
Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Concurrent Processes

1.1 BASIC CONCEPTS

A sequential program describes how to solve a computational problem in a sequen-

tial computer. An example is the traveling salesman problem in which the number

of cities and the distances between each pair of cities are given. These are the input

data on which the output data are determined, which from the solution to the prob-

lem. The solution is a closed route of the minimum length of the salesman passing

through every city exactly once. More precisely, a sequential program is a sequence

of instructions that solves the problem by transforming the input data into the output

data. It is assumed that a sequential program is executed by a single processor.

If more processors are to be used to solve the problem, it must be partitioned

into a number of subproblems that may be solved in parallel. The solution to the

original problem is a composition of solutions to the subproblems. The subproblems

are solved by separate components that are the parts of a concurrent program. Each

component is a traditional sequential program called a computational task, or, in

short, task. A concurrent program consists of a number of tasks describing computa-

tion that may be executed in parallel. The concurrent program deines how the tasks

cooperate with each other applying partial results of computation, and how they syn-

chronize their actions.

Tasks are executed in a parallel computer under supervision of the operating sys-

tem.A single task is performed as a sequential (serial) process, that is as a sequence of

operations, by a conventional processor that we call a virtual processor. In a sequen-

tial process, resulting from execution of a single instruction sequence, the next oper-

ation commences only after completion of the previous operation. Thus, the order

of operations is clearly deined. Let oi and oi denote the events of beginning and

end of an operation oi. Then in a sequential process the following relation between

the times of termination of operation oi and commencement of operation oi+1 holds:

t(oi) ≤ t(oi+1). Figure 1.1 shows the sequential processes P and P ′ that differ in the

commencement and termination times of operations o1,o2, . . . ,oi,oi+1. If the opera-

tions of the processes are identical, in terms of their arguments and results, the results

of computation of P and P ′ will also be identical, although their execution times will

be different.

1

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction to Parallel Computing

o1 o2 o3 o4 oi oi+1

o1 o2 o3 o4 oi oi+1

P

P

t

Figure 1.1. Sequential processes P and P ′ that are equivalent with respect to the results of

computation; t denotes the time axis.

Sequential processes that are performed simultaneously and asynchronously, in

which execution of operations can overlap in time, are called concurrent processes.

Due to asynchronicity there are many possible implementations or scenarios of exe-

cution of concurrent processes. Considering these scenarios, we cannot determine in

advance which operation of a given process is preceded or followed by an operation

of another process, provided the processes do not synchronize their action.1 In other

words, operations of concurrent processes can be executed in any relative order2 in

different implementations. Figure 1.2 shows two of many scenarios of execution of

concurrent processes P1 and P2. In the left part of the igure, operation o1,2 of P1

is executed before operation o2,2 of P2, whereas in the right part the execution of

operations overlap in time. The admission of an arbitrary relative order of execution

of operations in various implementations means in fact that no assumptions about

the speed of virtual processors are made. It is justiied because this speed depends

on the speed and the number of real processors3 available in a computer in which

the concurrent program will be implemented.

If the actual number of real processors is at least equal to the number of virtual

processors, that is to the number of processes, then the processes can be executed

in parallel (Figure 1.3; the sequence of events is: oi,1, ok,1, o j,1, oi,1, oi,2, ok,1, ok,2, oi,2,

oi,3, . . .). In this case, each process is performed by an appropriate real processor.

There is also a case in which only one real processor is available. Then, the individual

processes are performed by interleaving (Figure 1.4; the sequence of events is: oi,1,

oi,1, o j,1, o j,1, ok,1, ok,1, o j,2, o j,2, . . .). If the concurrent program is designed correctly,

then both these executions, by a single or a larger number of processors, will give

the same results. The scenarios depicted in Figure 1.3 and 1.4 are extreme in terms of

the number of real processors available, p, and the number of virtual processors, v.

For these scenarios the following relations hold: p ≥ v, and p = 1 with any v, respec-

tively. In other scenarios wemay have 1 < p < v,where there is more real processors

available but its number is less than the number of processes to be executed.

