Contents

List of Figures
page xi

List of Tables
xix

Preface
xxi

1 Concurrent Processes

1.1 Basic Concepts
1.1.1 Communication between Processes
2
1.1.2 Concurrent, Parallel, and Distributed Program
3
1.2 Concurrency of Processes in Operating Systems
4
1.2.1 Threads
5
1.3 Correctness of Concurrent Programs
6
1.4 Selected Problems in Concurrent Programming
8
1.4.1 The Critical Section Problem
8
1.4.2 The Producer and Consumer Problem
11
1.4.3 The Dining Philosophers Problem
14
1.4.4 The Readers and Writers Problem
17
1.4.5 Monitors
18
1.5 Notes to the Chapter
24
1.6 Exercises
25
1.7 Bibliographic Notes
34

2 Basic Models of Parallel Computation

2.1 The Shared Memory Model
2.1.1 The RAM Model
35
2.1.2 The PRAM Model
39
2.2 The Network Model
41
2.2.1 Mesh
43
2.2.2 Mesh of trees
43
2.2.3 Cube
44
2.2.4 Cube Connected Cycles
45
2.2.5 Butterfly
46
Contents

2.3 Comparison of Parallel Computation Models 47
2.4 Notes to the Chapter 56
2.5 Exercises 58
2.6 Bibliographic Notes 61

3 Elementary Parallel Algorithms 63
3.1 Evaluation of Parallel Algorithms 63
 3.1.1 Scalable Parallel Systems 67
 3.1.2 Isoefficiency Function 68
3.2 Amdahl’s Law 69
3.3 Gustafson–Barsis’s Law 70
3.4 Karp–Flatt Metric 71
3.5 Algorithms for the Shared Memory Model 72
 3.5.1 Finding the Minimum and Sum of Elements in $O(\log n)$ Time 73
 3.5.2 Brent’s Theorem 77
 3.5.3 Prefix Computation 80
 3.5.4 Finding the Minimum in $O(1)$ Time 81
 3.5.5 Sorting in $O(\log n)$ Time 83
 3.5.6 Matrix–Matrix Multiplication 84
 3.5.7 Computations on Lists 87
 3.5.8 The Euler Cycle Method 88
3.6 Algorithms for the Network Model 92
 3.6.1 Matrix–Vector Multiplication in a One-dimensional Torus Network 92
 3.6.2 Matrix–Matrix Multiplication in a Two-dimensional Torus Network 94
 3.6.3 Reduction Operation in a Cube Network 96
 3.6.4 Broadcast in a Cube Network 97
 3.6.5 Prefix Computation in a Cube Network 98
3.7 Classes of Problems Solved in Parallel 100
3.8 Notes to the Chapter 103
 3.8.1 Cole’s Parallel Sorting Algorithm 103
 3.8.2 Bitonic Sort—Batcher’s Network 112
 3.8.3 The Parallel Computation Thesis 117
3.9 Exercises 118
3.10 Bibliographic Notes 123

