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1 Concepts in Quantum Shannon
Theory

In these first few chapters, our aim is to establish a firm grounding so that we

can address some fundamental questions regarding information transmission over

quantum channels. This area of study has become known as “quantum Shannon

theory” in the broader quantum information community, in order to distinguish

this topic from other areas of study in quantum information science. In this text,

we will use the terms “quantum Shannon theory” and “quantum information

theory” somewhat interchangeably. We will begin by briefly overviewing several

fundamental aspects of the quantum theory. Our study of the quantum theory,

in this chapter and future ones, will be at an abstract level, without giving

preference to any particular physical system such as a spin-1/2 particle or a

photon. This approach will be more beneficial for the purposes of our study, but,

here and there, we will make some reference to actual physical systems to ground

us in reality.

You may be wondering, what is quantum Shannon theory and why do we name

this area of study as such? In short, quantum Shannon theory is the study of

the ultimate capability of noisy physical systems, governed by the laws of quan-

tum mechanics, to preserve information and correlations. Quantum information

theorists have chosen the name quantum Shannon theory to honor Claude Shan-

non, who single-handedly founded the field of classical information theory with

a groundbreaking paper (Shannon, 1948). In particular, the name refers to the

asymptotic theory of quantum information, which is the main topic of study in

this book. Information theorists since Shannon have dubbed him the “Einstein

of the information age.”1 The name quantum Shannon theory is fit to capture

this area of study because we often use quantum versions of Shannon’s ideas to

prove some of the main theorems in quantum Shannon theory.

We prefer the name “quantum Shannon theory” over such names as “quan-

tum information science” or just “quantum information.” These other names are

too broad, encompassing subjects as diverse as quantum computation, quantum

algorithms, quantum complexity theory, quantum communication complexity,

entanglement theory, quantum key distribution, quantum error correction, and

1 It is worthwhile to look up “Claude Shannon—Father of the Information Age” on YouTube
and watch several renowned information theorists speak with awe about “the founding
father” of information theory.
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4 Concepts in Quantum Shannon Theory

even the experimental implementation of quantum protocols. Quantum Shannon

theory does overlap with some of the aforementioned subjects, such as quan-

tum computation, entanglement theory, quantum key distribution, and quantum

error correction, but the name “quantum Shannon theory” should evoke a cer-

tain paradigm for quantum communication with which the reader will become

intimately familiar after some exposure to the topics in this book. For example,

it is necessary for us to discuss quantum gates (a topic in quantum computing)

because quantum Shannon-theoretic protocols exploit them to achieve certain

information-processing tasks. Also, in Chapter 23, we are interested in the ulti-

mate limitation on the ability of a noisy quantum communication channel to

transmit private information (information that is secret from any third party

besides the intended receiver). This topic connects quantum Shannon theory with

quantum key distribution because the private information capacity of a noisy

quantum channel is strongly related to the task of using the quantum channel

to distribute a secret key. As a final connection, one of the most important theo-

rems of quantum Shannon theory is the quantum capacity theorem. This theorem

determines the ultimate rate at which a sender can reliably transmit quantum

information over a quantum channel to a receiver. The result provided by the

quantum capacity theorem is closely related to the theory of quantum error cor-

rection, but the mathematical techniques used in quantum Shannon theory and

in quantum error correction are so different that these subjects merit different

courses of study.

Quantum Shannon theory intersects two of the great sciences of the twen-

tieth century: the quantum theory and information theory. It was really only

a matter of time before physicists, mathematicians, computer scientists, and

engineers began to consider the convergence of the two subjects because the

quantum theory was essentially established by 1926 and information theory by

1948. This convergence has sparked what we may call the “quantum information

revolution” or what some refer to as the “second quantum revolution”(Dowling

& Milburn, 2003, with the first revolution being the discovery of the quantum

theory).

