
Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction to Parallel Computing

The constantly increasing demand for more computing power can seem
impossible to keep up with.However,multicore processors capable of per-
forming computations in parallel allow computers to tackle ever larger
problems in a wide variety of applications. This book provides a com-
prehensive introduction to parallel computing, discussing both theoreti-
cal issues such as the fundamentals of concurrent processes, models of
parallel and distributed computing, and metrics for evaluating and com-
paring parallel algorithms, as well as practical issues, such as methods of
designing and implementing shared- and distributed-memory programs,
and standards for parallel program implementation, in particular MPI and
OpenMP interfaces.

Each chapter presents the basics in one place, followed by advanced
topics, allowing both novices and experienced practitioners to quickly ind
what they need.A glossary and more than 80 exercises with selected solu-
tions aid comprehension.The book is recommended as a text for advanced
undergraduate or graduate students and as a reference for practitioners.

Zbigniew J.Czech is Professor of Computer Science at Silesian University
of Technology, Gliwice, Poland. His research interests include computer
programming, design and analysis of algorithms, and parallel computing,
onwhich he hasmore than 45 years of experience lecturing and conducting
research.He has served as a research fellow at the University of York and
the University of Canterbury in the United Kingdom, and has lectured at
numerous universities in Poland and elsewhere, including the University
of California–Santa Barbara, Indiana University-Purdue University, and
the University of Queensland.

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

INTRODUCTION TO

PARALLEL

COMPUTING

Zbigniew J. Czech
Silesian University of Technology

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107174399

© Zbigniew J. Czech 2016

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2016

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Czech, Zbigniew J.
Title: Introduction to parallel computing / Zbigniew J. Czech, Silesia
University of Technology.
Description: Cambridge, United Kingdom ; New York, NY,USA : Cambridge
University Press, 2016. | Includes bibliographical references and index.
Identiiers: LCCN 2016051952 | ISBN 9781107174399 (hardback : alk. paper)
Subjects: LCSH: Parallel processing (Electronic computers)
Classiication: LCC QA76.58.C975 2016 | DDC 004/.35 – dc23
LC record available at https://lccn.loc.gov/2016051952

ISBN 978-1-107-17439-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

List of Figures page xi

List of Tables xix

Preface xxi

1 Concurrent Processes 1
1.1 Basic Concepts 1

1.1.1 Communication between Processes 2
1.1.2 Concurrent, Parallel, and Distributed Program 3

1.2 Concurrency of Processes in Operating Systems 4
1.2.1 Threads 5

1.3 Correctness of Concurrent Programs 6
1.4 Selected Problems in Concurrent Programming 8

1.4.1 The Critical Section Problem 8
1.4.2 The Producer and Consumer Problem 11
1.4.3 The Dining Philosophers Problem 14
1.4.4 The Readers and Writers Problem 17
1.4.5 Monitors 18

1.5 Notes to the Chapter 24
1.6 Exercises 25
1.7 Bibliographic Notes 34

2 Basic Models of Parallel Computation 35
2.1 The Shared Memory Model 35

2.1.1 The RAM Model 35
2.1.2 The PRAM Model 39

2.2 The Network Model 41
2.2.1 Mesh 43
2.2.2 Mesh of trees 43
2.2.3 Cube 44
2.2.4 Cube Connected Cycles 45
2.2.5 Butterly 46

v

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

vi Contents

2.3 Comparison of Parallel Computation Models 47
2.4 Notes to the Chapter 56
2.5 Exercises 58
2.6 Bibliographic Notes 61

3 Elementary Parallel Algorithms 63
3.1 Evaluation of Parallel Algorithms 63

3.1.1 Scalable Parallel Systems 67
3.1.2 Isoeficiency Function 68

3.2 Amdahl’s Law 69
3.3 Gustafson–Barsis’s Law 70
3.4 Karp–Flatt Metric 71
3.5 Algorithms for the Shared Memory Model 72

3.5.1 Finding the Minimum and Sum of Elements in
O(log n) Time 73

3.5.2 Brent’s Theorem 77
3.5.3 Preix Computation 80
3.5.4 Finding the Minimum in O(1) Time 81
3.5.5 Sorting inO(log n) Time 83
3.5.6 Matrix–Matrix Multiplication 84
3.5.7 Computations on Lists 87
3.5.8 The Euler Cycle Method 88

3.6 Algorithms for the Network Model 92
3.6.1 Matrix–Vector Multiplication in a One-dimensional

Torus Network 92
3.6.2 Matrix–Matrix Multiplication in a Two-dimensional

Torus Network 94
3.6.3 Reduction Operation in a Cube Network 96
3.6.4 Broadcast in a Cube Network 97
3.6.5 Preix Computation in a Cube Network 98

3.7 Classes of Problems Solved in Parallel 100
3.8 Notes to the Chapter 103

3.8.1 Cole’s Parallel Sorting Algorithm 103
3.8.2 Bitonic Sort—Batcher’s Network 112
3.8.3 The Parallel Computation Thesis 117

3.9 Exercises 118
3.10 Bibliographic Notes 123

4 Designing Parallel Algorithms 125
4.1 Steps of Designing 125
4.2 Problem Decomposition 125

4.2.1 Types of Decomposition 125
4.2.2 Functional Decomposition 130
4.2.3 Data Decomposition 131
4.2.4 Recursive Decomposition 133
4.2.5 Exploratory Decomposition 135
4.2.6 Speculative Decomposition 136

4.3 Granularity of Computation 137

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents vii

4.4 Minimizing Cost of Parallel Algorithm 139
4.4.1 The Parallel Overhead 139
4.4.2 Redundant Computations 140
4.4.3 Processor Idling 140
4.4.4 References to Common Data 141
4.4.5 Overlapping Communication and Computation 142

4.5 Assigning Tasks to Processors 143
4.5.1 Load Balancing 143
4.5.2 Static Load Balancing 145
4.5.3 Dynamic Load Balancing 151

4.6 Notes to the Chapter 156
4.6.1 Foster’s Method 156
4.6.2 Partitioning 158
4.6.3 Communication 158
4.6.4 Agglomeration 159
4.6.5 Mapping 160

4.7 Exercises 161
4.8 Bibliographic Notes 173

5 Architectures of Parallel Computers 175
5.1 Classiication of Architectures 175

5.1.1 Multicore Processors 178
5.2 Processor Arrays 180
5.3 Multiprocessor Computers 181

5.3.1 Shared-memory Multiprocessors 182
5.3.2 Distributed-memory Multiprocessors 183
5.3.3 Distributed Shared Memory 183

5.4 Clusters 184
5.4.1 Symmetric Multiprocessor Clusters 184
5.4.2 Multicore Processor Clusters 185
5.4.3 Computer Clusters 185
5.4.4 Features and Use of Clusters 187