1.1.1 Communication between Processes

In general, concurrent processes are executed independently, but they can commu-

nicate with each other in speciic points in time. Communication of processes can be

1 Synchronization operations may impose a partial (as well as a total) order among operations executed

in processes.
2 Recall that within each process operations are executed sequentially.
3 Throughout this book, by a (real) processor we mean a uniprocessor or a core as a physical device.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1: Concurrent Processes 3

o1,1 o1,2 o1,1 o1,2

o2,1 o2,2 o2,1 o2,2

P1

P2

P1

P2

tt

Figure 1.2. Two possible scenarios of execution of concurrent processes P
1
and P

2
.

accomplished in two ways: employing shared memory or by message passing. In the

irst way, it is assumed that a shared memory is available and all virtual processes

performing concurrent computation have access to it. Every processor can perform

some operations on a number of variables located in a shared memory. These can be

simple operations read or write on shared variables, but also more advanced ones,

such as exchange, test-and-set, compare-and-swap, fetch-and-add. By making use of

shared variables concurrent processes transfer to each other the results of computa-

tion, as well as synchronizing their actions. For the purpose of synchronization, it is

important that these operations are atomic (see Exercise 3).

In the second way of communication, virtual processors exchange messages over

communication channels (shared memory is not available). Each channel provides

typically a two-way connection between a pair of processors. A set of communica-

tion channels makes the interconnection network of a system. Processors located in

vertices of the network have the ability to perform computations of a concurrent

program, as well as to send and receive messages from neighboring processors. In

most circumstances no assumption is made concerning the latency of message deliv-

ery between a source and target processor.4 Consequently, computations are fully

asynchronous because both the exact points in time of execution of concurrent pro-

cess operations, as well as sending and receiving messages, cannot be identiied in

advance.

1.1.2 Concurrent, Parallel, and Distributed Program

Concurrent processes that solve a computational problem can be implemented in

three basic ways:

(i) processes are executed by a single processor by interleaving;

(ii) each process is executed by a separate processor and all the processors have

access to a shared memory;

(iii) processes are executed by separate, distributed processors interconnected

by communication channels.

We assume that the two processes are concurrent, if it is possible to execute them

in parallel. These processes are parallel, if at any time both of them are simultane-

ously executed. In this context,only processes from cases (ii) and (iii) can be regarded

as parallel.A concurrent program speciies the processes thatmay be executed in par-

allel. It also describes how the issues of synchronization and communication between

4 Sometimes the upper limit of a latency is speciied.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction to Parallel Computing

oi,1 oi,2 oi,3 oi,4 oi,5

oj,1 oj,2 oj,3 oj,4

ok,1 ok,2 ok,3 ok,4

Pi

Pj

Pk

t

Figure 1.3. Parallel execution of operations of processes P
i
, P

j
, and P

k
.

processes are solved. Whether or not the processes are actually executed in paral-

lel depends on the implementation. If a suficient number of (physical) processors

is available, then each process is executed by a separate processor and the concur-

rent program is executed as the parallel program. Parallel programs executed by dis-

tributed processors, for example by processors contained in a computing cluster, are

called distributed programs (see Section 1.5, Notes to the Chapter, p. 24). Excluding

cases (ii) and (iii), it is also possible to execute v processes using p processors where

p < v; in particular, p = 1 may hold, as in case (i). Then some of the processes, or all

of them,must be executed by interleaving. Such a way of execution can be viewed as

pseudo-parallel.

1.2 CONCURRENCY OF PROCESSES IN OPERATING SYSTEMS

An execution of three processes by a single processor via interleaving is illustrated

in Figure 1.4. Although such an execution is possible, in practice it is ineficient

because the processor while passing between processes has to make a context switch.

It involves saving the necessary data regarding the state (context) of a process, such as

the contents of arithmetic and control registers, including the program counter, etc.,

so that execution of the process can be resumed from the point of interruption. A

context switch is generally time-consuming,5 therefore interleaving in modern oper-

ating systems is accomplished in the form of time-sharing.6 It includes allocating a

processor to performmore operations of a process,during a given period of timewith

some maximum length, for example 1 ms. In general, the tasks executed as processes

do not have to be the parts of a single concurrent program.They can be independent,

sequential computational tasks that should be performed on a computer.