The fundamental components of the quantum theory are a set of postulates

that govern phenomena on the scale of atoms. Uncertainty is at the heart of

the quantum theory—“quantum uncertainty” or “Heisenberg uncertainty” is not

due to our lack or loss of information or due to imprecise measurement capa-

bility, but rather, it is a fundamental uncertainty inherent in nature itself. The

discovery of the quantum theory came about as a total shock to the physics

community, shaking the foundations of scientific knowledge. Perhaps it is for this

reason that every introductory quantum mechanics course delves into its history

in detail and celebrates the founding fathers of the quantum theory. In this book,

we do not discuss the history of the quantum theory in much detail but instead

refer to several great introductory books for these details (Bohm, 1989; Sakurai,

1994; Griffiths, 1995; Feynman, 1998). Physicists such as Planck, Einstein, Bohr,
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Concepts in Quantum Shannon Theory 5

de Broglie, Born, Heisenberg, Schrödinger, Pauli, Dirac, and von Neumann con-

tributed to the foundations of the quantum theory in the 1920s and 1930s. We

introduce the quantum theory by briefly commenting on its history and major

underlying concepts.

Information theory is the second great foundational science for quantum Shan-

non theory. In some sense, it could be viewed as merely an application of

probability theory. Its aim is to quantify the ultimate compressibility of infor-

mation and the ultimate ability for a sender to transmit information reliably

to a receiver. It relies upon probability theory because “classical” uncertainty,

arising from our lack of total information about any given scenario, is ubiqui-

tous throughout all information-processing tasks. The uncertainty in classical

information theory is the kind that is present in the flipping of a coin or the

shuffle of a deck of cards: the uncertainty due to imprecise knowledge. “Quan-

tum” uncertainty is inherent in nature itself and is perhaps not as intuitive as the

uncertainty that classical information theory measures. We later expand further

on these differing kinds of uncertainty, and Chapter 4 shows how a theory of

quantum information captures both kinds of uncertainty within one formalism.2

The history of classical information theory began with Claude Shannon. Shan-

non’s contribution is heralded as one of the single greatest contributions to

modern science because he established the field in his seminal paper (Shannon,

1948). In this paper, he coined the essential terminology, and he stated and jus-

tified the main mathematical definitions and the two fundamental theorems of

information theory. Many successors have contributed to information theory, but

most, if not all, of the follow-up contributions employ Shannon’s line of thinking

in some form. In quantum Shannon theory, we will notice that many of Shannon’s

original ideas are present, though they take a particular “quantum” form.

One of the major assumptions in both classical information theory and quan-

tum Shannon theory is that local computation is free but communication is

expensive. In particular, for the classical case, we assume that each party has

unbounded computation available. For the quantum case, we assume that each

party has a fault-tolerant quantum computer available at his or her local station

and the power of each quantum computer is unbounded. We also assume that

both communication and a shared resource are expensive, and for this reason,

we keep track of these resources in a resource count. Sometimes, however, we

might say that classical communication is free in order to simplify a scenario. A

simplification like this one can lead to greater insights that might not be possible

without making such an assumption.

We should first study and understand the postulates of the quantum theory

in order to study quantum Shannon theory properly. Your heart may sink when

you learn that the Nobel Prize-winning physicist Richard Feynman is famously

quoted as saying, “I think I can safely say that nobody understands quantum

2 Von Neumann established the density operator formalism in his 1932 book on the quantum
theory. This mathematical framework captures both kinds of uncertainty (von Neumann,
1996).
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6 Concepts in Quantum Shannon Theory

mechanics.” We should take the liberty of clarifying Feynman’s statement. Of

course, Feynman does not intend to suggest that no one knows how to work with

the quantum theory. Many well-abled physicists are employed to spend their

days exploiting the laws of the quantum theory to do fantastic things, such as

the trapping of ions in a vacuum or applying the quantum tunneling effect in

a transistor to process a single electron. I am hoping that you will give me the

license to interpret Feynman’s statement. I think he means that it is very difficult

for us to understand the quantum theory intuitively because we do not experience

the phenomena that it predicts. If we were the size of atoms and we experienced

the laws of quantum theory on a daily basis, then perhaps the quantum theory

would be as intuitive to us as Newton’s law of universal gravitation.3 Thus, in this

sense, I would agree with Feynman—nobody can really understand the quantum

theory because it is not part of our everyday experiences. Nevertheless, our aim

in this book is to work with the laws of quantum theory so that we may begin

to gather insights about what the theory predicts. Only by exposure to and

practice with its postulates can we really gain an intuition for its predictions.

