LDPC CODE DESIGNS, CONSTRUCTIONS, AND UNIFICATION

Written by leading experts, this self-contained text provides systematic coverage of low-density parity-check (LDPC) codes and their construction techniques, unifying both algebraic- and graph-based approaches into a single theoretical framework (the superposition construction). An algebraic method for constructing protograph LDPC codes is described, and entirely new codes and techniques are presented. These include a new class of LDPC codes with doubly quasi-cyclic structure, as well as algebraic methods for constructing spatially and globally coupled LDPC codes.

Authoritative, yet written using accessible language, this is essential reading for electrical engineers, computer scientists, and mathematicians working in communications and information theory.

JUANE LI is a postdoctoral researcher in the Department of Electrical and Computer Engineering at the University of California, Davis. Her current research interests are channel coding for communications and storage systems, and hardware implementation of encoders and decoders for LDPC codes.

SHU LIN is an Adjunct Professor in the Department of Electrical and Computer Engineering at the University of California, Davis, and an IEEE Life Fellow. He is the co-author of Channel Codes: Classical and Modern (Cambridge, 2009) and Error Control Coding: Fundamentals and Applications (2nd ed., Prentice Hall, 2004).

KHALED ABDEL-GHAFFAR is a Professor of Electrical and Computer Engineering at the University of California, Davis. He has held research positions at the IBM Almaden Research Center, Delft University of Technology, and the University of Bergen.

WILLIAM E. RYAN is an IEEE Fellow and currently works for Zeta Associates, USA. He was previously a Professor at New Mexico State University and the University of Arizona. He is the co-author of the book Channel Codes: Classical and Modern (Cambridge, 2009).

DANIEL J. COSTELLO, JR. is the Leonard Bettex Professor Emeritus of Electrical Engineering at the University of Notre Dame, Indiana, and an IEEE Fellow. He is the co-author of the textbook Error Control Coding: Fundamentals and Applications (2nd ed., Prentice Hall, 2004).
“This book provides an in-depth survey of recently developed quasi-cyclic LDPC codes. It is a treasured reference on practical channel coding methods for both theorists and practitioners working in communications and information theory.”

Lara Dolecek, University of California, Los Angeles

“The importance of LDPC codes in numerous applications and their capacity-approaching performance has led to an explosion in research into their construction and analysis over the past decade. The numerous effective constructions of them can be broadly classified as algebraic and graphical, including the important superposition, protograph, and spatial coupling techniques. This timely volume explains, unifies, and greatly clarifies these diverse approaches and lays a solid foundation that will be invaluable to researchers, practitioners, and students alike.”

Ian F. Blake, University of British Columbia

“A book from the leaders in the field of error-correcting codes. Superposition – a unified framework for low-density parity check code construction – makes a description of codes of various classes rather simple.”

Bane Vasic, University of Arizona, Tucson
LDPC CODE DESIGNS, CONSTRUCTIONS, AND UNIFICATION

JUANE LI
University of California, Davis

SHU LIN
University of California, Davis

KHALED ABDEL-GHAFFAR
University of California, Davis

WILLIAM E. RYAN
Zeta Associates, Colorado

DANIEL J. COSTELLO, JR.
University of Notre Dame, Indiana
Contents

Preface
page viii

1 **Introduction**
1

2 **Definitions, Concepts, and Fundamental Characteristics of LDPC Codes**
2.1 Matrices and Matrix Dispersions of Finite Field Elements
6
2.2 Fundamental Structural Properties and Performance Characteristics of LDPC Codes
8
2.3 Discussion and Remarks
14

3 **A Review of PTG-Based Construction of LDPC Codes**
16
3.1 PTG-LDPC Code Construction
16
3.2 Conclusion and Remarks
20

4 **An Algebraic Method for Constructing QC-PTG-LDPC Codes and Code Ensembles**
21
4.1 Construction of QC-PTG-LDPC Codes by Decomposing Base Matrices
21
4.2 Construction of RC-Constrained PTG Parity-Check Matrices
26
4.3 Examples
28
4.4 Construction of the Ensemble of PTG-LDPC Codes from an Algebraic Point of View
38
4.5 Discussion and Remarks
40