5.5 Computers of Unconventional Architectures 189
5.5.1 Datalow Computers 189
5.5.2 Systolic Computers 196

5.6 Interconnection Networks 198
5.6.1 Characteristics of Interconnection Networks 198
5.6.2 Network Topologies 199

5.7 Notes to the Chapter 206
5.8 Exercises 209
5.9 Bibliographic Notes 212

6 Message-passing Programming 214
6.1 Introduction 214
6.2 The MPI Model of Computation 215
6.3 Minimum Graph Bisection 216

6.3.1 Program Compilation and Execution 218
6.3.2 Functions MPI_Init and MPI_Finalize 219

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

6.3.3 Functions MPI_Comm_rank and MPI_Comm_size 220
6.3.4 Functions MPI_Send and MPI_Recv 220
6.3.5 Collective Communication—Functions MPI_Bcast and

MPI_Reduce 224
6.4 Sorting 228

6.4.1 Creating New Communicators—Function
MPI_Comm_split 228

6.4.2 Collecting and Spreading Data—Functions MPI_Gather
and MPI_Scatter 230

6.5 Finding Prime Numbers 232
6.5.1 Function MPI_Gatherv 234
6.5.2 Function MPI_Wtime 235

6.6 Matrix–Vector Multiplication 236
6.7 Exercises 240
6.8 Bibliographic Notes 241

7 Shared-memory Programming 243
7.1 Introduction 243
7.2 The OpenMP Model of Computation 244
7.3 Creating a Parallel Program 246
7.4 Basic Constructs 249

7.4.1 The Construct and Region Concepts 249
7.4.2 Parallel Construct 250
7.4.3 Program Compilation and Execution 252
7.4.4 Loop Construct 252
7.4.5 Sections Construct 255
7.4.6 Single Construct 257
7.4.7 Task Construct 258
7.4.8 Taskyield Construct 259

7.5 Clauses 259
7.5.1 The Purpose of Clauses 259
7.5.2 Shared Clause 260
7.5.3 Private Clause 260
7.5.4 Firstprivate Clause 260
7.5.5 Lastprivate Clause 261
7.5.6 Default Clause 261
7.5.7 Nowait Clause 262
7.5.8 Schedule Clause 262
7.5.9 Reduction Clause 264
7.5.10 If Clause 266
7.5.11 Num_threads Clause 267
7.5.12 Copyin Clause 268
7.5.13 Copyprivate Clause 268

7.6 Master and Synchronization Constructs 269
7.6.1 Master Construct 269
7.6.2 Barrier Construct 270
7.6.3 Taskwait Construct 270
7.6.4 Critical Construct 271

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

7.6.5 Ordered Construct 271
7.6.6 Atomic Construct 272
7.6.7 Flush Construct 273

7.7 Threadprivate Directive 274
7.8 Minimum Graph Bisection 275
7.9 Sorting 276
7.10 Finding Prime Numbers 277
7.11 Exercises 281
7.12 Bibliographic Notes 281

Solutions to Selected Exercises 283

Glossary 305

References 323

Index 343

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

List of Figures

1.1 Sequential processes P and P ′ that are equivalent with respect to the
results of computation; t denotes the time axis. page 2

1.2 Two possible scenarios of execution of concurrent processes P1 and
P2. 3

1.3 Parallel execution of operations of processes Pi,P j, and Pk. 4
1.4 Interleaving of operations of processes—one real processor

“implements” three virtual processors. 5
1.5 Solving the critical section problem with a binary semaphore. 9
1.6 Solving the critical section problem for n tasks where n > 2. 11
1.7 Solving the producer and consumer problem with an unbounded

buffer. 12
1.8 Solving the producer and consumer problem with a bounded buffer. 13
1.9 The dining philosophers,P0 . . .P4 – philosophers, F0 . . .F4 – forks. 14
1.10 Solving the problem of the dining philosophers where deadlock may

occur. 15
1.11 Solving the problem of the dining philosophers with reducing the

number of philosophers simultaneously present at the table
(operations in lines 7–9 and 11–13 constitute the pre- and
post-protocol, respectively). 16

1.12 An asymmetric solution to the dining philosophers problem. 16
1.13 Solving the problem of readers and writers with semaphores. 18
1.14 Solving the producer and consumer problem with a monitor

Producer_Consumer. 20
1.15 A monitor for the producer and consumer problem. 21
1.16 A monitor for the dining philosophers problem. 22
1.17 A monitor for the readers and writers problem. 22
1.18 A dependency graph for tasks A,B,C, and D. 26
1.19 Synchronization in two-task barrier. 28
1.20 A structure of task communication in a butterly barrier. 29
1.21 A structure of task communication in a dissemination barrier. 30
1.22 Solving the problem of readers and writers with semaphores without

starvation of writers. 31

xi

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii List of Figures

1.23 Solving the problem of resource allocation according to the SJN
principle. 32

2.1 The RAM model of sequential computation. 36
2.2 (a) A RAM program to compute the value of polynomial; (b)

allocation of variables to memory cells (aux. denotes an auxiliary
cell). 37

2.3 (a) A pseudocode of RAM program to compute the value of a
polynomial, expressed on the middle level of abstraction; each step of
the program, consisting of three phases: fetching the argument,
performing the operation and saving the result (some phases may be
empty), is executed in unit time (Figure 2.2a); (b) an equivalent
program written on the high level of abstraction. 38

2.4 The PRAM model of parallel computation. 39
2.5 The network model of parallel computation. 41
2.6 A completely-connected network. 43
2.7 A one-dimensional mesh (a); and one-dimensional torus (ring) (b). 43
2.8 A two-dimensional mesh 4 × 4 (a); two-dimensional torus 4 × 4 (b);

and three-dimensional torus 3 × 3 × 3 (c). 44
2.9 A two-dimensional mesh of trees 4 × 4. 45
2.10 A zero-dimensional cube (a); one-dimensional (b); two-dimensional

(c); three-dimensional (d); four-dimensional (e). 45
2.11 A three-dimensional cube connected cycles. 46
2.12 (a) A three-dimensional butterly network (k = 3); (b)

transformation of a butterly network into a cube by merging vertices
in columns and replacing multiple edges with a single edge. 47

2.13 Embeddings of a binary tree structure network (a); into
two-dimensional mesh (b); and into three- and two-dimensional
cubes (c–d). 51