It is best to imagine that the world in our everyday life does incorporate the

postulates of quantum mechanics, because, indeed, as many, many experiments

have confirmed, it does!

We delve into the history of the convergence of the quantum theory and

information theory in some detail in this introductory chapter because this con-

vergence does have an interesting history and is relevant to the topic of this book.

The purpose of this historical review is not only to become familiar with the field

itself but also to glimpse into the minds of the founders of the field so that we

may see the types of questions that are important to think about when tackling

new, unsolved problems.4 Many of the most important results come about from

asking simple, yet profound, questions and exploring the possibilities.

We first briefly review the history and the fundamental concepts of the quan-

tum theory before delving into the convergence of the quantum theory and

information theory. We build on these discussions by introducing some of the

initial fundamental contributions to quantum Shannon theory. The final part of

this chapter ends by posing some of the questions to which quantum Shannon

theory provides answers.

3 Of course, Newton’s law of universal gravitation was a revolutionary breakthrough because
the phenomenon of gravity is not entirely intuitive when a student first learns it. But we do
experience the gravitational law in our daily lives, and I would argue that this phenomenon
is much more intuitive than, say, the phenomenon of quantum entanglement.

4 Another way to discover good questions is to attend parties that well-established professors
hold. The story goes that Oxford physicist David Deutsch attended a 1981 party at the
Austin, Texas house of reknowned physicist John Archibald Wheeler, in which many
attendees discussed the foundations of computing (Mullins, 2001). Deutsch claims that he
could immediately see that the quantum theory would give an improvement for
computation. A few years later, in 1985, he published an algorithm that was the first
instance of a quantum speed-up over the fastest classical algorithm (Deutsch, 1985).
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1.1 Overview of the Quantum Theory 7

1.1 Overview of the Quantum Theory

1.1.1 Brief History of the Quantum Theory

A physicist living around 1890 would have been well pleased with the progress

of physics, but perhaps frustrated at the seeming lack of open research prob-

lems. It seemed as though the Newtonian laws of mechanics, Maxwell’s theory

of electromagnetism, and Boltzmann’s theory of statistical mechanics explained

most natural phenomena. In fact, Max Planck, one of the founding fathers of the

quantum theory, was searching for an area of study in 1874 and his advisor gave

him the following guidance:

“In this field [of physics], almost everything is already discovered, and all that remains
is to fill a few holes.”

Two Clouds

Fortunately, Planck did not heed this advice and instead began his physics stud-

ies. Not everyone agreed with Planck’s former advisor. Lord Kelvin stated in his

famous April 1900 lecture that “two clouds” surrounded the “beauty and clear-

ness of theory” (Kelvin, 1901). The first cloud was the failure of Michelson and

Morley to detect a change in the speed of light as predicted by an “ether theory,”

and the second cloud was the ultraviolet catastrophe, the classical prediction that

a blackbody emits radiation with an infinite intensity at high ultraviolet frequen-

cies. Also in 1900, Planck started the quantum revolution that began to clear the

second cloud. He assumed that light comes in discrete bundles of energy and used

this idea to produce a formula that correctly predicts the spectrum of blackbody

radiation (Planck, 1901). A great cartoon lampoon of the ultraviolet catastrophe

shows Planck calmly sitting fireside with a classical physicist whose face is burn-

ing to bits because of the intense ultraviolet radiation that his classical theory

predicts the fire is emitting (McEvoy & Zarate, 2004). A few years later, Ein-

stein (1905) contributed a paper that helped to further clear the second cloud (he

also cleared the first cloud with his other 1905 paper on special relativity). He

assumed that Planck was right and showed that the postulate that light arrives

in “quanta” (now known as the photon theory) provides a simple explanation

for the photoelectric effect, the phenomenon in which electromagnetic radiation

beyond a certain threshold frequency impinging on a metallic surface induces a

current in that metal.