Let us investigate an example in which the following tasks should be carried out

by a single processor: the optimization of a given function,printing a ile,and editing a

document.Execution of these tasksmay be done through assignments of consecutive

periods of computation time of a processor to the optimization task, with the abil-

ity to perform character operations in the tasks of printing and editing the iles. An

I/O character operation does not require much computation time of the processor.

Therefore, it can perform the optimization task, probably computationally intensive,

interrupting its work at the times when the I/O devices (the printer and keyboard)

5 Especially in superscalar processors equippedwith pipelined instruction implementation units and large

caches (see Section 5.1).
6 Also called time-slicing.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1: Concurrent Processes 5

oi,1 oi,2

oj,1 oj,2

ok,1 ok,2

Pi

Pj

Pk

t

Figure 1.4. Interleaving of operations of processes—one real processor “implements” three

virtual processors.

need to be serviced.Commonly, the service demands from I/O devices are requested

via interrupts. In practice, the allocation of computation time of processors is more

complex since tasks and interrupts are assigned priorities affecting the order in which

computations are performed.

Note that traditional personal computers (PCs) equipped with a single processor

operate in the way described above. The operating system of a computer supervises

the computation by assigning the processor the concurrent processes to implement

by time-sharing, as well as handling interrupts taking into account their priorities.

Processes communicate with each other by employing the operating memory of the

computer with a single address space shared by all processes.

Pseudo-parallel execution of several tasks by a single processor is referred to

as multitasking. This way of operation is also used in computing servers with many

processors,where the number of tasks greatly exceeds the number of processors.The

order of tasks execution in the systems with both a single and multiple processors

is determined by an operating system module designed to manage the processor’s

computation time, called a task scheduling module. In order to make best use of

processors this module solves the problem of load balancing among processors (see

Section 4.5).

1.2.1 Threads

As mentioned earlier, tasks that are components of a parallel program are executed

as sequential processes under supervision of an operating system. From the imple-

mentation point of view a process is an execution entity created, supervised, and

destroyed by the operating system. In order to execute, the operating system allo-

cates to a process certain resources, such as computation time of a processor,memory

space to store instructions, data, and the process stack, the set of registers, including

the program counter and stack pointer.

A process can be executed by a single thread or by a team of cooperating threads.

A thread is an execution entity able to run independently a stream of instruc-

tions.7 If more than one tread executes a process, then the concurrent computation

occurs as the result of execution of a number of instruction streams. All the threads

7 Both a process and thread are executions entities of the operating system. In view of this similarity,

a thread is sometimes referred to as a lightweight process, and a traditional process as a heavyweight

process.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction to Parallel Computing

executing a process share the resources allocated to it, in particular the address space

of a designated area of memory. In this memory the threads can store computation

results and messages that can be read by other threads. So it allows the threads to

communicate with each other. In addition to shared resources, each thread has like-

wise a few resources for its exclusive use, such as the stack, program counter register,

memory to store private data, etc.Multiple threads can be executed concurrently by

a single processor or core applying time-sharing (see p. 4). In such a case we talk

aboutmultithreaded execution.Multiple threads can also be executed in parallel by

several processors or a multicore processor.

1.3 CORRECTNESS OF CONCURRENT PROGRAMS

Correctness of a concurrent program is more dificult to prove than correctness of a

sequential program,because it is necessary to demonstrate additional properties that

should have the concurrent program,namely the properties of safety and liveness.We

will discuss these properties later.

The proofs of correctness of terminating8 concurrent programs are conducted in

a similar way as for sequential programs.9 In general, a sequential program is correct

if the desired relations are satisied between the input data and output data that are

results of computation. The correctness of a sequential program is expressed by a

sentence of the form

{p}S {q},

where S denotes a program, and p and q are assertions called precondition and post-

condition, respectively. The precondition speciies the conditions that are satisied

by the input data, or, in other words, by the state of memory with which execution

of the program begins. The postcondition speciies the desired conditions to be met

by the results of computation, or, in other words, by the state of memory once the

program has been executed. Thus it can also be said that the program transforms the

computer’s memory from a speciied initial state to a required inal state.