4 Designing Parallel Algorithms 125
4.1 Steps of Designing 125
4.2 Problem Decomposition 125
 4.2.1 Types of Decomposition 125
 4.2.2 Functional Decomposition 130
 4.2.3 Data Decomposition 131
 4.2.4 Recursive Decomposition 133
 4.2.5 Exploratory Decomposition 135
 4.2.6 Speculative Decomposition 136
4.3 Granularity of Computation 137
| Contents |
|-----------------------|-----|
| 4.4 Minimizing Cost of Parallel Algorithm | 139 |
| 4.4.1 The Parallel Overhead | 139 |
| 4.4.2 Redundant Computations | 140 |
| 4.4.3 Processor Idling | 140 |
| 4.4.4 References to Common Data | 141 |
| 4.4.5 Overlapping Communication and Computation | 142 |
| 4.5 Assigning Tasks to Processors | 143 |
| 4.5.1 Load Balancing | 143 |
| 4.5.2 Static Load Balancing | 145 |
| 4.5.3 Dynamic Load Balancing | 151 |
| 4.6 Notes to the Chapter | 156 |
| 4.6.1 Foster’s Method | 156 |
| 4.6.2 Partitioning | 158 |
| 4.6.3 Communication | 158 |
| 4.6.4 Agglomeration | 159 |
| 4.6.5 Mapping | 160 |
| 4.7 Exercises | 161 |
| 4.8 Bibliographic Notes | 173 |
| 5 Architectures of Parallel Computers | 175 |
| 5.1 Classification of Architectures | 175 |
| 5.1.1 Multicore Processors | 178 |
| 5.2 Processor Arrays | 180 |
| 5.3 Multiprocessor Computers | 181 |
| 5.3.1 Shared-memory Multiprocessors | 182 |
| 5.3.2 Distributed-memory Multiprocessors | 183 |
| 5.3.3 Distributed Shared Memory | 183 |
| 5.4 Clusters | 184 |
| 5.4.1 Symmetric Multiprocessor Clusters | 184 |
| 5.4.2 Multicore Processor Clusters | 185 |
| 5.4.3 Computer Clusters | 185 |
| 5.4.4 Features and Use of Clusters | 187 |
| 5.5 Computers of Unconventional Architectures | 189 |
| 5.5.1 Dataflow Computers | 189 |
| 5.5.2 Systolic Computers | 196 |
| 5.6 Interconnection Networks | 198 |
| 5.6.1 Characteristics of Interconnection Networks | 198 |
| 5.6.2 Network Topologies | 199 |
| 5.7 Notes to the Chapter | 206 |
| 5.8 Exercises | 209 |
| 5.9 Bibliographic Notes | 212 |

6 Message-passing Programming	214
6.1 Introduction	214
6.2 The MPI Model of Computation	215
6.3 Minimum Graph Bisection	216
6.3.1 Program Compilation and Execution	218
6.3.2 Functions MPI_Init and MPI_Finalize	219
Contents

6.3.3 Functions MPI_Comm_rank and MPI_Comm_size 220
6.3.4 Functions MPI_Send and MPI_Recv 220
6.3.5 Collective Communication—Functions MPI_Bcast and MPI_Reduce 224

6.4 Sorting 228
6.4.1 Creating New Communicators—Function MPI_Comm_split 228
6.4.2 Collecting and Spreading Data—Functions MPI_Gather and MPI_Scatter 230

6.5 Finding Prime Numbers 232
6.5.1 Function MPI_Gatherv 234
6.5.2 Function MPI_Wtime 235

6.6 Matrix–Vector Multiplication 236
6.7 Exercises 240
6.8 Bibliographic Notes 241

7 Shared-memory Programming 243
7.1 Introduction 243
7.2 The OpenMP Model of Computation 244
7.3 Creating a Parallel Program 246
7.4 Basic Constructs 249
7.4.1 The Construct and Region Concepts 249
7.4.2 Parallel Construct 250
7.4.3 Program Compilation and Execution 252
7.4.4 Loop Construct 252
7.4.5 Sections Construct 255
7.4.6 Single Construct 257
7.4.7 Task Construct 258
7.4.8 Taskyield Construct 259

7.5 Clauses 259
7.5.1 The Purpose of Clauses 259
7.5.2 Shared Clause 260
7.5.3 Private Clause 260
7.5.4 Firstprivate Clause 260
7.5.5 Lastprivate Clause 261
7.5.6 Default Clause 261
7.5.7 Nowait Clause 262
7.5.8 Schedule Clause 262
7.5.9 Reduction Clause 264
7.5.10 If Clause 266
7.5.11 Num_threads Clause 267
7.5.12 Copyin Clause 268
7.5.13 Copyprivate Clause 268

7.6 Master and Synchronization Constructs 269
7.6.1 Master Construct 269
7.6.2 Barrier Construct 270
7.6.3 Taskwait Construct 270
7.6.4 Critical Construct 271
Table of Contents

7.6.5 Ordered Construct 271
7.6.6 Atomic Construct 272
7.6.7 Flush Construct 273
7.7 Threadprivate Directive 274
7.8 Minimum Graph Bisection 275
7.9 Sorting 276
7.10 Finding Prime Numbers 277
7.11 Exercises 281
7.12 Bibliographic Notes 281

Solutions to Selected Exercises 283
Glossary 305
References 323
Index 343