2.14 Embedding one-dimensional mesh (a) into two-dimensional mesh
(b). 52

2.15 Embedding two-dimensional mesh (a) into one-dimensional mesh
(b). 53

2.16 Embedding one-dimensional torus (a) into three-dimensional cube
(b). 54

2.17 A two-dimensional mesh 4 × 2 (a); matrix P in which sequences ai
and bi are separated by a dot for greater clarity (b); and embedding of
two-dimensional mesh 4 × 2 into three-dimensional cube (c). 55

2.18 A logic circuit that for a string of bits 〈x1, x2, x3〉 computes a string of
bits 〈y1, y2, y3, y4〉, where y1 = x1, y2 = x2, y3 = x3, and y4 is the parity
bit deined as y4 = x̄1x̄2x3 + x̄1x2x̄3 + x1x̄2x̄3 + x1x2x3. 57

2.19 (a) A doubly twisted torus; (b) three-dimensional mesh, capital letters
denote coordinates of mesh processors: A = (1, 1, 1), B = (1, 2, 1),
C = (1, 3, 1), D = (1, 4, 1), E = (2, 1, 1), F = (2, 2, 1), G = (2, 3, 1),
H = (2, 4, 1), I = (1, 1, 2), J = (1, 2, 2), K = (1, 3, 2), L = (1, 4, 2),
M = (2, 1, 2), N = (2, 2, 2), O = (2, 3, 2), P = (2, 4, 2). 59

2.20 Embeddings of binary trees of heights h = 1 (a), h = 2 (b), h = 3 (c),
and h = 4 (d), into meshes of appropriate size. 59

2.21 A tree of 2k vertices with roots p and q; r and s are roots of complete
binary trees of height k− 2. 60

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

List of Figures xiii

2.22 The de Bruijn network of dimension k = 3. 61
3.1 Speedup S(p,n) as a function of sequential fraction s a sequential

algorithm for ixed n; p is set to 1000. 69
3.2 Scaled speedup �(p,n) as a function of sequential fraction σ of

computation in a parallel algorithm; p is ixed at 1000. 71
3.3 Finding the minimum element, n = 2r. 74
3.4 An illustration of inding the minimum element by algorithm in

Figure 3.3 (n = 8). 75
3.5 Finding the sum of elements for any n. 76
3.6 An illustration of inding the sum of elements by algorithm in

Figure 3.5 (n = 7). 76
3.7 Finding the sum of elements using p processors. 76
3.8 (a) Parallel running time of algorithm given in Figure 3.7 for c1 = 1,

c2 = 10, n = 200; (b) speedup (Equation (3.25)) for different values
of n; (c) eficiency (Equation (3.27)) for different values of n. 78

3.9 Simulating aggregation of n = 8 numbers with p = 3 processors. 79
3.10 A parallel preix algorithm. 81
3.11 An illustration of parallel preix algorithm (⊗ j

i denotes
xi ⊗ xi+1 ⊗ . . . ⊗ x j for i < j). 82

3.12 An algorithm to ind the minimum in O(1) time. 82
3.13 A parallel sorting algorithm in O(logn) time. 83
3.14 A matrix–matrix multiplication algorithm. 85
3.15 A list ranking algorithm; each element i of list L is assigned a

processor Pi for 1 ≤ i ≤ n. 87
3.16 An illustration of list ranking algorithm on 6-element list L; values

w[i] that are set in the course of computation are highlighted in gray;
(a) list L after initialization, see lines 2–8 of algorithm in Figure 3.15;
(b)–(d) list L after subsequent executions of for loop in lines 9–16. 88

3.17 (a) A tree representation in the form of modiied adjacency lists L;
(b) sample tree T ; (c) graphical presentation of the Euler cycle
created for T ; (d) the successor function s specifying the Euler cycle
stored in two-dimensional array S. 89

3.18 An algorithm to transform unrooted tree into rooted tree. 91
3.19 (a) Depth-irst search of the rooted tree; (b) path D, preix sums

σ [v,u] and arc markers z[v,u] (f and bmark “forward” and
“backward” arcs, respectively); (c) arrays parent[v] and δ[v] denoting,
respectively, a parent and a number of descendants of vertex v, where
v ∈ V . 92

3.20 A matrix–vector multiplication algorithm in a one-dimensional
torus. 93

3.21 A matrix–matrix multiplication algorithm in a two-dimensional torus. 95
3.22 Distributing elements of matrices a and b between processors after

the irst (a), second (b), and third (c) iteration of for loop in lines
14–24 of algorithm in Figure 3.21. 96

3.23 An algorithm to reduction operation in a cube network. 97
3.24 A reduction operation in a three-dimensional cube; sample values to

be summed up (computed in lines 2–12) (a), and the values after the
irst (b), second (c), and third (d) iteration in lines 13–19 of the
algorithm in Figure 3.23. 98

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv List of Figures

3.25 A preix computation algorithm in a cube network. 99
3.26 Values of variables s and b in the cube composed of p = 8 processors

before execution of the for loop in lines 6–16 (a), and then after the
irst (b), second (c) and third (d) iteration of this loop in the
algorithm in Figure 3.25. 99

3.27 Reduction of problem A to B. 101
3.28 A logic circuit. 103
3.29 A merge sort tree; elements of a sorted sequence of length n for

n = 2r are initially at leaves of the tree. 104
3.30 A sequence merging algorithm. 105
3.31 (a) Merging sequences J and K with help of a good sampler L; (b)

example for sequences J = (2, 3, 7, 8, 10, 14, 15, 17),
K = (1, 4, 6, 9, 11, 12, 13, 16) and L = (5, 10, 13). 105

3.32 Cole’s parallel sorting algorithm—operations carried out in
incomplete vertex w at stage t. 107

3.33 Cole’s parallel sorting algorithm—operations carried out in a
complete vertex w at stages t + 1, t + 2, . . . 107

3.34 An illustration of Cole’s parallel sorting algorithm. 108
3.35 A comparator (a–b) and the comparator networks corresponding to

sequential insertion sort (c) and to parallel odd-even transposition
sort (d). 112

3.36 A recursive scheme of bitonic sorting network. 114
3.37 (a) Sorting 8-element bitonic sequence; (b) merging two

nondecreasing 4-element sequences: (2,5,6,9) and (1,3,5,7). 114
3.38 A recursive scheme of merging network. 115
3.39 A recursive scheme of Batcher’s sorting network. 116
3.40 Sorting 8-element sequence by Batcher’s network. 117
3.41 Array packing. 119
3.42 A sample forest. 120
3.43 Preix computation on a list; (a) initial form of the list; (b) the list

after computation of preixes. 120
3.44 A bubble sort algorithm (a); demonstration of odd-even transposition

sort of array a[1..5] = [16, 11, 9, 0,−2] (symbol ↔ denotes the
comparison and possible swap of adjacent elements a[j − 1] and
a[j] (b). 122

