Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xviii</td>
</tr>
<tr>
<td>Figure Credits</td>
<td>xxi</td>
</tr>
<tr>
<td>Part I Introduction, Dynamic Systems, and Change</td>
<td>1</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Resources, Environment, and People</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Focus of the Book</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Recurrent Themes</td>
<td>6</td>
</tr>
<tr>
<td>1.4 Socioenvironmental Systems</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Spatial and Temporal Scales</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Organization of the Book</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>2 A Perspective on Dynamic Systems</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Systems Theory and Complexity</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Some Terminology of Complex Systems</td>
<td>13</td>
</tr>
<tr>
<td>2.3 A Conceptual Scheme of Complex Systems</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Modeling</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Hierarchies and Networks</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
<tr>
<td>3 Change, Sustainability, and Related Concepts</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Change</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Sustainability</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Resilience, Tipping Points, and Regime Shifts</td>
<td>23</td>
</tr>
<tr>
<td>3.4 Case Studies</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Frameworks</td>
<td>26</td>
</tr>
<tr>
<td>3.6 Management</td>
<td>27</td>
</tr>
<tr>
<td>References</td>
<td>29</td>
</tr>
</tbody>
</table>
Part II People

4 How People Communicate and Interact
 4.1 Human Settlements, Communication, Interactions 35
 4.2 Communication Technologies 35
 4.3 Transportation 37
 4.4 Population Concentrations and Amenities 43
 4.5 Population Densities and Dwellings 44
 References 45

5 People, Societies, Populations, and Changes 47
 5.1 Human Development and the Current Situation 47
 5.2 Urban and Rural Changes 50
 5.3 Economic Development and Social Changes 55
 5.4 Fertility Rates and Population Changes 56
 5.5 Future World Population 59
 References 61

6 Influences on Human Well-Being and Cultures, Societies, and Technologies 65
 6.1 Measures of Social Development/Well-Being 65
 6.2 Comparisons of Four Measures of Well-Being 67
 6.3 Factors Related to Social Development and Well-Being 71
 6.4 Cultures, Groupthink, Mental Models, Societies, and Institutions 76
 6.5 Social and Technological Changes 78
 References 80

Part III Climates

7 Global Distribution of Climates 87
 7.1 Distribution of Climates and Vegetation 87
 7.2 Energy and Heating of the Earth 87
 7.3 Air Movement and the Atmosphere 91
 7.4 Prevailing Winds, Evaporation, and Precipitation 93
 7.5 Oceans, Currents, and Climates 94
 7.6 Earth’s Tilt and Seasons 96
 7.7 Other Climate Behaviors 98
 References 101

8 Greenhouse Gases, Atmosphere, and Climates 103
 8.1 Layers and Composition of the Atmosphere 103
 8.2 Carbon Dioxide 106
 8.3 Other Greenhouse Gases 110
 8.4 Heating the Atmosphere 112
 References 113
Contents

9 Past and Future Climate Changes 116
 9.1 Long-Term Climate History 116
 9.2 Ice Ages and Glaciers 118
 9.3 Milankovitch Cycles and Glaciation 121
 9.4 Shorter Climate Fluctuations 124
 9.5 Future Climate Scenarios 125
 9.6 Managing Climate Changes 127
 References 131

Part IV Landforms 135

10 Landforms and Soils 137
 10.1 Distribution, Soils, and Management 137
 10.2 Soil Properties and Variations 137
 10.3 Soil Chemical Composition and Development 142
 10.4 Distribution of Landforms 145
 10.5 Managing Landforms 152
 References 154

11 Bedrock Landforms 157
 11.1 Weathered Shield Bedrock 157
 11.2 Recent Igneous and Old Metamorphic Bedrock 157
 11.3 Recent Metamorphic and Old Sedimentary Bedrock 159
 11.4 Large Basalt Flow Bedrock 163
 11.5 Karst Landforms 164
 11.6 Mountains 166
 References 169

12 Landforms of Transported Materials 170
 12.1 Volcanic Ash and Tuff 170
 12.2 Sand Dunes 171
 12.3 Loess 174
 12.4 Alluvial Floodplains 176
 12.5 Coastal Plains 181
 12.6 Glaciated Areas 182
 12.7 Bogs 186
 12.8 Permafrost 187
 12.9 Wetlands 188
 References 189

Part V Biodiversity 191

13 Biodiversity: Individual Species 193
 13.1 Biodiversity Overview 193
 13.2 Classifications and Variations of Organisms 196
Contents

13.3 Niche, Food Web, Island Biogeography
13.4 Species Pump, Carrying Capacity, Exotics
13.5 Plant, Animal, and Microbial Behaviors
13.6 References

14 Biodiversity: Communities and Landscapes
14.1 Ecosystems and a Paradigm Shift
14.2 Plant Community Dynamics
14.3 Emergent Patterns: Plant Community Structures
14.4 Animals’ Habitats, Movements, and Behaviors
14.5 Landscapes of Multiple Plant Communities
14.6 Species Movements with Climate Change
14.7 References

15 Robust and Threatened Communities and Species
15.1 Coarse Filter Conservation
15.2 Floristic Realms
15.3 Vegetation, Land Covers, Biodiversity Hotspots
15.4 Fine Filter Conservation
15.5 References

16 Managing Biodiversity
16.1 People’s Effects on Biodiversity
16.2 Approaches to Promoting Biodiversity
16.3 Policies for Promoting Biodiversity
16.4 Activities to Promote Biodiversity
16.5 References

