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The constantly increasing demand for more computing power can seem
impossible to keep up with.However,multicore processors capable of per-
forming computations in parallel allow computers to tackle ever larger
problems in a wide variety of applications. This book provides a com-
prehensive introduction to parallel computing, discussing both theoreti-
cal issues such as the fundamentals of concurrent processes, models of
parallel and distributed computing, and metrics for evaluating and com-
paring parallel algorithms, as well as practical issues, such as methods of
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what they need.A glossary and more than 80 exercises with selected solu-
tions aid comprehension.The book is recommended as a text for advanced
undergraduate or graduate students and as a reference for practitioners.
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Preface

Solving contemporary scientiic and technology problems requires the use of com-
puters with a high speed of computation.Over the last 60 years the rate of this speed
has increased 16 trillion (1012) times. In the 1950s the speed of computation of a Uni-
vac 1 computer was about 1 klop/s (lop denotes a loating-point operation), and
in 2015 China’s supercomputer Tianhe-2 (Milky Way-2), which contained 3 120 000
cores working in parallel, achieved the computation speed of more than 33 Plop/s
(petalop stands for one quadrillion, 1015, loating-point operations).Despite a signif-
icant increase in computational capabilities, researchers simplify models of consid-
ered problems because their numerical simulation takes too long. The demand for
more and more computing power has increased and it is believed that this trend will
continue in the future.There are several reasons behind this trend.Models of investi-
gated phenomena and processes have become more complex and larger amounts of
data are being processed. The requirements regarding accuracy of results also grow,
which entails a higher resolution of models being developed. The ields in which,
through large computing power, signiicant results have been achieved include: aero-
nautics, astrophysics, bioinformatics, chemistry, economics and trade, energy, geology
and geophysics, materials science, climatology, cosmology, medicine, meteorology,
nanotechnology, defense, and advanced engineering.

For example, in the U.S.National Aeronautics and Space Agency (NASA), simu-
lation problems related to research missions conducted by space shuttles have been
investigated [50].A parallel computer SGIAltix with 10 240 processors, consisting of
20 nodes each holding 512 processors, installed in the J.AmesCenter allowed for sim-
ulation of a pressure distribution around a space shuttle during its light. A package
of computational luid dynamics used for this goal was a tool for designing geometry
of the parts of a space shuttle, that is, launchers and orbital units. Another group of
issues resolved in the NASA research centers concerned jet drive units. One of the
tasks was to simulate a low of liquid fuel supplied to a space shuttle main engine by
a turbine pump ([31], sect. 2.4).

In order to improve aircraft performance and safety, NASA conducts research in
new aircraft technologies.One of the objectives is the accurate prediction of aerody-
namic and structural performance for rotorcraft designed for civil andmilitary appli-
cations. New physics-based computational tools to predict rotorcraft lowields by

xxi
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using the non-linear, three-dimensional, Navier-Stokes equations have been devel-
oped. The tools have enabled high-idelity simulations of a UH-60 Blackhawk heli-
copter rotor in high-speed forward light [68, 69]. All simulations were run on the
Pleiades petascale supercomputer [51] installed in the NASA Advanced Supercom-
puting Division at Ames Research Center. Each run of simulation used 1536–4608
cores included in Pleiades Westmere nodes.

After the inal shuttle mission in 2011, NASA began to concentrate its efforts on
human space exploration in and beyond low-Earth orbit. The efforts include design
of the Space Launch System (SLS), the next generation heavy lift launch vehicle
with its irst developmental light planned in late 2017. Pleiades plays an important
role in producing comprehensive computational luid dynamics (CFD) simulations
for design analyses of SLS vehicle. The analyses are used to predict the aerodynamic
performance, load, and pressure signatures for design variations of both crew and
cargo vehicles. Up to 2012, more than 3300 cases for seven different SLS designs
have been simulated on Pleiades using three independent CFD low solvers:OVER-
FLOW, USM3D, and NASA’s Cart3D. Best practices for simulating launch vehicle
ascent using those solvers were established during the Constellation Program. Sim-
ulations were run on either the Columbia or Pleiades supercomputer using 64 to 96
processors [218].

A signiicant impact on human development has been research in climatology.
This will help to answer such fundamental questions as: Is the observed recently
average Earth temperature rise a sign of ongoing global warming and a looming cli-
mate catastrophe? and also: Is the temperature growth due to natural reasons or is it
the result of the greenhouse effect1 caused by increased emissions of carbon dioxide
(CO2) and particulate matter into the atmosphere, resulting from human activities
including burning coal and other fossil fuels? Answers to these questions are sought
by numerical simulation of climate. For this study a program based on the Com-
munity Climate System Model (CCSM3) [80], maintained by the National Center
for Atmospheric Research (NCAR), was used. It contained four components that
described the state of the atmosphere, land, oceans, and ice caps. The components
of a program were executed in parallel on disjoint sets of various number of proces-
sors, which exchanged data describing, among other parameters, lows of masses and
energy.The CCSM3 version of a program allowed for simulation of the globe climate
with 75 km resolution (distance of points in a numeric grid2) over several hundred
years [395]. Simulations were capable of analyzing “what if ?” cases; for example, one
can predict to what extent sea levels will rise as a result of melting ice, if the amount
of CO2 emitted into the atmosphere doubles.