4.1 An illustration of Eratosthenes sieve for interval [2..25]. 126
4.2 A task dependency graph. 127
4.3 A task dependency graph in a pipeline. 128
4.4 A task dependency graph in data decomposition. The task S collects

data concerning completion of all the tasks. 129
4.5 An enlarged ilter mask with assigned weights in each ield (a) and

image L with the mask placed on pixel (x, y) (b). 130
4.6 Filter weights: (a) averaging ilter; (b) lp2 ilter; (c) Gaussian ilter. 131
4.7 A task dependency graph. 131
4.8 A decomposition of input data in the summation problem. 132
4.9 An algorithm to ind both the minimum and maximum elements. 133
4.10 An example of recursive decomposition of the problem of inding

both the minimum and maximum elements in array a[1..8]. 134

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

List of Figures xv

4.11 A quicksort algorithm. 134
4.12 A recursive decomposition in quicksort. As a pivot (marked in gray)

the larger of two different leftmost elements in a given subarray is
selected. 135

4.13 A maze (a) and decomposition of the problem of inding the way
through the maze into three tasks (b). 135

4.14 A decomposition of a tree into p subtrees. 136
4.15 Parallel execution of tasks A,B1,B2 and B3. 137
4.16 Multiplying matrix a by vector x: (a) decomposition based on input

data; (b) decomposition based on intermediate data. 138
4.17 A task dependency graph taking into account granularity of

computation for an image of size n× n = 10 × 10. 139
4.18 Processor load balancing: (a) imperfect; (b) perfect. 143
4.19 A decomposition of n× nmatrix on p blocks with respect to rows (a)

and columns (b). 146
4.20 A decomposition of n× nmatrix on p blocks with respect to both

dimensions, t = p− √
p+ 1,w = (r− 1)s+ 1: (a) blocks of size

(n/
√
p) × (n/

√
p); (b) blocks of size (n/r) × (n/s), where p = r× s. 147

4.21 Two decompositions of array a[1..19] on ive segments. 148
4.22 A partition of Poland area into 223 cells and ive segments assigned

to processors P1,P2, . . . ,P5. Sizes of segments are equal to 42, 42, 46,
46, and 47 cells, respectively. 148

4.23 Two partitions of the vertex set of a graph into subsets assigned to
processors P1,P2, and P3 (k = 3); the numbers of edges connecting
the subgraphs are 18 (a) and 10 (b). 148

4.24 An assignment of tasks to processors P0,P1,P2, and P3 (a) and the
structure of two-dimensional cube (b). 149

4.25 Executing tasks: (a) in line with assignment depicted in Figure 4.24;
(b) the time-optimal. 150

4.26 A task dependency graph considering the costs of computation and
communication, n× n = 10 × 10. 150

4.27 Executing tasks in the image processing problem (for a = 1). 151
4.28 A centralized method of load balancing. 152
4.29 A scheme of decentralized load balancing. 153
4.30 A distributed method of load balancing. 153
4.31 The work pool method. 155
4.32 A parallel programming model. The left side describes a parallel

computation represented by a directed graph whose vertices depict
tasks, and arcs—channels. The right side illustrates a single task that
encapsulates a sequential program, local memory and a set of I/O
ports that deine an interface of a task to its environment. 156

4.33 Foster’s method of designing parallel algorithms. 157
4.34 A sequential algorithm to estimate the value of π . 163
4.35 Computing estimation of π ; (a) n = 100,T = 85, π ≈ 4T/n ≈ 3.400;

(b) n = 500,T = 388, 4T/n ≈ 3.104; (c) n = 1000,T = 790,
4T/n ≈ 3.160. 163

4.36 An image of the Mandelbrot set. 164
4.37 A sequential program to compute the image of the Mandelbrot set. 165

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi List of Figures

4.38 A sequential program to solve the n-body problem. 167
4.39 The worst (a) and the optimal binary search tree (b) for keys in

Table 4.1. The expected costs of search in these trees are, respectively,
4.16 and 2.9. 169

4.40 A sequential program to ind the optimal binary search tree applying
dynamic programming. 172

4.41 Arrays e and R obtained by the program in Figure 4.40 for input data
in Table 4.1. 172

5.1 Flynn’s taxonomy. 176
5.2 A pipelined execution of instruction stream i1, i2, . . . , i8, . . . 176
5.3 The processor and main memory. 177
5.4 A diagram of a dual-core processor. 179
5.5 A typical organization of a processor array (SIMD). 180
5.6 A structure of a typical shared-memory multiprocessor. 182
5.7 A structure of a typical distributed-memory multiprocessor. 183
5.8 A structure of a computer cluster consisting of SMP nodes;

M—shared memory; P—processor. 185
5.9 A cluster composed of computers: connected by a single wire (a);

connected into a ring (b); a front-end computer provides support for
task dispatching and cluster management. 186

5.10 A data low graph to evaluate triangle’s area. 190
5.11 Vertex states before and after execution of (a) dyadic operation op2;

(b) monadic operation op1; (c) copy operation. 191
5.12 A general datalow computer structure. 191
5.13 Elementary operations related to conditional computation: (a)

relation with operator rop; (b) sink; (c) and (d) gates; (e) merge. 192
5.14 Advanced conditional operations and their implementation: (a)

select; (b) switch. 193
5.15 Computing the sum of the irst n terms of the harmonic

series. 193
5.16 Approximating the value of

√
2; sqr denotes the square

operation. 194
5.17 Multiplying matrices A = {ai, j} and B = {bi, j} in a systolic array; “0”

denotes one cycle delay. 197
5.18 Multiplying matrices A = {ai, j} and B = {bi, j} of size n× n. 197
5.19 Multiplying n× n matrix A = {ai, j} by n-element vector X = {xi}. 197
5.20 Multiplying n× n matrix A = {ai, j} by n-element vector X = {xi} in a

systolic array; “0” denotes one cycle delay. 198
5.21 Interconnection networks: static (a) and dynamic (b). The network

nodes (processors, memory modules, etc.) and switches are marked
with circles without and with shading, respectively. 199

5.22 A computer structure with a bus topology (P – processors,M – shared
memory modules, C – caches, D – I/O devices). 200