The correctness of a sequential program is formulated in two stages. The sequen-

tial program S is partially correct, if for every terminating execution of S with the

input data satisfying precondition p, the output data satisfy postcondition q. The

sequential program S is totally correct, if it is partially correct and every execution

of S with the input data satisfying precondition p terminates.

Partial correctness does not take into account whether the computation of pro-

gram S terminates or not.Answering the question of whether the program will even-

tually terminate for all valid input data satisfying precondition p, is called a halting

problem. Solving this problem is equivalent to showing that all iterative instructions

(loops) in the program always come to an end,as it is assumed that execution times of

other instructions involving primitive operations are inite.Thus in practice, the proof

8 We consider here concurrent programs whose processes terminate. There are also concurrent programs

with nonterminating processes. An example may be processes of a computer operating system, or pro-

cesses of a program that monitors a continuously working device by receiving and processing data sent

by its sensors.
9 In this section we analyze the conditions of correctness of concurrent and sequential programs. These

conditions also apply to algorithms underlying those programs, because it may be assumed that algo-

rithms and programs, which are their implementations, are semantically equivalent.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1: Concurrent Processes 7

of total correctness of the sequential program includes proving that the program is

partially correct and satisies the halting condition.

As stated earlier, a concurrent program consists of components called tasks.

Components are sequential programs, so to prove the correctness of a concurrent

(or parallel10) program, in the irst place the correctness of its components must be

demonstrated. Since the concurrent processes participating in the execution of a

concurrent program cooperate with each other, additional properties that relate to

safety and liveness must be proved. Safety properties are the conditions that should

always be satisied, that is for all possible implementations (or execution scenarios)

of concurrent processes. In contrast, liveness properties are conditions that should

be satisied eventually, which means that if a given condition should be satisied,

then for every possible realization of concurrent processes, at some point of time it

actually will hold.

Concurrent processes during their execution often compete with each other try-

ing to gain access to shared resources. These may be variables in shared memory,

iles, disk storage, I/O devices. In such a case we are dealing with the safety prop-

erty whereby in no time of the concurrent program execution a particular resource

is used by more than one process. This property is called mutual exclusion. Another

safety property is freedom from deadlock. The deadlock is a situation when two or

more processes do not terminate, because they cannot continue their action. Let us

examine one of the classic problems where the deadlock may arise. Suppose there

are two concurrent processes P1 and P2, and two resources A and B. Each process

needs access to both resources to perform its computation.Assume that processesP1

and P2 issued the requests and got access to resourcesA and B, respectively. Clearly,

they are now deadlocked when asking for the second resource, because process P1

holds resource A, that is needed by process P2, and process P2 holds resource B that

is needed by process P1. As a result, the processes will not terminate because none

of them can continue its action.

Informally, the liveness property means that during each concurrent implemen-

tation of a program, a required condition will be satisied at some point. Consider

an example in which a number of processes compete for access to a shared resource,

for example a printer. The liveness property says that if any process issues a print

request, then at some point it will be assigned the printer. In other words, there will

be no individual starvation of the process as a result of not allocating the resource

to it.

Related to the liveness property is a notion of fairness, which is intended to limit

all possible executions of concurrent processes to the fair executions. The fairness

constraint11 is the condition that prevents such execution scenarios, in which a

request issued by a process continually or ininitely often, is unserved, because at all

times requests of other processes are handled.There are two basic12 types of fairness:

10 By a parallel program we mean a concurrent program implemented by a suficient number of physical

processors (see p. 3).
11 The fairness constraint is not the property of a concurrent program. The constraint is imposed on the

system that schedules execution of concurrent processes.
12 In addition, the fairness in expected linear time can be formulated in which the request issued by a

process will be handled before requests of any other process are handled more than once.One can also

formulate the FIFO fairness, where requests are handled in the order of their submissions.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction to Parallel Computing

weak and strong. The weak fairness condition states that if a process continually

issues a request, then it will eventually be handled. For strong fairness this condition

has the form: if a process issues its request ininitely often, then it will eventually be

handled. Consider a process, being a part of a concurrent program P, that issues and

constantly sustains the request for allocating the printer. If during each execution of

P such a request will eventually be handled, then these executions are weakly fair.