The results presented in [112] attained on the Cray X1E and XT4 comput-
ers and IBM p575 and p690 Cluster indicated that the Community Atmosphere
Model component could simulate a state of the atmosphere over a span up to sev-
eral tens of years, in a single day of computation by making use of several hun-
dred processors. Scalability of the component to simulate a state of oceans (Paral-
lel Ocean Program) was better. By making use of 500–1000 processors, results of

1 This issue of how hot the world will be due to the greenhouse effect was found in Science journal as one
of the 25 great puzzles of science in 2005 [117] (see also [340]).

2 Simulation results for shorter periods of time with 10–20 km resolution were obtained using the
Japanese Earth Simulator parallel computer, see for example [271].
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simulation for a period of several hundred years could be obtained in a single day of
calculation.

Since CCSM3’s release in 2007, the work to improve and adapt its core to be
implemented on petalop computers with a number of processors from 100 to 200
thousands has been continued [112]. In 2010 NCAR released the fourth version of
CCSM(CCSM4) [150],www.cesm.ucar.edu/model/cssm4.0/,and in the same year the
successor to CCSM, called the Community Earth SystemModel version 1 (CESM1),
www.cesm.ucar.edu/models/cesm1.0, [254], was published as a uniied code release
that included CCSM4 code as a subset.

Based on the CCSM4_alpha code version, high-resolution, century-scale simula-
tions of the Earth’s climate were run on the teralop Cray XT4 and XT5 supercom-
puters [98]. The resolutions adopted for experiments were 50 km for the atmosphere
and land surface, and 20 km for ocean/sea-ice. The tests revealed that the develop-
ment version of CCSM4 was capable to achieve 2.3 simulated years per day on the
Cray XT5 utilizing 5844 computing cores. One of the enhancements in the CESM1
model relative to the CCSM4 was the inclusion of an atmospheric component that
extended in altitude to the lower thermosphere. This atmospheric model, known as
the Whole Atmosphere Community Climate Model, allowed simulation of the cli-
mate change from 1850 to 2005 [261].The computations were performed on the IBM
Blueire supercomputer. Using 192 POWER6 processors, the model was capable of
generating approximately 4.5 simulated years per day.

Over the last decade, several other models connected with the Earth’s climate
have emerged.One of them is the Non-hydrostatic Icosahedral Atmospheric Model
(NICAM) developed mainly at the Japan Agency for Marine-Earth Science and
Technology, the University of Tokyo, and the RIKEN research institute. Recently,
NICAMhas produced the global atmosphere simulation with an unprecedented hor-
izontal resolution of 870 m. The simulation has been executed with a performance
of 230 Tlop/s for 68 billion grid cells while using 20 480 nodes (163 840 cores) of the
K computer [334, 223, 405].

Powerful parallel computers have played a signiicant role in human genome
reading. In 1990, theU.S.andUK initiated theHumanGenomeProject (HGP),which
aimed to decipher the information contained in the humanDNA (Deoxyribonucleic
Acid). The project was joined by China, France, Japan, and Germany. Parallel work
on the description of the human genome has been undertaken by American Craig
Venter and his employees in his biotechnology enterprise The Institute for Genetic
Research, transformed later into Celera Genomics.The research teams initially com-
peted against each other, but over time the race transformed into cooperation, so
that studies were not duplicated, which made it possible to control faithfulness of
genome reading. In May 2001, the teams published results of their research inde-
pendently [203, 390] and in April 2003 they announced completion of the projects.
Studies have shown that the human genome containing more than 3 billion base
pairs has 30 000 genes coding proteins and RNAmolecules. They represent approxi-
mately 1.5% of the total DNA.The rest is known as noncoding DNA (“junk DNA”)
accumulated during man’s evolution [400].

To decipher mysteries of DNA Celera Genomics used a parallel computer of
cluster architecture consisting of ten 4-processor SMP (Symmetric Multiprocessor)
nodes, each with 4 GB of memory (Compaq ES40), and a 16-processor NUMA
(Nonuniform Memory Access) computer equipped with memory of capacity of
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64GB (CompaqGS160).Execution of aDNA sequencing program required approx-
imately 20 000 hours [390].The computational infrastructure of theHGP consortium
comprised a computing server Compaq ES40 consisting of 27 nodes, each with 108
processors, and a ile server with external memory of capacity of 1 TB [203].