5.23 A structure of a crossbar network. 200
5.24 A multistage network of stages S1,S2, . . . ,Sk. 201
5.25 An omega network for p = m = 8. 201
5.26 States of the omega network switches during transmission of a

message between processor P001 and memory moduleM101. 202

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

List of Figures xvii

5.27 A butterly network. Points a, b, …, p on the right side of the igure
are connected by links to the corresponding points on the left side of
the igure. 203

5.28 Tree networks: (a) one-dimensional mesh; (b) star; (c) static binary
tree; (d) dynamic binary tree. 204

5.29 A fat tree. 205
5.30 A fat tree implemented by means of switches arranged in two

butterly networks connected to each other with the opposite sides;
groups of switches surrounded by a dashed line provide gradual
multiplication of data routes at higher levels of the tree. 205

5.31 Sequential and parallel versions of SAXPY function. 208
5.32 An illustration of odd-even transposition sort carried out in a

one-dimensional systolic array. 210
5.33 Beneš network of dimension r = 3 consisting of 2r+ 1 stages. Each

stage contains 2r switches. 211
5.34 A two-dimensional (r = 2) Beneš network that rearranges an input

permutation according to one-to-one mapping
π(i) = (4, 8, 3, 2, 1, 7, 6, 5) for i = 1, 2, . . . , 8. 211

6.1 An example of minimum graph bisection. 217
6.2 An MPI program to ind the minimum graph bisection. 218
6.3 The minimum bisection of the graph given in Figure 4.23. 224
6.4 A broadcast scheme for eight processes. 224
6.5 A minimum graph bisection program—improved version. 226
6.6 An MPI sorting program. 229
6.7 An MPI program to ind the prime numbers. 232
6.8 An illustration of MPI_Gatherv. 235
6.9 Speedups S and eficiency E as a function of the number of processes

for the MPI program to ind prime numbers; the dashed line marks
the maximum speedup equal to the number of processes. 237

6.10 An MPI program to matrix–vector multiplication. 238
6.11 The times of computation To and communication Tk, and the total

running time T = To + Tk of the matrix–vector multiplication
program (each graph depicts 9 series of measurements). 240

7.1 The fork-join paradigm of parallel execution in OpenMP; φ denotes
the initial or master thread. 246

7.2 Numbers of iterations executed by threads. 265
7.3 The OpenMP program to ind the minimum graph bisection. 275
7.4 The sorting program—sequential version. 277
7.5 An OpenMP sorting program. 278
7.6 The OpenMP program to ind prime numbers. 279
7.7 The speedup, S, and eficiency,E, as a function of the number of

threads executing the OpenMP program to ind the prime numbers;
the dashed line represents the maximum achievable speedup equal to
the number of threads. 280

S.1 The RAM programs to compute the GCD(x, y) expressed on the
middle (a) and low (b) level of abstraction. Before computation the
numbers x and y are stored in cellsM1 andM2, the result is stored in
cellM1. 285

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xviii List of Figures

S.2 An illustration of embedding of a two-dimensional mesh of size 4 × 4
into a four-dimensional cube. Capital letters denote coordinates of a
mesh processors: A = (1, 1), B = (1, 2), C = (1, 3), D = (1, 4),
E = (2, 1), F = (2, 2), G = (2, 3), H = (2, 4), I = (3, 1), J = (3, 2),
K = (3, 3), L = (3, 4), M = (4, 1), N = (4, 2), O = (4, 3), P = (4, 4). 286

S.3 (a) A two-dimensional torus; the wraparound connections marked by
the dashed lines correspond to unused links of a cube after
embedding into it a mesh of size 4 × 4, see Figure S.2; (b) an
alternative diagram of a four-dimensional cube. 286

S.4 A parallel preix algorithm of cost O(n). 287
S.5 An illustration of the parallel preix algorithm for n = 16 and

r = log n = 4 and p = n/r = 4; part (a) shows array s after completion
of stage 1 of the algorithm; part (b) depicts subsequent steps of
computation in stage 2; part (c) presents the sequential updating of
preixes computed in stage 1. 287

S.6 A parallel matrix–matrix multiplication algorithm of running time
O(n) and optimal cost O(n3). 288

S.7 A parallel matrix–matrix multiplication algorithm of running time
O(1) and optimal cost O(n3). 288

S.8 An algorithm to ind the sequence of tree vertices visited in preorder. 289
S.9 An all-to-all broadcast procedure in a two-dimensional torus. 290
S.10 An illustration of all-to-all broadcast in a two-dimensional torus of

size 3 × 3; processors that communicate with each other during the
data broadcast in rows and columns are marked with thick lines; (a)
after initialization in line 3; data to be broadcast: a, b, . . . , i; (b) after
broadcast of data in rows; (c) the inal state after broadcast of data in
columns. 290

S.11 A matrix–matrix multiplication algorithm in a cube. 291
S.12 An illustration of the matrix–matrix multiplication algorithm in a

cube; (a) initial state; (b) after execution of operation (i) in step 1; (c)
after execution of operation (ii) in step 1; (d) after execution of
operation (iii) in step 1; (e) after execution of step 2; (f) after
execution of step 3. 293

S.13 Exchanging data between tasks in a virtual ring when computing the
resultant forces Fi for i = 0, 1, . . . ,n− 1; the number of tasks p = 3,
the number of bodies n = 9. 295

S.14 A parallel program to solve the n-body problem by p tasks. 296
S.15 Roadrunner architecture; (A) 8 IniniBand switches at the higher

level of the fat tree; (B) 18 IniniBand switches at the lower level of
the fat tree; (C) 18 connected units. 299

S.16 An MPI program to compute the image of the Mandelbrot set. 300
S.17 An OpenMP program to compute the approximate value of π . 302
S.18 An OpenMP program to construct the optimal binary search tree. 303
S.19 A function to reconstruct the structure of the optimal binary search

tree based on array R. 304

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

List of Tables

2.1 A sample list of processor instructions page 37
2.2 Selected parameters of interconnection network topologies (p is the

number of vertices of a network) 48
3.1 Sequential fractions f of programs to ind prime numbers calculated

on the basis of speedups of Figure 6.9 (p. 237) and Figure 7.7 (p. 280) (N
denotes not calculated values due to limitation in a number of cores in
a computer in which experiments were conducted, see footnote on
p. 236) 73

3.2 An illustration of algorithm in Figure 3.12 82
3.3 Relations checked by processors and values of array w 84
4.1 Probabilities pi and qi for a sample sequence of n = 6 keys 169
5.1 Selected metrics describing dynamic interconnection networks 206
6.1 Basic datatypes deined in MPI with corresponding C types. 221
6.2 MPI’s predeined reduce operations. 227
6.3 MPI’s datatypes for MPI_MAXLOC and MPI_MINLOC operations. 227
6.4 Numbers of primes πi found by processes in their subintervals,

i = 0, 1, . . . , p− 1; p is the number of processes; n = 107 234
6.5 Results of measurements for the MPI program to ind prime numbers

in range [2..n], p – number of processes running the computation (seq.
denotes the sequential version), t – computation time in seconds,
S – speedup,E – eficiency 237

