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Introduction

The ever-growing need for cheaper, faster, and more reliable communication

and storage systems has forced many researchers to seek means to attain the

ultimate limits on reliable information transmission and storage. Low-density

parity-check (LDPC) codes are currently the most promising coding technique

to achieve the channel capacities (or Shannon limits) for a wide range of

channels. Discovered by Gallager in 1962 [40], these codes were rediscovered

in the late 1990s [83, 81]. Ever since their rediscovery, a great deal of research

effort has been expended in design, construction, encoding, decoding algorithms,

structural analysis, performance analysis, generalizations, and applications of

these remarkable codes. Many LDPC codes have been adopted as standard codes

for various current and next-generation communication systems, such as wireless,

optical, satellite, space, digital video broadcast (DVB), multi-media broadcast

(MMB) systems, and others. Applications to high-density data storage systems,

such as flash memories, are now being seriously investigated. In fact, they appear

in some recent data storage products. This rapid dominance of LDPC codes

in applications is due to their capacity-approaching performance, which can be

achieved with practically implementable iterative decoding algorithms. More

applications of these codes are expected to come and their future is promising.

However, further research is needed to better understand the structural properties

and performance characteristics of these codes.

Most methods to construct LDPC codes can be classified into two general cat-

egories: graph-theoretic-based and algebraic-based (or matrix-theoretic-based)

methods. The best-known graph-theoretic-based construction methods are the

progressive edge-growth (PEG) [43, 44] and the protograph (PTG) based methods

[105]. The algebraic-based methods for constructing LDPC codes were first

introduced in 2000 [56, 55, 38, 57]. Since then, various algebraic methods for

constructing LDPC codes, binary and nonbinary, have been developed using

mathematical tools such as finite geometries, finite fields, and combinatorial
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designs [58, 76, 110, 109, 35, 107, 3, 19, 39, 74, 111, 102, 101, 112, 64,

65, 116, 97, 100, 50, 99, 113, 114, 25, 46, 26, 70, 68, 77, 78]. Most of

the algebraic constructions have several important ingredients including base

matrices, matrix dispersion (or matrix expansion), and masking. By a proper

choice and combination of these ingredients, algebraic LDPC codes with excellent

overall error performance can be constructed. Algebraic LDPC codes have, in

general, much lower error-floors than randomly constructed LDPC codes. For

example, algebraic LDPC codes have been recently reported that can achieve a

decoded bit error rate as low as 10−15 without visible error-floors over the additive

white Gaussian noise channel (AWGNC) [70, 68, 77, 78].

One of the earliest algebraic-based methods proposed for constructing LDPC

codes is the SP-construction (also called the hybrid construction). This specific and

very flexible algebraic-based method for constructing LDPC codes was devised in

2002 [76]. Since then, several other powerful algebraic-based methods have been

proposed. These methods basically evolved from the SP-construction method,

although the connection went unnoticed.

The SP-construction method presented in [76] starts with a small base matrix B

and a set R of sparse matrices of the same size, not necessarily square. Then,

each nonzero entry in B is replaced by a member matrix in R following certain

replacement rules (or constraints) [76, 110, 109, 111, 97] and each zero entry is

replaced by a zero matrix (ZM) of the same size as that of a member matrix in R.

The replacement operation expands the base matrix B into an array H of sparse

matrices in R and/or ZMs. The null space of H gives an LDPC code, called an

SP-LDPC code. We refer to this matrix replacement of a nonzero entry in B as

superposition. The matrices in R are called member (or constituent) matrices and

the set R is called the replacement set. In [110], the structural properties of the

Tanner graph [103] associated with the array H was investigated. It was shown

that the Tanner graph associated with the array H is an expansion of the Tanner

graph associated with the base matrix B.

The PTG-based method for constructing LDPC codes was introduced by Thorpe

in 2003 [105]. This method was devised to construct the Tanner graph of an LDPC

code of large size using a relatively small well-designed bipartite graph, called

a protograph, as the base graph. In the construction, the first step is to choose a

protograph with a near-capacity iterative decoding threshold [80, 34] as a building

block (or as a base). The second step is to create copies of the chosen protograph.

The third step is to permute the edges of the copies according to certain rules to

connect them into a Tanner graph of larger size. The null space of the adjacency

matrix of the resultant Tanner graph gives an LDPC code, called a PTG-based

LDPC code (or PTG-LDPC code). The second and third steps of the construction

together form a graph expansion process. Since the introduction of this graphical
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method for constructing LDPC codes, it has been extensively investigated over

the last 12 years [105, 80, 34, 30, 31, 32, 33, 1, 11, 2, 88, 85] (see also their

references). Impressive theoretical results (in terms of code ensemble properties)

have been developed [34, 31, 1, 2, 85] and many PTG-LDPC codes with good error

performance have been constructed. Most recently, a new class of LDPC codes has

emerged, called spatially coupled LDPC codes, that has attracted a great amount

of research enthusiasm and may be regarded as an evolution of PTG-LDPC codes

from the graph-theoretical point of view.

