Market Design

A Linear Programming Approach to Auctions and Matching

The digital economy has led to many new services where supply is matched with demand for various types of goods and services. More and more people and organizations are now in a position to design market rules that are being implemented in software.

The design of markets is challenging as it is necessary to consider the strategic behavior of market participants, psychological factors, and computational problems in order to implement the objectives of a designer. Market models in economics have not lost their importance, but recent years have led to many new insights and principles for the design of markets which are beyond traditional economic theory. This book introduces the fundamentals of market design, an engineering field concerned with the design of real-world markets.

Martin Bichler is Professor of Informatics at the Technical University of Munich (TUM), and a faculty member at the TUM School of Management. He is known for his academic work on market design, and he has acted as a consultant for private and public organizations including regulators, telecoms, and procurement organizations. Projects in which he is involved include the design of auctions for industrial procurement, logistics, advertising, fishery access rights, and spectrum sales. His research addresses algorithmic, game-theoretical, and behavioral questions and has appeared in leading journals in computer science, economics, operations research, and management science. He is currently Editor of Business and Information Systems Engineering and serves on the editorial boards of several academic journals.
Market Design

A Linear Programming Approach to Auctions and Matching

MARTIN BICHLER
Technical University of Munich
To my wife Claudia and my daughters Mona and Sonja
Contents

1 Introduction page 1
 1.1 Market Design and Mechanism Design 2
 1.2 Market Design and Mathematical Optimization 3
 1.3 Outline of the Book 4
 1.3.1 Part I Microeconomic Fundamentals 5
 1.3.2 Part II Multi-Object Auction Design 6
 1.3.3 Part III Approximation and Matching Markets 7
 1.3.4 Part IV Appendices: Mathematical Optimization 7
 1.4 Acknowledgements 8

Part I Microeconomic Fundamentals

2 Game-Theoretical Basics 11
 2.1 Normal-Form Games 11
 2.1.1 Dominant-Strategy Equilibrium 13
 2.1.2 Pareto Optimality 13
 2.1.3 Nash Equilibrium 14
 2.1.4 Correlated Equilibrium 17
 2.1.5 Further Solution Concepts 19
 2.2 Extensive-Form Games 20
 2.3 Bayesian Games 22
 2.3.1 Bayesian Nash Equilibrium 24
 2.3.2 Ex Post Equilibrium 25
 2.4 Games and Human Behavior 26
 2.5 Summary 27
 2.6 Comprehension Questions 28
 2.7 Problems 28

3 Mechanism Design 30
 3.1 Social Choice 31
 3.1.1 Voting Rules 31
 3.1.2 Arrow’s Impossibility 33
Contents

3.2 Utility Functions 35
3.3 Mechanism Design Theory 39
3.4 Quasi-Linear Mechanism Design 42
 3.4.1 Quasi-Linear Utility Functions 42
 3.4.2 The Vickrey–Clarke–Groves Mechanism 44
 3.4.3 The Myerson–Satterthwaite Theorem 46
3.5 Summary 48
 3.5.1 Robust Mechanism Design 48
 3.5.2 Algorithmic Mechanism Design 49
 3.5.3 Dynamic Mechanism Design 49
 3.5.4 Non-Quasi-Linear Mechanism Design 50
3.6 Comprehension Questions 51
3.7 Problems 51

4 Single-Object Auctions 53
 4.1 Single-Object Auction Formats 53
 4.2 Model Assumptions 54
 4.3 Equilibrium Bidding Strategies in the IPV Model 55
 4.3.1 Ascending Auctions 56
 4.3.2 Second-Price Sealed-Bid Auctions 56
 4.3.3 First-Price Sealed-Bid Auctions 57
 4.3.4 Descending Auctions 60
 4.4 Comparing Equilibrium Outcomes 60
 4.5 Robustness of the Revenue Equivalence Theorem 62
 4.5.1 Risk-Averse Bidders 62
 4.5.2 Interdependent Values 64
 4.5.3 Asymmetry of Bidders 65
 4.5.4 Uncertainty about the Number of Bidders 65
 4.6 Bidder Collusion 65
 4.7 Optimal Auction Design 66
 4.8 Selected Experimental Results 68
 4.9 Summary 70
 4.10 Comprehension Questions 71
 4.11 Problems 71

Part II Multi-Object Auction Design 75
5 An Overview of Multi-Object Auctions 75
 5.1 General Equilibrium Models 75
 5.2 Multi-Unit Auction Formats 77
 5.2.1 Sealed-Bid Multi-Unit Auction Formats 77
 5.2.2 Open Multi-Unit Auction Formats 78
 5.2.3 Sequential Sales 80
Contents

5.3 Multi-Item Auction Formats 81
 5.3.1 Simultaneous Auctions 81
 5.3.2 Combinatorial Auctions 81
5.4 Online and Dynamic Auction Design 83
5.5 Summary 83
5.6 Comprehension Questions 84

