantum Shannon Theory
- 26.4 Protocols Not Covered In This Book
- 26.5 Network Quantum Shannon Theory
- 26.6 Future Directions

Appendix A Supplementary Results

Appendix B Unique Linear Extension of a Quantum Physical Evolution

References

Index