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The Kinetic Theory of Gases

1.0 Kinetic Theory, Classical and Quantum Thermodynamics 

Two important components of the universe are: the matter and the energy. Interplay between them 

creates a variety of processes and phenomenon. In order to understand and appreciate the vast spectrum 

of happenings around us, it is required to know more intimately the properties of the different forms 

of matter and their interactions with energy. This may be approached in two different ways. In the first 

approach, often called the microscopic approach, some assumptions about the nature of the matter 

present in the universe is made and then the well-known and well-established laws of interaction 

are applied between the assumed entities of the matter to explain the observed natural phenomenon. 

The kinetic theory of matter and the statistical mechanics (or quantum statics ) are the examples of 

the microscopic approach. In kinetic theory of matter it is assumed that matter is made of elements, 

which in turn are made of molecules that are in motion. Molecules of an element are all alike, while 

molecules of different elements are different. Molecules are themselves assumed to be made of atoms. 

Having made assumptions about the constitution of the matter, the kinetic theory applies the laws of 

Newtonian mechanics, like the law of conservation of energy, law of conservation of liner momentum, 

the law that states that the rate of change of momentum is equal to force, etc. to the molecules and 

obtain expressions for average properties of the system, like the pressure exerted by a gas, etc.

In the case of quantum statics or statistical mechanics, it is assumed that matter is made of different 

kinds of identical particles or entities; the number of each type of entity in a given piece of matter is 

very large and, therefore, the entities follow the laws of quantum statistics. In quantum statistics , the 

entities can have different discrete energies and their energy distributions are given by distribution 

laws. The average properties of a given piece of matter may be obtained by the application of the 

relevant quantum distribution law.

In the second approach, called the macroscopic approach, some very general laws obeyed by 

macroscopic systems are derived by observing their behavior over a sufficiently long period of time. 

These laws, that are not specific to any system, are then used to drive the average properties of specific 

systems. This macroscopic approach is historically called the thermodynamics. In thermodynamics, 

no assumption about the microscopic constitution of the matter is made, and, therefore, it is immaterial 

whether the matter is made of molecules or not. This approach has evolved over a considerable period 

of time, out of the experiments carried out in entirely different contexts. The implications of the laws 

obeyed by large macroscopic systems were realized much later. There had been controversies about 

calling this branch of science as thermodynamics, or thermostatic, or equilibrium thermodynamics, 

CHAPTER

1

www.cambridge.org/9781107172883
www.cambridge.org


Cambridge University Press
978-1-107-17288-3 — Classical and Quantum Thermal Physics
R. Prasad 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Classical and Quantum Thermal Physics

etc. which will be discussed in details later. It may, however, be remarked that thermodynamics is a 

branch of science based entirely on experiments and hence empirical in nature. 

1.1 Kinetic Theory of Gases

Out of the three prominent states of matter, solid, liquid and gas, the kinetic theory of gases is perhaps 

the most developed and complete. Further, under suitable boundary conditions, the kinetic theory of 

gases may be applied to the solid and the liquid states as well. 

1.1.1 What do we expect from a good theory of gases?

Any good theory of gases must be able to explain satisfactorily all experimentally observed facts 

about gases, like the Boyle’s law, Charles’ law, Gay-Lussac’s law, Graham’s law of effusion, Daltons 

law of partial pressure, magnitudes of specific thermal capacities and their ratios for different 

gases, their temperature dependence, thermal conductivity and viscosities of gases, etc. The simple 

classical theory, called the kinetic theory of gases, detailed below, brings out the main properties of 

gases remarkably well. It, however, fails to explain some finer points as regards to the temperature 

dependence of some gas properties. It is also not expected that such a simple theory will explain all 

details of complex gas systems. Laws of quantum statistics, also called statistical mechanics applied 

to gaseous systems, explain most of the properties that remained unexplained by the kinetic theory.

The first step toward the development of the kinetic theory of gases is to define an ideal gas. An 

ideal gas is a hypothetical or imaginary gas, properties of which are defined through the following 

assumptions of the kinetic theory of gases.