These two explanations of Planck and Einstein fueled a theoretical revolution

in physics that some now call the first quantum revolution (Dowling & Milburn,

2003). Some years later, de Broglie (1924) postulated that every element of mat-

ter, whether an atom, electron, or photon, has both particle-like behavior and

wave-like behavior. Just two years later, Schrödinger (1926) used the de Broglie

idea to formulate a wave equation, now known as Schrödinger’s equation, that

governs the evolution of a closed quantum-mechanical system. His formalism later

became known as wave mechanics and was popular among physicists because it
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8 Concepts in Quantum Shannon Theory

appealed to notions with which they were already familiar. Meanwhile, Heisen-

berg (1925) formulated an “alternate” quantum theory called matrix mechanics.

His theory used matrices and linear algebra, mathematics with which many physi-

cists at the time were not readily familiar. For this reason, Schrödinger’s wave

mechanics was more popular than Heisenberg’s matrix mechanics. In 1930, Paul

Dirac published a textbook (now in its fourth edition and reprinted 16 times)

that unified the formalisms of Schrödinger and Heisenberg, showing that they

were actually equivalent (Dirac, 1982). In a later edition, he introduced the now

ubiquitous “Dirac notation” for quantum theory that we will employ in this book.

After the publication of Dirac’s textbook, the quantum theory then stood on

firm mathematical grounding and the basic theory had been established. We

thus end our historical overview at this point and move on to the fundamental

concepts of the quantum theory.

1.1.2 Fundamental Concepts of the Quantum Theory

Quantum theory, as applied in quantum information theory, really has only a few

important concepts. We review each of these aspects of quantum theory briefly

in this section. Some of these phenomena are uniquely “quantum” but others do

occur in the classical theory. In short, these concepts are as follows:5

1. indeterminism;

2. interference;

3. uncertainty;

4. superposition;

5. entanglement.

The quantum theory is indeterministic because the theory makes predictions

about probabilities of events only. This aspect of quantum theory is in contrast

with a deterministic classical theory such as that predicted by the Newtonian

laws. In the Newtonian system, it is possible to predict, with certainty, the

trajectories of all objects involved in an interaction if one knows only the ini-

tial positions and velocities of all the objects. This deterministic view of reality

even led some to believe in determinism from a philosophical point of view. For

instance, the mathematician Pierre-Simon Laplace once stated that a supreme

intellect, colloquially known as “Laplace’s demon,” could predict all future events

from present and past events:

“We may regard the present state of the universe as the effect of its past and the cause
of its future. An intellect which at a certain moment would know all forces that set
nature in motion, and all positions of all items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it would embrace in
a single formula the movements of the greatest bodies of the universe and those of the
tiniest atom; for such an intellect nothing would be uncertain and the future just like
the past would be present before its eyes.”

5 I have used Todd A. Brun’s list from his lecture notes (Brun, n.d.).
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1.1 Overview of the Quantum Theory 9

The application of Laplace’s statement to atoms is fundamentally incorrect,

but we can forgive him because the quantum theory had not yet been estab-

lished in his time. Many have extrapolated from Laplace’s statement to argue

the invalidity of human free will. We leave such debates to philosophers.6

In reality, we never can possess full information about the positions and veloci-

ties of every object in any given physical system. Incorporating probability theory

then allows us to make predictions about the probabilities of events and, with

some modifications, the classical theory becomes an indeterministic theory. Thus,

indeterminism is not a unique aspect of the quantum theory but merely a feature

of it. But this feature is so crucial to the quantum theory that we list it among

the fundamental concepts.

Interference is another feature of the quantum theory. It is also present in

any classical wave theory—constructive interference occurs when the crest of one

wave meets the crest of another, producing a stronger wave, while destructive

interference occurs when the crest of one wave meets the trough of another, can-

celing out each other. In any classical wave theory, a wave occurs as a result of

many particles in a particular medium coherently displacing one another, as in an

ocean surface wave or a sound pressure wave, or as a result of coherent oscillating

electric and magnetic fields, as in an electromagnetic wave. The strange aspect of

interference in the quantum theory is that even a single “particle” such as an elec-

tron can exhibit wavelike features, as in the famous double slit experiment (see,

e.g., Greene, 1999, for a history of these experiments). This quantum interfer-

ence is what contributes wave–particle duality to every fundamental component

of matter.