Part VI Water

17 Hydrologic Cycle
17.1 Distribution and Properties of Water
17.2 Hydrologic Cycle
17.3 Saltwater and Atmospheric Water Stocks
17.4 Surface Terrestrial Water Stocks
17.5 Below-Surface Terrestrial Water Stocks
17.6 Water Flows
17.7 References

18 Annual Hydrographs and Water Use
18.1 Patterns of Water Flow
18.2 Transboundary Water Use and Conflict
18.3 Water Use, Land Use, and Water Flow
18.4 Protection from Water
18.5 References

References

© in this web service Cambridge University Press
www.cambridge.org
Contents

19 Managing and Mitigating Hydrologic Systems 298
 19.1 Changing the Hydrologic Systems 298
 19.2 Aquifers 299
 19.3 Surface Waters 300
 19.4 Conserving Existing Water 304
 19.5 Obtaining More Water Sustainably 305
 References 306

Part VII Agriculture 311

20 Food Groups and Nutrition 313
 20.1 Agriculture, Food, and Nutrients 313
 20.2 Food Groups, Nutrients, and Consumption 314
 20.3 Physiology of Food Synthesis 315
 20.4 Plant Food Groups and Production 316
 20.5 Animal Food Groups and Production 320
 20.6 Human Food Requirements 322
 20.7 Nonfood Agriculture Commodities 323
 References 326

21 Agriculture and the Green Revolution 327
 21.1 Development of Agriculture and Associated Technologies 327
 21.2 Growth and Use Efficiency of Crops 330
 21.3 Energy Consumption in Agriculture 334
 21.4 Plowing, Irrigation, and Chemicals 335
 21.5 Other Activities 342
 References 343

22 Future Agriculture Production and Distribution 347
 22.1 Global Distribution of Agriculture Land 347
 22.2 Hunger and Food Shortages 347
 22.3 Food Distribution 348
 22.4 Food Production 353
 22.5 Options: Intensive, Organic, Range, Pen 356
 References 361

Part VIII Energy 363

23 Energy Sources, the Energy Cycle, Exergy 365
 23.1 Defining and Measuring Energy 365
 23.2 Potential and Kinetic Energy 366
 23.3 Electricity and Exergy: Energy Quality 367
 23.4 Energy Cycle into and out of the Earth 368
 23.5 Energy Flows Within the Earth 370
 References 373
Contents

24 Conserving Energy and Renewable Energy 375
 24.1 Human Use of Energy 375
 24.2 Future Energy Infrastructures 379
 24.3 Emerging Renewable Technologies 379
 24.4 Energy Conversion, Transport, and Storage 383
 24.5 Avoiding Energy Use 386
 24.6 World’s Energy Uses 388
 References 392

25 Future Energy: Reducing Fossil Fuel Use 395
 25.1 Issues Generated by Fossil Fuels 395
 25.2 Recent Trends in Energy Sources 396
 25.3 Scenario to Reduce Fossil Fuel Use 397
 25.4 Other Emerging Issues with Fossil Fuels 402
 25.5 Renewable Energy as Economic Stimuli 403
 References 404

Part IX Minerals 407
26 Rocks and Mineral Properties, Mining 409
 26.1 The Earth’s Mineral Composition 409
 26.2 Metal and Nonmetal Elements 411
 26.3 Mineral Chemical Structures 413
 26.4 Minerals and Elements Within 416
 26.5 Mineral Formation and Concentration Systems 417
 26.6 Mining 420
 References 422

27 Rocks and Minerals: Production, Use, Distribution 424
 27.1 Volumes of Minerals Produced 424
 27.2 Locations of Minerals 424
 27.3 Forms and Uses of Minerals 427
 27.4 Mineral Production 434
 27.5 Sustaining Mineral Systems 437
 References 440

Part X Forests 443
28 Forest Commodity and Non-Commodity Values 445
 28.1 An Underused Resource 445
 28.2 Forest Values and Stand Structures 445
 28.3 Non-Commodity Values 446
 28.4 Non-Timber Forest Products 453
 28.5 Timber Products 453
 References 455
Contents

29 Forest Distribution, Area, and Volume Changes 459
 29.1 Forest Area and Timber Volume 459
 29.2 Forest Ownership 459
 29.3 Area and Volume Changes 460
 29.4 Forest Employment 463
 References 466

30 Silviculture, Forest Degradation, Landscape Management 468
 30.1 Background and Sustained Yield 468
 30.2 Silviculture Systems, Pathways, and Operations 469
 30.3 Forest Degradation 472
 30.4 Landscape Management and Sustainability 476
 30.5 Broad Temporal and Spatial Scales and Land Use 476
 30.6 Agro-Forestry and Intensive Plantations 477
 30.7 Enhancing Biodiversity and Rural Employment 478
 References 478

Part XI Perspective 483

31 Integrating the Environment, Resources, and People 485
 31.1 Managing Dynamic Socioenvironmental Systems 485
 31.2 Future Climate Scenarios 487
 31.3 Population Changes 488
 31.4 Constructing Infrastructures 489
 31.5 Biodiversity 489
 31.6 The Resources 489
 References 491

Appendix I: Country Groups Used in Analyses 492
Appendix II: Elements, Chemical Symbols, Atomic Numbers, and Masses 496
Index 498

Color plates are to be found between pp. 326 and 327