5 **Superposition Construction of LDPC Codes**
41
5.1 SP-Construction of LDPC Codes and Its Graphical Interpretation
41
5.2 Ensembles of SP-LDPC Codes
43
5.3 Constraints on the Construction of SP-LDPC Codes Free of Cycles of Length 4
44
5.4 SP-Construction of QC-LDPC Codes
48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>SP-Base Matrices over Nonnegative Integers</td>
<td>49</td>
</tr>
<tr>
<td>5.6</td>
<td>Discussion and Remarks</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Construction of Base Matrices and RC-Constrained Replacement Sets for SP-Construction</td>
<td>51</td>
</tr>
<tr>
<td>6.1</td>
<td>RC-Constrained Base Matrices</td>
<td>51</td>
</tr>
<tr>
<td>6.2</td>
<td>Construction of RC-Constrained Replacement Sets Based on Hamming Codes</td>
<td>53</td>
</tr>
<tr>
<td>6.3</td>
<td>Construction of RC-Constrained Replacement Sets Based on m-dimensional Euclidean Geometry EG(m, 2) over GF(2)</td>
<td>59</td>
</tr>
<tr>
<td>6.4</td>
<td>Construction of RC-Constrained Replacement Sets Based on RC-Constrained Arrays of CPMs</td>
<td>62</td>
</tr>
<tr>
<td>6.5</td>
<td>Discussion and Remarks</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>SP-Construction of QC-LDPC Codes Using Matrix Dispersion and Masking</td>
<td>72</td>
</tr>
<tr>
<td>7.1</td>
<td>A Deterministic SP-Construction of QC-LDPC Codes</td>
<td>72</td>
</tr>
<tr>
<td>7.2</td>
<td>Conditions on Girth of CPM-QC-SP-LDPC Codes</td>
<td>73</td>
</tr>
<tr>
<td>7.3</td>
<td>A Finite Field Construction of 2 × 2 SM-Constrained SP-Base Matrices and Their Associated CPM-QC-SP-LDPC Codes</td>
<td>74</td>
</tr>
<tr>
<td>7.4</td>
<td>Masking</td>
<td>77</td>
</tr>
<tr>
<td>7.5</td>
<td>Design of Masking Matrices</td>
<td>84</td>
</tr>
<tr>
<td>7.6</td>
<td>Construction of CPM-QC-SP-LDPC Codes for Correcting Bursts of Erasures by Masking</td>
<td>92</td>
</tr>
<tr>
<td>7.7</td>
<td>Discussion and Remarks</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>Doubly QC-LDPC Codes</td>
<td>98</td>
</tr>
<tr>
<td>8.1</td>
<td>Base Matrices with Cyclic Structure</td>
<td>98</td>
</tr>
<tr>
<td>8.2</td>
<td>CPM-D-SP-Construction of Doubly QC-LDPC Codes</td>
<td>100</td>
</tr>
<tr>
<td>8.3</td>
<td>Masking and Variations</td>
<td>104</td>
</tr>
<tr>
<td>8.4</td>
<td>SP-Construction of CPM-QC-SP-LDPC Codes</td>
<td>108</td>
</tr>
<tr>
<td>8.5</td>
<td>Discussion and Remarks</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>SP-Construction of Spatially Coupled QC-LDPC Codes</td>
<td>111</td>
</tr>
<tr>
<td>9.1</td>
<td>Base Matrices and Their Structural Properties</td>
<td>112</td>
</tr>
<tr>
<td>9.2</td>
<td>Type-1 QC-SC-LDPC Codes</td>
<td>114</td>
</tr>
<tr>
<td>9.3</td>
<td>Type-2 QC-SC-LDPC Codes</td>
<td>120</td>
</tr>
<tr>
<td>9.4</td>
<td>Terminated and Tailbiting CPM-QC-SC-LDPC Codes</td>
<td>123</td>
</tr>
<tr>
<td>9.5</td>
<td>A More General Construction of Type-1 CPM-QC-SC-LDPC Codes</td>
<td>129</td>
</tr>
<tr>
<td>9.6</td>
<td>A More General Construction of Type-2 CPM-QC-SC-LDPC Codes</td>
<td>134</td>
</tr>
<tr>
<td>9.7</td>
<td>Discussion and Remarks</td>
<td>135</td>
</tr>
</tbody>
</table>
Contents

10 Globally Coupled QC-LDPC Codes 138
10.1 Construction of CN-Based QC-GC-LDPC Codes: Method-1 138
10.2 A Local/Global Two-Phase Decoding of CN-Based CPM-QC-GC-LDPC Codes 146
10.3 Construction of CN-Based GC-LDPC Codes: Method-2 149
10.4 CPM-Dispersion Construction of CN-Based Product QC-GC-LDPC Codes 154
10.5 Discussion and Remarks 162

11 SP-Construction of Nonbinary LDPC Codes 166
11.1 General SP-Construction of NB LDPC Codes Using Binary Base Matrices 166
11.2 SP-Construction of NB QC-LDPC Codes 167
11.3 Construction of NB QC-SP-LDPC Codes Using q-ary CPM-Dispersion 173
11.4 CPM-D Construction of NB CPM-QC-SP-LDPC Codes Using Binary-to-Nonbinary Replacement 175
11.5 Algebraic Construction of NB QC-PTG-LDPC Codes 182
11.6 Construction of NB LDPC Codes from Reed–Solomon Codes 193
11.7 Construction of NB QC-SP-LDPC Codes based on RS Codes 197
11.8 Discussion and Remarks 205