7.1 Numbers of iterations assigned to threads for different types of the
schedule clause 264

7.2 Valid operators and their initialization values in the reduction clause 266
7.3 Results of measurements for the OpenMP program to ind the prime

numbers in the interval [2..n],w – number of threads used (seq.
denotes the sequential version), t – running time in seconds, S –
speedup,E – eficiency 280

S.1 The Euler path D, the tags z[v,u] of arcs (f denotes “forward” and b
“backward”), the weights of arcs and preix sums computed in the
course of preorder traversal of the tree in Figure 3.19a (a); the
resulting array pre [1..7] (b) 289

xix

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

Solving contemporary scientiic and technology problems requires the use of com-
puters with a high speed of computation.Over the last 60 years the rate of this speed
has increased 16 trillion (1012) times. In the 1950s the speed of computation of a Uni-
vac 1 computer was about 1 klop/s (lop denotes a loating-point operation), and
in 2015 China’s supercomputer Tianhe-2 (Milky Way-2), which contained 3 120 000
cores working in parallel, achieved the computation speed of more than 33 Plop/s
(petalop stands for one quadrillion, 1015, loating-point operations).Despite a signif-
icant increase in computational capabilities, researchers simplify models of consid-
ered problems because their numerical simulation takes too long. The demand for
more and more computing power has increased and it is believed that this trend will
continue in the future.There are several reasons behind this trend.Models of investi-
gated phenomena and processes have become more complex and larger amounts of
data are being processed. The requirements regarding accuracy of results also grow,
which entails a higher resolution of models being developed. The ields in which,
through large computing power, signiicant results have been achieved include: aero-
nautics, astrophysics, bioinformatics, chemistry, economics and trade, energy, geology
and geophysics, materials science, climatology, cosmology, medicine, meteorology,
nanotechnology, defense, and advanced engineering.

For example, in the U.S.National Aeronautics and Space Agency (NASA), simu-
lation problems related to research missions conducted by space shuttles have been
investigated [50].A parallel computer SGIAltix with 10 240 processors, consisting of
20 nodes each holding 512 processors, installed in the J.AmesCenter allowed for sim-
ulation of a pressure distribution around a space shuttle during its light. A package
of computational luid dynamics used for this goal was a tool for designing geometry
of the parts of a space shuttle, that is, launchers and orbital units. Another group of
issues resolved in the NASA research centers concerned jet drive units. One of the
tasks was to simulate a low of liquid fuel supplied to a space shuttle main engine by
a turbine pump ([31], sect. 2.4).

In order to improve aircraft performance and safety, NASA conducts research in
new aircraft technologies.One of the objectives is the accurate prediction of aerody-
namic and structural performance for rotorcraft designed for civil andmilitary appli-
cations. New physics-based computational tools to predict rotorcraft lowields by

xxi

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xxii Preface

using the non-linear, three-dimensional, Navier-Stokes equations have been devel-
oped. The tools have enabled high-idelity simulations of a UH-60 Blackhawk heli-
copter rotor in high-speed forward light [68, 69]. All simulations were run on the
Pleiades petascale supercomputer [51] installed in the NASA Advanced Supercom-
puting Division at Ames Research Center. Each run of simulation used 1536–4608
cores included in Pleiades Westmere nodes.

After the inal shuttle mission in 2011, NASA began to concentrate its efforts on
human space exploration in and beyond low-Earth orbit. The efforts include design
of the Space Launch System (SLS), the next generation heavy lift launch vehicle
with its irst developmental light planned in late 2017. Pleiades plays an important
role in producing comprehensive computational luid dynamics (CFD) simulations
for design analyses of SLS vehicle. The analyses are used to predict the aerodynamic
performance, load, and pressure signatures for design variations of both crew and
cargo vehicles. Up to 2012, more than 3300 cases for seven different SLS designs
have been simulated on Pleiades using three independent CFD low solvers:OVER-
FLOW, USM3D, and NASA’s Cart3D. Best practices for simulating launch vehicle
ascent using those solvers were established during the Constellation Program. Sim-
ulations were run on either the Columbia or Pleiades supercomputer using 64 to 96
processors [218].

A signiicant impact on human development has been research in climatology.
This will help to answer such fundamental questions as: Is the observed recently
average Earth temperature rise a sign of ongoing global warming and a looming cli-
mate catastrophe? and also: Is the temperature growth due to natural reasons or is it
the result of the greenhouse effect1 caused by increased emissions of carbon dioxide
(CO2) and particulate matter into the atmosphere, resulting from human activities
including burning coal and other fossil fuels? Answers to these questions are sought
by numerical simulation of climate. For this study a program based on the Com-
munity Climate System Model (CCSM3) [80], maintained by the National Center
for Atmospheric Research (NCAR), was used. It contained four components that
described the state of the atmosphere, land, oceans, and ice caps. The components
of a program were executed in parallel on disjoint sets of various number of proces-
sors, which exchanged data describing, among other parameters, lows of masses and
energy.The CCSM3 version of a program allowed for simulation of the globe climate
with 75 km resolution (distance of points in a numeric grid2) over several hundred
years [395]. Simulations were capable of analyzing “what if ?” cases; for example, one
can predict to what extent sea levels will rise as a result of melting ice, if the amount
of CO2 emitted into the atmosphere doubles.

The results presented in [112] attained on the Cray X1E and XT4 comput-
ers and IBM p575 and p690 Cluster indicated that the Community Atmosphere
Model component could simulate a state of the atmosphere over a span up to sev-
eral tens of years, in a single day of computation by making use of several hun-
dred processors. Scalability of the component to simulate a state of oceans (Paral-
lel Ocean Program) was better. By making use of 500–1000 processors, results of

1 This issue of how hot the world will be due to the greenhouse effect was found in Science journal as one
of the 25 great puzzles of science in 2005 [117] (see also [340]).

2 Simulation results for shorter periods of time with 10–20 km resolution were obtained using the
Japanese Earth Simulator parallel computer, see for example [271].

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xxiii

simulation for a period of several hundred years could be obtained in a single day of
calculation.