Uncertainty is at the heart of the quantum theory. Uncertainty in the quan-

tum theory is fundamentally different from uncertainty in the classical theory

(discussed in the former paragraph about an indeterministic classical theory).

The archetypal example of uncertainty in the quantum theory occurs for a sin-

gle particle. This particle has two complementary variables: its position and its

momentum. The uncertainty principle states that it is impossible to know both

the particle’s position and momentum to arbitrary accuracy. This principle even

calls into question the meaning of the word “know” in the previous sentence

in the context of quantum theory. We might say that we can only know that

which we measure, and thus, we can only know the position of a particle after

performing a precise measurement that determines it. If we follow with a precise

measurement of its momentum, we lose all information about the position of

the particle after learning its momentum. In quantum information science, the

BB84 protocol for quantum key distribution exploits the uncertainty principle

and statistical analysis to determine the presence of an eavesdropper on a quan-

tum communication channel by encoding information into two complementary

variables (Bennett & Brassard, 1984).

6 John Archibald Wheeler may disagree with this approach. He once said, “Philosophy is too
important to be left to the philosophers” (Misner et al., 2009).
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10 Concepts in Quantum Shannon Theory

The superposition principle states that a quantum particle can be in a linear

combination state, or superposed state, of any two other allowable states. This

principle is a result of the linearity of quantum theory. Schrodinger’s wave equa-

tion is a linear differential equation, meaning that the linear combination αψ+βφ

is a solution of the equation if ψ and φ are both solutions of the equation. We say

that the solution αψ + βφ is a coherent superposition of the two solutions. The

superposition principle has dramatic consequences for the interpretation of the

quantum theory—it gives rise to the notion that a particle can somehow “be in

one location and another” at the same time. There are different interpretations

of the meaning of the superposition principle, but we do not highlight them here.

We merely choose to use the technical language that the particle is in a super-

position of both locations. The loss of a superposition can occur through the

interaction of a particle with its environment. Maintaining an arbitrary superpo-

sition of quantum states is one of the central goals of a quantum communication

protocol.

The last, and perhaps most striking, quantum feature that we highlight here

is entanglement. There is no true classical analog of entanglement. The closest

analog of entanglement might be a secret key that two parties possess, but even

this analogy does not come close. Entanglement refers to the strong quantum

correlations that two or more quantum particles can possess. The correlations

in quantum entanglement are stronger than any classical correlations in a pre-

cise, technical sense. Schrödinger (1935) first coined the term “entanglement”

after observing some of its strange properties and consequences. Einstein, Podol-

sky, and Rosen then presented an apparent paradox involving entanglement that

raised concerns over the completeness of the quantum theory (Einstein et al.,

1935). That is, they suggested that the seemingly strange properties of entangle-

ment called the uncertainty principle into question (and thus the completeness

of the quantum theory) and furthermore suggested that there might be some

“local hidden-variable” theory that could explain the results of experiments. It

took about 30 years to resolve this paradox, but John Bell did so by presenting

a simple inequality, now known as a Bell inequality (Bell, 1964). He showed that

any two-particle classical correlations that satisfy the assumptions of the “local

hidden-variable theory” of Einstein, Podolsky, and Rosen must be less than a

certain amount. He then showed how the correlations of two entangled quantum

particles can violate this inequality, and thus, entanglement has no explanation

in terms of classical correlations but is instead a uniquely quantum phenomenon.

Experimentalists later verified that two entangled quantum particles can violate

Bell’s inequality (Aspect et al., 1981).

In quantum information science, the non-classical correlations in entanglement

play a fundamental role in many protocols. For example, entanglement is the

enabling resource in teleportation, a protocol that disembodies a quantum state

in one location and reproduces it in another. We will see many other examples

of entanglement throughout this book.
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1.2 The Emergence of Quantum Shannon Theory 11

Entanglement theory concerns methods for quantifying the amount of entan-

glement present not only in a two-particle state but also in a multiparticle state. A

large body of literature exists that investigates entanglement theory (Horodecki

et al., 2009), but we only address aspects of it that are relevant in our study of

quantum Shannon theory.

The above five features capture the essence of the quantum theory, but we

will see more aspects of it as we progress through our overview in Chapters 3,

4, and 5.