From the above brief descriptions of the PTG-based and the SP-based methods

of LDPC code construction, we can see that both methods have two key

ingredients, a base and an expansion of the base. If we interpret these two

construction methods from the same point of view, either from the graph-theoretic

point of view or from the algebraic point of view, we see that they are closely

related, i.e., there is a strong connection between the SP-construction and the

PTG-based construction.

In this book, we view the SP-based and PTG-based constructions from a broader

perspective and interpret them from both the algebraic (or matrix-theoretic) and

the graph-theoretic points of view. From the algebraic point of view, we show

that the SP-construction of LDPC codes includes, as special cases, many of the

algebraic construction methods developed since 2002. From the graph-theoretic

point of view, we show that the PTG-based construction of LDPC codes is a special

case of the SP-construction. Furthermore, we develop an algebraic method for

constructing PTG-LDPC codes.

We note that, while SP-LDPC codes contain PTG-LDPC codes as special

cases from both the graph-theoretic and the matrix-theoretic points of view,

their design approaches have historically been very different. SP-LDPC codes

(and their relatives) have been designed using algebraic approaches with an eye

toward very low decoding error-floors and highly structured (lower-complexity)

decoders. By contrast, PTG-LDPC codes have a long history of being designed

by searching “good” ensembles and choosing codes from the ensembles. An

ensemble is considered to be good in the sense of decoding threshold [80, 34] or

minimum distance [31, 32, 1]. Whether or not these ensemble approaches can be

extended to SP-LDPC codes which are not PTG-LDPC codes will require further

research.

Also in this book, we unify all the major algebraic methods for constructing

LDPC codes based on matrix dispersions of base matrices under a single

framework in terms of the SP-construction. We also introduce a new class of LDPC

code with a doubly QC structure as well as algebraic methods for constructing

spatially coupled (SC) and globally coupled (GC) LDPC codes. The constructions

of these codes are also special cases of the SP-construction.
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Although the focus of this book is on binary LDPC codes, all the developments,

interpretations, and constructions presented for binary LDPC codes can be

generalized to their nonbinary (NB) counterparts.

The rest of this book is organized as follows. Chapter 2 gives some definitions

and basic concepts of matrices and introduces some fundamental structural

properties and performance characteristics of LDPC codes which will be used in

the later chapters. In Chapter 3, we give a brief review of the PTG-based method

for constructing binary LDPC codes from the conventional graph-theoretic point

of view. In Chapter 4, an algebraic method for constructing binary PTG-LDPC

codes is presented. In Chapter 5, we first present the SP-construction of LDPC

codes from a broader perspective than that given in [76, 109, 111]. Then, we give

a graph-theoretic interpretation of the SP-construction of LDPC codes and show

that the PTG-based construction is actually a special case of the SP-construction.

Chapter 6 presents various constructions of base matrices and replacement sets

for the SP-construction of LDPC codes. Chapter 7 presents a special type of the

SP-method for constructing QC-LDPC codes. This construction method, called

matrix dispersion, is based on dispersing (or expanding) the nonzero entries of

an algebraically constructed base matrix over a finite field into circulants of the

same size. We also give the necessary and sufficient conditions on a base matrix to

ensure that the dispersion results in a Tanner graph with girth at least 6 or at least 8.

This chapter basically puts all the major algebraic methods for constructing LDPC

codes under the framework of the SP-construction. In Chapter 8, a class of LDPC

codes with a doubly QC-structure is given. Chapter 9 presents algebraic methods

for constructing spatially coupled (SC) QC-LDPC codes, both terminated and not

terminated.

In Chapter 10, a new type of LDPC code, called the GC-LDPC code, is

presented. Two specific methods for constructing this new type of code are

presented. The first method is devised based on cyclic base arrays of matrices

over NB fields. The second method is based on the direct product of two LDPC

codes. We show that GC-LDPC codes in product form are effective at correcting

erasures clustered in bursts. Also presented in this chapter is a reduced-complexity

local/global two-phase iterative decoding scheme for GC-LDPC codes, which

allows correction of local as well as global random errors and erasures. Chapter 11

generalizes the SP-construction of binary LDPC codes to construct NB LDPC

codes. Several effective methods for constructing NB LDPC codes are presented.

Chapter 12 concludes the book with some remarks on possible future research.

Throughout the book, examples of constructing LDPC codes and their error

performance over the AWGNC and the binary erasure channel (BEC) are
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presented. Also, at the end of each chapter, there is a discussion on some related

or unsolved issues and possible research directions.

Furthermore, three appendices are included at the end of the book. In

Appendix A, two classes of arrays of circulant permutation matrices constructed

based on two types of finite geometries are given. These arrays can be used to

construct base matrices and replacement sets of matrices for the SP-construction

of LDPC codes. They can also be used to construct well performing LDPC codes

directly. Appendix B gives an algorithm for searching compatible masking and

base matrices for the construction of QC-LDPC codes. Appendix C presents an

iterative algorithm for decoding NB LDPC codes.
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