12 Conclusion and Remarks 209

Appendices 215
A RC-Constrained Arrays of CPMs Constructed Based on Partial Geometries 217
A.1 RC-Constrained Arrays of CPMs Constructed Based on Two-Dimensional Euclidean Geometries over Finite Fields 218
A.2 RC-Constrained Arrays of CPMs Based on Partial Geometries Constructed from Prime Fields 223
B An Algorithm for Searching Compatible Masking and Base Matrices for the CPM-Dispersion Construction of QC-LDPC Codes 225
C Iterative Decoding Algorithm for NB LDPC Codes 228
C.1 Introduction 228
C.2 Algorithm Derivation 229
C.3 The NB LDPC Decoding Algorithm 235

References 237
Index 244
Preface

Error control codes protect the accuracy of data in modern information systems, including computing, communication, and storage systems. Low-density parity-check (LDPC) codes and their relatives represent the state of the art in error control coding and are renowned for their ability to perform close to the theoretical limits. This book presents recent results on various LDPC code designs, making strong connections between two prominent design approaches, the algebraic-based and the graph-theoretic-based constructions. New codes and code construction techniques are presented.

Most methods for constructing LDPC codes can be classified into two general categories, the algebraic-based and the graph-theoretic-based constructions. The two best-known graph-theoretic-based construction methods are the progressive edge-growth (PEG) and the protograph-based (PTG-based) methods, devised in 2001 and 2003, respectively. Both of these techniques involve computer-aided design. One of the earliest algebraic-based methods for constructing LDPC codes is the superposition (SP) construction, proposed in 2002. In this book, the algebraic-based construction method is re-interpreted from both the algebraic and the graph-theoretic perspectives. From the algebraic point of view, it is shown that the SP-construction of LDPC codes includes, as special cases, most of the major algebraic construction methods developed since 2002. From the graph-theoretic point of view, it is shown that the SP-construction also includes the PTG-based construction as a special case. Based on this PTG/SP connection, an algebraic method is developed here to construct PTG-based LDPC codes.

There are advantages to putting the algebraic-based and the PTG-based constructions into a single framework, the SP framework. One advantage is that SP descriptions of codes tend to be relatively compact, enabling simple code specifications in standards and textbooks. Another advantage to studying LDPC codes under the SP framework is that students and practitioners need only learn
Preface

a single code design approach rather than the myriad approaches that exist in the published literature.

Both binary and nonbinary code constructions will be presented under the SP framework. The SP-construction also leads to a new class of LDPC codes with a doubly quasi-cyclic (QC) structure as well as algebraic methods for constructing spatially and globally coupled LDPC codes. The globally coupled codes will be shown to possess a highly effective burst-erasure correction capability.

A good number of new LDPC codes are constructed and simulated over the binary-input additive white Gaussian noise channel and the binary erasure channel.

This book will open the door for readers to understand many topics in modern LDPC codes that are scattered in the literature. It is intended as a self-study guide for students, researchers, and engineers interested in LDPC codes and their variations. The book explains the different design methodologies in detail and provides an ample number of code constructions along with simulations. The book shows that code design and construction are more of an art rather than science. Hopefully, after reading this book, the reader may gain enough artistic experience to produce codes that not only meet required specifications but also improve upon those reported here. To make the material widely accessible, the authors have kept the presentation as clear as possible and assumed only basic knowledge of terminology and results that are commonly covered in textbooks on coding theory.

Acknowledgment

This book is the climax of more than fifteen years of work on LDPC codes by graduate students of the last four authors. In particular, the second and third authors would like to thank Drs. Lei Chen, Qiuju Diao, Ivana Djurdjevic, Qin Huang, Jingyu Kang, Yu Kou, Lan Lan, Keke Liu, Shumei Song, Ying Yu Tai, Heng Tang, Jun Xu, Lingqi Zeng, Li Zhang, and Bo Zhou. Each of them spent thousands of hours investigating choices of code parameters in order to optimize performance. We are also grateful to the federal agencies NASA and NSF and to the industrial support from Cadence, Denali Software, Intel, LSI, Northrop Grumman Space Technology, and San Disk. Many thanks to Dr. Julie Lancashire at Cambridge University Press for her constant encouragement to write this book. We also acknowledge Ms. Isabella Yeh, whose painting on the front cover was created specifically for this book. Finally, the first author would like to thank her father and mother for their love, and the last four authors would like to thank their wives for their patience and understanding. To the six of them, this work is dedicated.