6 The Simultaneous Multi-Round Auction Format 85
 6.1 SMRA Rules 85
 6.2 Tactics in the SMRA 86
 6.3 Strategic Situations in SMRA 88
 6.3.1 War of Attrition 89
 6.3.2 English Auction vs. War of Attrition 93
 6.4 Summary 95
 6.5 Comprehension Questions 95

7 Sealed-Bid Multi-Object Auctions 96
 7.1 Generic Bid Languages 96
 7.2 The Winner Determination Problem 98
 7.3 Payment Rules 101
 7.3.1 Pay-as-Bid Payment Rules 101
 7.3.2 Vickrey–Clarke–Groves Payment Rules 101
 7.3.3 Bidder-Optimal Core Payment Rules 105
 7.4 Equilibrium Bidding Strategies 107
 7.4.1 First-Price Sealed-Bid Auctions 107
 7.4.2 Bidder-Optimal Core-Selecting Auctions 111
 7.5 Domain-Specific Compact Bid Languages 111
 7.5.1 Procurement Markets with Economies of Scale and Scope 112
 7.5.2 Distributed Scheduling in TV Ad Markets 117
 7.6 Combinatorial Double Auctions 120
 7.7 Empirical Results 121
 7.8 Summary 122
 7.9 Comprehension Questions 123
 7.10 Problems 124

8 Open Multi-Object Auctions 126
 8.1 Primal–Dual Auctions for Assignment Markets 127
 8.1.1 Dual Prices and VCG Payments 128
 8.1.2 An Ascending Auction for the Assignment Problem 131
 8.2 Greedy Auctions and Matroids 139
Contents

8.3 Models of Open Combinatorial Auctions 144
 8.3.1 Limits of Linear Prices 144
 8.3.2 Algorithmic Models of Ascending Auctions 150
 8.3.3 Perfect Bayesian Equilibria with General Valuations 152
 8.3.4 Large Markets with Non-Convexities 154

8.4 Overview of Open Combinatorial Auction Formats 155
 8.4.1 Auction Formats with Non-Linear Prices 155
 8.4.2 Auction Formats with Linear Ask Prices 158

8.5 Empirical Results 162
 8.5.1 Experiments with Small Markets 162
 8.5.2 Experiments with Larger Markets 163

8.6 Summary 164
8.7 Comprehension Questions 164
8.8 Problems 165

9 The Combinatorial Clock Auction Formats 167
 9.1 The Single-Stage Combinatorial Clock Auction 167
 9.1.1 Auction Process 167
 9.1.2 Efficiency of the SCCA 168
 9.2 The Two-Stage Combinatorial Clock Auction Format 172
 9.2.1 Auction Process 172
 9.2.2 Activity Rules 173
 9.2.3 A Note on Revealed Preference Theory 175
 9.2.4 Strategies in the Two-Stage CCA 178
 9.3 Experiments on the Two-Stage CCA 183
 9.4 Summary 185
 9.5 Comprehension Questions 185
 9.6 Problems 185

Part III Approximation and Matching Markets

10 Approximation Mechanisms 189
 10.1 Approximation and Truthfulness 190
 10.1.1 Deterministic Approximation Mechanisms 191
 10.1.2 Randomized Approximation Mechanisms 191
 10.2 Deterministic Mechanisms for Single-Minded Bidders 193
 10.2.1 Greedy-Acceptance Auctions 194
 10.2.2 Deferred-Acceptance Auctions 196
 10.3 Randomized Mechanisms 198
 10.3.1 The Relax-and-Round Framework 199
 10.3.2 Combinatorial Auctions via Relax-and-Round 201
 10.4 Summary 204
 10.5 Comprehension Questions 204
Contents

11 Matching Markets

11.1 Overview of Matching Problems 206
11.2 Two-Sided Matching 208
 11.2.1 Definitions and Notation 209
 11.2.2 The Gale–Shapley Student-Optimal Stable Mechanism 213
 11.2.3 The Efficiency-Adjusted Deferred-Acceptance Mechanism 217
11.3 One-Sided Matching 219
 11.3.1 The Top Trading Cycle Mechanism 220
 11.3.2 The Probabilistic Serial Mechanism 223
11.4 One-Sided Matching with Complementarities 225
 11.4.1 Multi-Unit and Combinatorial Assignments 225
 11.4.2 Cardinal Assignment Problems with Complementarities 226
11.5 Applications and Empirical Results 231
11.6 Summary 233
 11.6.1 Two-Sided Matching Mechanisms 233
 11.6.2 One-Sided Matching Mechanisms 235
11.7 Comprehension Questions 236
11.8 Problems 236

12 Outlook

12.1 Challenges in Market Design 239
12.2 Going Forward 240

Part IV Appendices: Mathematical Optimization

A Linear Optimization

A.1 Geometry of Linear Programs 245
A.2 Feasibility 249
A.3 Duality Theory 250
A.4 Integrality of Linear Programs 254

B Algorithms and Complexity

B.1 Computational Complexity 256
B.2 Algorithms for Linear Programs 258
B.3 Algorithms for Integer Linear Programs 258
B.4 Approximation Algorithms 262
 B.4.1 Complexity Classes 263
 B.4.2 LP-Based Approximation Algorithms 264

References 268
Index 281