Suppose now that a process issues a print request, but after some time, when it is

unhandled, the process withdraws the request to perform other work. If we assume

that the request is issued and withdrawn ininitely often, then in the weakly fair

executions it may never be handled. This occurs when the printer control process,

to which requests are directed, checks whether it is a print request in the moments

when it is just withdrawn. To prevent this kind of situation the condition of strong

fairness is formulated, which requires that the request issued ininitely often by a

process of P will eventually be handled.

1.4 SELECTED PROBLEMS IN CONCURRENT PROGRAMMING

When designing and implementing concurrent systems the problems that do not

occur in sequential systems must be solved. They are concerned mainly with coop-

eration of processes (tasks), which are essential for proper operation of systems. In

this section,we discuss some problems of concurrent programming and ways to solve

them.

1.4.1 The Critical Section Problem

The critical section problem occurs when a group of processes compete for the

resource,wherein at any given time only one process can have access to it.Resources

of this type13 are variables in sharedmemory, database records, iles, physical devices.

Note that the simultaneous use of a printer by several processes would lead to illeg-

ible printing reports. Similarly, modifying the same database records by multiple

processes at the same time can cause data inconsistency. The fragment of a process,

or more accurately, of a task in which it makes use of a resource is called a critical

section. Exclusive use of a resource is achieved by ensuring that at any time only one

task executes its critical section. In other words, instructions of two or more critical

sections cannot be interleaved.

For example, let T1 and T2 be tasks. If task T1 wants to use the resource, it must

acquire permission for its use, which means the resource must be assigned to the

task. After the assignment of the resource, the task uses it in its critical section, and

after completing the section it releases the resource. When the resource is released

by task T1, it can be assigned to task T2. If during the use of the resource by task T1,

task T2 issues the request for this resource, it must wait until the resource is released

by task T1.

The critical section problem can be solved employing semaphores. A semaphore

s is a compound data structure with two ields: s.w and s.q, where the ield s.w takes

13 Typically,only one process at a time can use a resource.However, there are resources that can be shared

by multiple processes. These resources are composed of a number of units, such as memory cells, disk

sectors, printers. Processes can apply for allocation of one or more units of the resource.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1: Concurrent Processes 9

1 s: semaphore := (1, ∅); – – binary semaphore
2 task T1; – – task specifications
3 task T2;
4 task body T1 is

5 begin

6 loop

7 wait(s); – – pre-protocol
8 Critical section

9 signal(s); – – post-protocol
10 – – remainder of the task
11 end loop;
12 end T1;
13 task body T2 is

14 begin

15 loop

16 wait(s); – – pre-protocol
17 Critical section

18 signal(s); – – post-protocol
19 – – remainder of the task
20 end loop;
21 end T2;

Figure 1.5. Solving the critical section problem with a binary semaphore.

nonnegative integer values, and the values of the ield s.q are sets of tasks (processes).

On semaphore s the following operations are deined:

wait(s): If s.w > 0, then s.w := s.w − 1, otherwise suspend execution of the task

performing operation wait and add it to set s.q. The task added to set s.q

is said to be blocked on semaphore s.

signal(s): If set s.q of tasks is nonempty, then delete and unblock one of the

tasks from s.q and resume its execution, otherwise s.w := s.w + 1.

The operations wait and signal14 are atomic, which means that the actions within

these operations cannot be interleaved with any other instructions. In the sequel, we

assume that the set of blocked tasks on a semaphore is organized in a FIFO queue.