1.2 The Emergence of Quantum Shannon Theory

In the previous section, we discussed several unique quantum phenomena such

as superposition and entanglement, but it is not clear what kind of information

these unique quantum phenomena represent. Is it possible to find a convergence

of the quantum theory and Shannon’s information theory, and if so, what is the

convergence?

1.2.1 The Shannon Information Bit

A fundamental contribution of Shannon is the notion of a bit as a measure of

information. Typically, when we think of a bit, we think of a two-valued quantity

that can be in the state “off” or the state “on.” We represent this bit with a binary

number that can be “0” or “1.” We also associate a physical representation with

a bit—this physical representation can be whether a light switch is off or on,

whether a transistor allows current to flow or not, whether a large number of

magnetic spins point in one direction or another, the list going on and on. These

are all physical notions of a bit.

Shannon’s notion of a bit is quite different from these physical notions, and we

motivate his notion with the example of a fair coin. Without flipping the coin,

we have no idea what the result of a coin flip will be—our best guess at the result

is to guess randomly. If someone else learns the result of a random coin flip, we

can ask this person the question: What was the result? We then learn one bit of

information.

Though it may seem obvious, it is important to stress that we do not learn

any (or not as much) information if we do not ask the right question. This point

becomes even more important in the quantum case. Suppose that the coin is

not fair—without loss of generality, suppose the probability of “heads” is greater

than the probability of “tails.” In this case, we would not be as surprised to learn

that the result of a coin flip is “heads.” We may say in this case that we would

learn less than one bit of information if we were to ask someone the result of the

coin flip.
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12 Concepts in Quantum Shannon Theory

The Shannon binary entropy is a measure of information. Given a probability

distribution (p, 1 − p) for a binary random variable, its Shannon binary entropy is

h2(p) ≡ −p log p − (1 − p) log(1 − p), (1.1)

where (here and throughout the book, unless stated explicitly otherwise) the

logarithm is taken base two. The Shannon binary entropy measures information

in units of bits. We will discuss it in more detail in the next chapter and in

Chapter 10.

The Shannon bit, or Shannon binary entropy, is a measure of the surprise upon

learning the outcome of a random binary experiment. Thus, the Shannon bit has

a completely different interpretation from that of the physical bit. The outcome

of the coin flip resides in a physical bit, but it is the information associated with

the random nature of the physical bit that we would like to measure. It is this

notion of a bit that is important in information theory.

1.2.2 A Measure of Quantum Information

The above section discusses Shannon’s notion of a bit as a measure of informa-

tion. A natural question is whether there is an analogous measure of quantum

information, but before we can even ask that question, we might first wonder:

What is quantum information? As in the classical case, there is a physical notion

of quantum information. A quantum state always resides “in” a physical sys-

tem. Perhaps another way of stating this idea is that every physical system is in

some quantum state. The physical notion of a quantum bit, or qubit for short

(pronounced “cue · bit”), is a two-level quantum system. Examples of two-level

quantum systems are the spin of the electron, the polarization of a photon, or an

atom with a ground state and an excited state. The physical notion of a qubit is

straightforward to understand once we have a grasp of the quantum theory.

A more pressing question for us in this book is to understand an informational

notion of a qubit, as in the Shannon sense. In the classical case, we quantify

information by the amount of knowledge we gain after learning the answer to a

probabilistic question. In the quantum world, what knowledge can we have of a

quantum state?

Sometimes we may know the exact quantum state of a physical system because

we prepared the quantum system in a certain way. For example, we may prepare

an electron in its “spin-up in the z direction” state, where |↑z〉 denotes this state.

If we prepare the state in this way, we know for certain that the state is indeed

|↑z〉 and no other state. Thus, we do not gain any information, or equivalently,

there is no removal of uncertainty if someone else tells us that the state is |↑z〉.

We may say that this state has zero qubits of quantum information, where the

term “qubit” now refers to a measure of the quantum information of a state.

In the quantum world, we also have the option of measuring this state in the

x direction. The postulates of quantum theory, given in Chapter 3, predict that

the state will then be |↑x〉 or |↓x〉 with equal probability after measuring in the
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