Since CCSM3’s release in 2007, the work to improve and adapt its core to be
implemented on petalop computers with a number of processors from 100 to 200
thousands has been continued [112]. In 2010 NCAR released the fourth version of
CCSM(CCSM4) [150],www.cesm.ucar.edu/model/cssm4.0/,and in the same year the
successor to CCSM, called the Community Earth SystemModel version 1 (CESM1),
www.cesm.ucar.edu/models/cesm1.0, [254], was published as a uniied code release
that included CCSM4 code as a subset.

Based on the CCSM4_alpha code version, high-resolution, century-scale simula-
tions of the Earth’s climate were run on the teralop Cray XT4 and XT5 supercom-
puters [98]. The resolutions adopted for experiments were 50 km for the atmosphere
and land surface, and 20 km for ocean/sea-ice. The tests revealed that the develop-
ment version of CCSM4 was capable to achieve 2.3 simulated years per day on the
Cray XT5 utilizing 5844 computing cores. One of the enhancements in the CESM1
model relative to the CCSM4 was the inclusion of an atmospheric component that
extended in altitude to the lower thermosphere. This atmospheric model, known as
the Whole Atmosphere Community Climate Model, allowed simulation of the cli-
mate change from 1850 to 2005 [261].The computations were performed on the IBM
Blueire supercomputer. Using 192 POWER6 processors, the model was capable of
generating approximately 4.5 simulated years per day.

Over the last decade, several other models connected with the Earth’s climate
have emerged.One of them is the Non-hydrostatic Icosahedral Atmospheric Model
(NICAM) developed mainly at the Japan Agency for Marine-Earth Science and
Technology, the University of Tokyo, and the RIKEN research institute. Recently,
NICAMhas produced the global atmosphere simulation with an unprecedented hor-
izontal resolution of 870 m. The simulation has been executed with a performance
of 230 Tlop/s for 68 billion grid cells while using 20 480 nodes (163 840 cores) of the
K computer [334, 223, 405].

Powerful parallel computers have played a signiicant role in human genome
reading. In 1990, theU.S.andUK initiated theHumanGenomeProject (HGP),which
aimed to decipher the information contained in the humanDNA (Deoxyribonucleic
Acid). The project was joined by China, France, Japan, and Germany. Parallel work
on the description of the human genome has been undertaken by American Craig
Venter and his employees in his biotechnology enterprise The Institute for Genetic
Research, transformed later into Celera Genomics.The research teams initially com-
peted against each other, but over time the race transformed into cooperation, so
that studies were not duplicated, which made it possible to control faithfulness of
genome reading. In May 2001, the teams published results of their research inde-
pendently [203, 390] and in April 2003 they announced completion of the projects.
Studies have shown that the human genome containing more than 3 billion base
pairs has 30 000 genes coding proteins and RNAmolecules. They represent approxi-
mately 1.5% of the total DNA.The rest is known as noncoding DNA (“junk DNA”)
accumulated during man’s evolution [400].

To decipher mysteries of DNA Celera Genomics used a parallel computer of
cluster architecture consisting of ten 4-processor SMP (Symmetric Multiprocessor)
nodes, each with 4 GB of memory (Compaq ES40), and a 16-processor NUMA
(Nonuniform Memory Access) computer equipped with memory of capacity of

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xxiv Preface

64GB (CompaqGS160).Execution of aDNA sequencing program required approx-
imately 20 000 hours [390].The computational infrastructure of theHGP consortium
comprised a computing server Compaq ES40 consisting of 27 nodes, each with 108
processors, and a ile server with external memory of capacity of 1 TB [203].

Description of human genome greatly accelerated development of bioinformat-
ics, a separate discipline of research and applications. Contemporary bioinformatics
represents a convergence of various areas, including modeling of biological phenom-
ena, genomics, biotechnology. In the last few decades an enormous amount of biolog-
ical data has been collected,which generated demand for novel algorithms and tools
to analyze and decipher the complexity of such large data.Attaining these objectives
requires high-performance computing and advanced storage capabilities. A review
of applications of supercomputers in sequence analysis and genome annotation, two
of the emerging and most important branches of bioinformatics, is given in [115].

Despite gathering a vast amount of knowledge about the human genome, a num-
ber of questions have not been answered yet. The role of pseudo-genes that have
a form of genes but do not encode proteins is not known. What is the meaning of
“discontinuity”of genes associated with presence of the so-called introns? And does,
however, the noncoding DNA contain useful information? The further studies of the
genomewill be continued,because its complete understanding is important formany
ields. For example, in medicine it will give us an opportunity to diagnose gene-based
hereditary diseases and conduct gene therapy. Genetic tests already allow for deter-
mining paternity and are used in criminology. In the future, genetic knowledge will
facilitate individual adjustment of drugs to the needs of patients, which will extend
people’s life expectancy and improve their quality of life.

It is likewise important to know the genomes of plants.By their modiications one
can breed new varieties of plants characterized by higher fertility and resistance to
drought and pests. For example, the results of decoding a maize genome employing
a Blue Gene/L computer [142, 143] with 1024 processors were reported in [211].

In recent decades an increasing role of computers in research has been observed.
Some scientiic discoveries, such as the aforementioned reading of the human
genome, have been made due to substantial power of computation. The use of
advanced methods and means of computing to solve complex problems is a domain
of computational science. The third pillar of this ield of science, in addition to the-
ory and experiment, is computer modeling and simulation of large-scale phenom-
ena. The importance of computational science in the context of competitiveness and
prosperity of the society was a subject of theU.S.President’s Information Technology
Advisory Committee report [312] (see also [291]).

Parallel computers are expensive installations with a cost of tens of millions
of dollars. Therefore, for a long time only government research institutions were
equipped with them. But recently they have begun to appear in industrial sectors
of high income. Oil companies beneit from high-end computers by using them
to manage effectively the existing oil and gas deposits [220] (access.ncsa.uiuc.edu/
Stories/oil) and to search for new ones. Car manufacturers use sophisticated soft-
ware to simulate a vehicle collision with obstacles [338] and to simulate low of air
around a car body.This helps to increase safety and eficiency of the proposed designs
and to reduce the time of introducing new car models into sale [275]. Pharmaceuti-
cal companies use high-speed computers for designing new drugs [28, 64, 119]. The
faster a drug is discovered the sooner it can be patented and brought to the market.

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xxv

In the 1970s aircraft manufacturers could simulate a pressure distribution around a
single wing of an aircraft. Currently such a simulation is possible for the entire struc-
ture of an aircraft [393, 273]. As a consequence, the use of expensive wind tunnels
is increasingly rare. Application of high performance computing equipment enables
manufacturers not only to increase proits and reduce production costs, but also to
gain an advantage over competitors.