Description of human genome greatly accelerated development of bioinformat-
ics, a separate discipline of research and applications. Contemporary bioinformatics
represents a convergence of various areas, including modeling of biological phenom-
ena, genomics, biotechnology. In the last few decades an enormous amount of biolog-
ical data has been collected,which generated demand for novel algorithms and tools
to analyze and decipher the complexity of such large data.Attaining these objectives
requires high-performance computing and advanced storage capabilities. A review
of applications of supercomputers in sequence analysis and genome annotation, two
of the emerging and most important branches of bioinformatics, is given in [115].

Despite gathering a vast amount of knowledge about the human genome, a num-
ber of questions have not been answered yet. The role of pseudo-genes that have
a form of genes but do not encode proteins is not known. What is the meaning of
“discontinuity”of genes associated with presence of the so-called introns? And does,
however, the noncoding DNA contain useful information? The further studies of the
genomewill be continued,because its complete understanding is important formany
ields. For example, in medicine it will give us an opportunity to diagnose gene-based
hereditary diseases and conduct gene therapy. Genetic tests already allow for deter-
mining paternity and are used in criminology. In the future, genetic knowledge will
facilitate individual adjustment of drugs to the needs of patients, which will extend
people’s life expectancy and improve their quality of life.

It is likewise important to know the genomes of plants.By their modiications one
can breed new varieties of plants characterized by higher fertility and resistance to
drought and pests. For example, the results of decoding a maize genome employing
a Blue Gene/L computer [142, 143] with 1024 processors were reported in [211].

In recent decades an increasing role of computers in research has been observed.
Some scientiic discoveries, such as the aforementioned reading of the human
genome, have been made due to substantial power of computation. The use of
advanced methods and means of computing to solve complex problems is a domain
of computational science. The third pillar of this ield of science, in addition to the-
ory and experiment, is computer modeling and simulation of large-scale phenom-
ena. The importance of computational science in the context of competitiveness and
prosperity of the society was a subject of theU.S.President’s Information Technology
Advisory Committee report [312] (see also [291]).

Parallel computers are expensive installations with a cost of tens of millions
of dollars. Therefore, for a long time only government research institutions were
equipped with them. But recently they have begun to appear in industrial sectors
of high income. Oil companies beneit from high-end computers by using them
to manage effectively the existing oil and gas deposits [220] (access.ncsa.uiuc.edu/
Stories/oil) and to search for new ones. Car manufacturers use sophisticated soft-
ware to simulate a vehicle collision with obstacles [338] and to simulate low of air
around a car body.This helps to increase safety and eficiency of the proposed designs
and to reduce the time of introducing new car models into sale [275]. Pharmaceuti-
cal companies use high-speed computers for designing new drugs [28, 64, 119]. The
faster a drug is discovered the sooner it can be patented and brought to the market.
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In the 1970s aircraft manufacturers could simulate a pressure distribution around a
single wing of an aircraft. Currently such a simulation is possible for the entire struc-
ture of an aircraft [393, 273]. As a consequence, the use of expensive wind tunnels
is increasingly rare. Application of high performance computing equipment enables
manufacturers not only to increase proits and reduce production costs, but also to
gain an advantage over competitors.

Other applications of parallel computers include numerical weather pre-
diction [345, 254], www.science.gov/topicpages/w/wrf+weather+research.html, and
forecasting natural disasters [201], such as earthquakes [104], earthquake.usgs.gov/
research/, volcanic eruptions, tsunami waves [32, 262], nctr.pmel.noaa.gov, hurri-
canes [73], www.nhc.noaa.gov, tornados [404], and tropical cyclones [326].

As a result of ongoing efforts to boost performance of processors, complexity of
integrated circuits (IC) and their degree of integration increase.Enhancement of this
performance by improving the technology used so far has recently faced insurmount-
able obstacles. Packing more and more transistors into smaller and smaller volumes
makes the width of paths inside IC components approach the size of atoms. The rise
of total intensity of currents lowing between a large number of transistors causes an
increase in the amount of dissipated heat.Collection of this heat from very small vol-
umes becomes very dificult. Boosting the speed of computation by raising the clock
frequency has its limits due to delays of signals transmitted along the paths in a chip.
All these obstacles have given rise to construction of multicore processors consist-
ing of a number of cores contained in a single chip of a slightly larger size compared
with a conventional one.Since each core executes an independent instruction stream,
computations in a multicore processor are parallel in nature. Multicore processors
are becoming more and more popular. They are used in general purpose and per-
sonal computers, computing servers, embedded systems, gaming consoles, etc.Along
with the popularization of multicore processors, the importance of issues related to
the design and implementation of parallel programs for these types of processors—
which are discussed in this book—will grow.