Such a semaphore is called blocked-queue semaphore. Before a semaphore s is used,

it must be initialized by assigning to the ield s.w any nonnegative integer, s.w ≥ 0,

and to component s.q the empty queue ∅. If the component s.w of a semaphore may

take any nonnegative integer value, then the semaphore is called general. If this com-

ponent may take only values 0 or 1, then the semaphore is called binary.15 Note that

performing the operation signal on a binary semaphore with the integer component

equals 1 is an error. If the semaphore queue is empty, then the component should be

increased by 1,which is unacceptable (other versions of semaphores are discussed in

the notes to this chapter).

An example of solving the critical section problem for two tasks T1 and T2 exe-

cuted independently of each other is depicted in Figure 1.5. The tasks are written

14 It is also said that the operation wait and signal lowers and raises a semaphore, respectively.
15 A binary semaphore is also called mutex. This term is used in the Pthreads and java.util.concurrent

libraries.

www.cambridge.org/9781107174399
www.cambridge.org


Cambridge University Press
978-1-107-17439-9 — Introduction to Parallel Computing
Zbigniew J. Czech 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Introduction to Parallel Computing

with the syntax of Ada language.16 In line 1, semaphore s is declared by applying the

type semaphore deined as follows:

type semaphore is

record

w: natural;

q: queue;

end record;

The speciications of tasks T1 and T2 are given in lines 2–3, and their bodies,

respectively, in lines 4–12 and 13–21. Both tasks use the ininite loop of the syntax:

loop… end loop. In each run of the loop the tasks perform the critical sections (lines 8

and 17). Suppose that in one of the tasks, say T1, the critical section should be per-

formed. Then, operation wait(s) in line 7 is executed. If s.w = 1 the integer compo-

nent of semaphore s is set to 0 and the task begins executing the critical section.After

its execution, component s.w is set back to 1 by operation signal(s) in line 9. If taskT2

tries to execute its critical section before the completion of the critical section by task

T1, then because s.w = 0 taskT2 will be blocked and placed in the queue by operation

wait(s) in line 16.Only when task T1 completes its critical section, operation signal(s)

in line 9 will the execution of task T2 be resumed.

Nowwewill show that solution in Figure 1.5 has the property of mutual exclusion.

Suppose that tasks T1 and T2 want simultaneously execute critical sections. To this

end, they perform operation wait(s). By deinition, this operation is atomic so only

one of the tasks will enter the critical section.The second one will be blocked and put

to the queue. Similarly, if during execution of the critical section by one of the tasks,

the second task will also attempt to execute the critical section, it will be blocked,

because the integer component of semaphore s will be equal to 0.

The solution in Figure 1.5 is also free of deadlock. Assume that both tasks T1

andT2 have been blocked by operationwait(s).Then s.w = 0must hold,whichmeans

that one of the tasks executes the critical section. This is contrary to the assumption

that both tasks are blocked. In the analyzed solution there is also no starvation. Sup-

pose that task T1 is in the queue, and task T2 executes the critical section.After com-

pleting the critical section, task T2 performs operation signal(s) resulting in resump-

tion of execution of task T1. Therefore it is impossible that task T1 will continue to

be blocked and task T2 again will be able to execute its critical section.

From the above considerations it appears that the safety and liveness conditions

are met, and so the solution in Figure 1.5 is correct. This solution can be easily gen-

eralized to n tasks for n > 2 of the form depicted in Figure 1.6 with unchanged spec-

iication of the semaphore. The generalized solution has the same properties as the

previous one. The property of freedom from starvation of competing tasks results

from the use of a FIFO queue within the semaphore. In the worst case, any task will

receive a resource after it is used by n− 1 tasks that may precede it in the queue of

blocked tasks (see Exercise 4).

Note that the solution to the critical section problem in Figure 1.5 relies on suit-

able synchronization of execution of critical sections by tasksT1 andT2.The structure

of synchronization is the same for both tasks. Before entering the critical section, the

16 InAda a comment begins with characters -- --,and endswith a newline character. In this book,comments

will also be enclosed within characters { and }, or /* and */.

www.cambridge.org/9781107174399
www.cambridge.org