Other applications of parallel computers include numerical weather pre-
diction [345, 254], www.science.gov/topicpages/w/wrf+weather+research.html, and
forecasting natural disasters [201], such as earthquakes [104], earthquake.usgs.gov/
research/, volcanic eruptions, tsunami waves [32, 262], nctr.pmel.noaa.gov, hurri-
canes [73], www.nhc.noaa.gov, tornados [404], and tropical cyclones [326].

As a result of ongoing efforts to boost performance of processors, complexity of
integrated circuits (IC) and their degree of integration increase.Enhancement of this
performance by improving the technology used so far has recently faced insurmount-
able obstacles. Packing more and more transistors into smaller and smaller volumes
makes the width of paths inside IC components approach the size of atoms. The rise
of total intensity of currents lowing between a large number of transistors causes an
increase in the amount of dissipated heat.Collection of this heat from very small vol-
umes becomes very dificult. Boosting the speed of computation by raising the clock
frequency has its limits due to delays of signals transmitted along the paths in a chip.
All these obstacles have given rise to construction of multicore processors consist-
ing of a number of cores contained in a single chip of a slightly larger size compared
with a conventional one.Since each core executes an independent instruction stream,
computations in a multicore processor are parallel in nature. Multicore processors
are becoming more and more popular. They are used in general purpose and per-
sonal computers, computing servers, embedded systems, gaming consoles, etc.Along
with the popularization of multicore processors, the importance of issues related to
the design and implementation of parallel programs for these types of processors—
which are discussed in this book—will grow.

The speed of modern supercomputers due to parallel operation of more than 3
million interconnected processors3 is now of the order of quadrillion operations per
second. As a result of technological advances this power systematically increases.
Breaking the next barrier of computation speed of 1 Elop/s (exalop denotes one
quintillion, 1018, operations) will facilitate the solution of key issues in the study of
health,prosperity, security,and the development ofmankind. Inmedicine and biolog-
ical sciences it will be possible to simulatemolecular phenomena and to explain com-
plex processes of protein folding [102]. Simulation of electromagnetic, thermal, and
nuclear interactions between particles in a variablemagnetic ield assists in the devel-
opment of devices in which one can conduct controlled thermonuclear fusion (www
.iter.org). Production of such devices on an industrial scale would be a breakthrough
in solving the energy problems of the world, as well as in spacecraft propulsion tech-
nology. Fast parallel computers with memories of large capacities give opportunity
to explore huge databases in world trade and economy. This allows for better under-
standing of phenomena and economic trends for the beneit of people welfare. In
the ield of defense—following adoption by a group of states of the Comprehen-
sive Nuclear-Test-Ban Treaty in 1996—performing time-consuming simulation has

3 See the description of Tianhe-2 supercomputer on p. 296.

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xxvi Preface

become essential to maintain readiness of strategic weapons stockpiles. Fast compu-
tations may enhance safety through the use of advanced cryptographic and crypt-
analytic methods for encryption and decryption of messages in real-time employing
increasingly complex codes.

This book is devoted to the issues concerning implementation of parallel com-
puting. In particular, it discusses the stages of analysis, design, and implementation
of parallel programs.The book is recommended as a text for advanced undergraduate
or graduate students. It can also be helpful for practitioners who are involved in par-
allel computing, such as programmers, system designers, and for all those interested
in the subject. The reader should be familiar with programming in at least one of the
high-level languages, for example C/C++, as well as with the basics of algorithms.

The book is a result of the experience I have gathered over the past dozen years
conducting research and giving lectures on parallel computing for students at the
Silesian University of Technology, Gliwice, and the University of Silesia, Sosnowiec,
in Poland.A large number of valuable comments and suggestions on the irst edition
of the book were conveyed to me by my colleagues: Agnieszka Debudaj-Grabysz,
Sebastian Deorowicz, Wojciech Mikanik, Rafał Skinderowicz, Jacek Widuch, and
Wojciech Wieczorek. The doctoral students: Mirosław Błocho, Sergiusz Michalski,
and Jakub Nalepa gave me useful remarks to the second edition of the book. Jakub
Nalepa prepared implementations of several parallel programs that are enclosed in
the exercise solutions, and Jakub Rosner helped in updating the GPUs description. I
would like to express my deep appreciation to all people mentioned above for their
time and commitment in helping to improve the content and form of the two Polish
editions, and the present English edition of the book.

I also thank the staff of the following Polish computing centers where com-
putations of the project were carried out: Academic Computer Center, Gdańsk
(TASK); Wrocław Center for Networking and Supercomputing (WCSS); Interdis-
ciplinary Centre for Mathematical and Computational Modelling, University of
Warsaw (ICM); Academic Computer Center CYFRONET AGH, Kraków; Poznań
Supercomputing and Networking Center (PCSS).

The book consists of seven chapters. In Chapter 1 the concepts of a concurrent
process and thread as units executed under supervision of the operating system are
introduced. The ways processes communicate with each other, the issue of proving
correctness of concurrent programs and selected problems in concurrent program-
ming are also presented. Chapter 2 is devoted to basic models of parallel computa-
tion. The details of the PRAM (Parallel Random Access Machine) and of the net-
work models are discussed. Chapter 3 focuses on the elementary parallel algorithms
and methods of their evaluation using selected metrics, such as parallel running time,
speedup, cost, and eficiency. The problem of scalability of parallel algorithms is for-
mulated, and related to it the Amdahl’s law, Gustafson–Barsis’s law, and Karp–Flatt
metric are described. Chapter 4 is devoted to the methods of parallel algorithms
design. The basic steps of design are considered, in particular decomposition of a
computational problem into tasks, analysis of computation granularity, minimizing
the parallel algorithm cost, and assigning tasks to processors. Chapter 5 deals with
parallel computer architectures. It provides a short description of structures of pro-
cessor arrays, multiprocessors with shared and distributed memory, computing clus-
ters, and computers with unconventional architectures. An overview of interconnec-
tion networks is also given. Chapters 6 and 7 focus on principles of parallel program

www.cambridge.org/9781107174399
www.cambridge.org

Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xxvii

design for message passing and shared memory models. These principles are illus-
trated with examples of programs created by employing the MPI (Message Passing
Interface) library and OpenMP (Open Multiprocessing) interface. Each chapter of
the book is supplemented with exercises that permit the reader better understanding
and assimilation of the content presented in a chapter.Solutions to selected exercises,
and a glossary of parallel computing terms appear at the end of the book.

Gliwice, Poland,May 2016 Zbigniew J. Czech

www.cambridge.org/9781107174399
www.cambridge.org