The speed of modern supercomputers due to parallel operation of more than 3
million interconnected processors3 is now of the order of quadrillion operations per
second. As a result of technological advances this power systematically increases.
Breaking the next barrier of computation speed of 1 Elop/s (exalop denotes one
quintillion, 1018, operations) will facilitate the solution of key issues in the study of
health,prosperity, security,and the development ofmankind. Inmedicine and biolog-
ical sciences it will be possible to simulatemolecular phenomena and to explain com-
plex processes of protein folding [102]. Simulation of electromagnetic, thermal, and
nuclear interactions between particles in a variablemagnetic ield assists in the devel-
opment of devices in which one can conduct controlled thermonuclear fusion (www
.iter.org). Production of such devices on an industrial scale would be a breakthrough
in solving the energy problems of the world, as well as in spacecraft propulsion tech-
nology. Fast parallel computers with memories of large capacities give opportunity
to explore huge databases in world trade and economy. This allows for better under-
standing of phenomena and economic trends for the beneit of people welfare. In
the ield of defense—following adoption by a group of states of the Comprehen-
sive Nuclear-Test-Ban Treaty in 1996—performing time-consuming simulation has

3 See the description of Tianhe-2 supercomputer on p. 296.
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become essential to maintain readiness of strategic weapons stockpiles. Fast compu-
tations may enhance safety through the use of advanced cryptographic and crypt-
analytic methods for encryption and decryption of messages in real-time employing
increasingly complex codes.

This book is devoted to the issues concerning implementation of parallel com-
puting. In particular, it discusses the stages of analysis, design, and implementation
of parallel programs.The book is recommended as a text for advanced undergraduate
or graduate students. It can also be helpful for practitioners who are involved in par-
allel computing, such as programmers, system designers, and for all those interested
in the subject. The reader should be familiar with programming in at least one of the
high-level languages, for example C/C++, as well as with the basics of algorithms.

The book is a result of the experience I have gathered over the past dozen years
conducting research and giving lectures on parallel computing for students at the
Silesian University of Technology, Gliwice, and the University of Silesia, Sosnowiec,
in Poland.A large number of valuable comments and suggestions on the irst edition
of the book were conveyed to me by my colleagues: Agnieszka Debudaj-Grabysz,
Sebastian Deorowicz, Wojciech Mikanik, Rafał Skinderowicz, Jacek Widuch, and
Wojciech Wieczorek. The doctoral students: Mirosław Błocho, Sergiusz Michalski,
and Jakub Nalepa gave me useful remarks to the second edition of the book. Jakub
Nalepa prepared implementations of several parallel programs that are enclosed in
the exercise solutions, and Jakub Rosner helped in updating the GPUs description. I
would like to express my deep appreciation to all people mentioned above for their
time and commitment in helping to improve the content and form of the two Polish
editions, and the present English edition of the book.

I also thank the staff of the following Polish computing centers where com-
putations of the project were carried out: Academic Computer Center, Gdańsk
(TASK); Wrocław Center for Networking and Supercomputing (WCSS); Interdis-
ciplinary Centre for Mathematical and Computational Modelling, University of
Warsaw (ICM); Academic Computer Center CYFRONET AGH, Kraków; Poznań
Supercomputing and Networking Center (PCSS).

The book consists of seven chapters. In Chapter 1 the concepts of a concurrent
process and thread as units executed under supervision of the operating system are
introduced. The ways processes communicate with each other, the issue of proving
correctness of concurrent programs and selected problems in concurrent program-
ming are also presented. Chapter 2 is devoted to basic models of parallel computa-
tion. The details of the PRAM (Parallel Random Access Machine) and of the net-
work models are discussed. Chapter 3 focuses on the elementary parallel algorithms
and methods of their evaluation using selected metrics, such as parallel running time,
speedup, cost, and eficiency. The problem of scalability of parallel algorithms is for-
mulated, and related to it the Amdahl’s law, Gustafson–Barsis’s law, and Karp–Flatt
metric are described. Chapter 4 is devoted to the methods of parallel algorithms
design. The basic steps of design are considered, in particular decomposition of a
computational problem into tasks, analysis of computation granularity, minimizing
the parallel algorithm cost, and assigning tasks to processors. Chapter 5 deals with
parallel computer architectures. It provides a short description of structures of pro-
cessor arrays, multiprocessors with shared and distributed memory, computing clus-
ters, and computers with unconventional architectures. An overview of interconnec-
tion networks is also given. Chapters 6 and 7 focus on principles of parallel program
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design for message passing and shared memory models. These principles are illus-
trated with examples of programs created by employing the MPI (Message Passing
Interface) library and OpenMP (Open Multiprocessing) interface. Each chapter of
the book is supplemented with exercises that permit the reader better understanding
and assimilation of the content presented in a chapter.Solutions to selected exercises,
and a glossary of parallel computing terms appear at the end of the book.

Gliwice, Poland,May 2016 Zbigniew J. Czech
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