1.1.2 Assumptions or postulates of the kinetic theory

1. Gases are made up of molecules. In any given measurable or macroscopic volume there is large 

number of molecules of the gas.

2. The molecules of a gas are in state of continuous motion and the relative separation between 

the molecules is much larger than their own dimensions.

3. Molecules exert no force on one another except when they collide. The molecules, therefore, 

travel in straight lines between collisions with each other or with the wall of the container.

4. Molecules undergo elastic collisions with each other and with the walls of the container. If it is 

further assumed that the walls of the container are perfectly smooth then during the collisions 

with the walls the tangential component of the velocity of the molecule will remain unaltered.

5. The molecules are uniformly distributed over the volume of the container.

6. The molecular speeds, that is the magnitudes of the molecular velocities, have values from zero 

to infinity.

7. The directions of the molecular velocities are uniformly distributed in space.

1.1.3 Justifications and implications of assumptions

According to Avogadro’s law, one mole of every gas occupies 22.4 liter of volume at standard 

temperature and pressure (STP) and contains 6.03 × 1023 molecules of the gas. Since 1 liter of volume 
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= 1 × 10–3 m3, there are ≈ 1016 molecules per cubic millimeter of the volume of a container at (STP) 

which is a very large number. This justifies the first assumption. 

Assumption that the size of molecules is much smaller than the distance of their separation 

essentially means that large space around each molecule is empty or there is vacuum around each 

molecule. Molecules in this force-free space move in straight lines till they encounter a collision 

either with another molecule or with the wall of the container. Assuming that molecules are uniformly 

distributed, the volume of space that may be associated with each molecule of the gas at STP 
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volume of the molecule is available to each molecule as free space or vacuum where there is no other 

molecule. This justifies the second assumption.

Assumption 3, that molecules exert no force on each other, is not true in case of a real gas and 

is a major point of difference between a real gas and the hypothetical ideal gas. It may be treated 

as the first approximation that may be dropped later. Assumptions that collisions are elastic and 

the container walls are smooth are required to carry out the calculations of momentum transfer in 

molecular collisions with the walls. 

Suppose the total number of gas molecules in the container of volume V is N. The number density 

of molecules ‘n’, which is the number of molecules per unit volume, is then n = N/V. Therefore, 

in any volume element DV the number of molecules, NDV
  = n DV . Now it may be argued that the 

assumption of uniform distribution of molecules may break down if one selects the volume element 

DV to be so small that there is no molecule in this volume. It may, however, be realized that elements 

of infinitesimal small size are taken to carry out operations of differentiation and integration. The 

term ‘infinitesimal’ is a relative term. For example, if there is a gas container of 1cubic meter volume, 

a volume of 1/1000 cubic millimeter is infinitesimally small in comparison to the size of the container. 

The number of gas molecules at STP in a volume of 1/1000 cubic millimeter is still of the order of 

106. It may, thus, be seen that the assumption of uniform distribution of gas molecules is valid and 

does not break down even for the relatively infinitesimal small volumes. 

Assumption that molecular speeds vary from zero to infinity is quite justified as even if one starts 

from the assumption that initially all molecules have same speed, the intra molecular collisions will 

soon produce a spectrum of speeds. The upper limit of the speed spectrum may remain a question, 

since no material particle can attain speeds greater than the speed of light. It will, however, be shown 

that the actual value of the upper limit whether it is infinity or the speed of light does not matter 

because the speed distribution curve falls almost exponentially for very high values of speeds. Another 

assumption that the directions of molecular velocities are uniformly distributed in space ensures 

their randomness, and as many molecules go away from a particular location in the container, on an 

average same number of molecules reaches there from some other part of the container keeping the 

average number density of molecules constant in the container. Figure 1.1 (a) shows the velocity 
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vectors of some gas molecules in the container. Actually there should be N such vectors, one for each 

of the N gas molecules. These velocity vectors are transported parallel to themselves such that they 

originate from the common point O, in Fig. 1.1 (b). A sphere of radius r is then drawn taking O as 

the center. The velocity vectors, either themselves or on extension (shown by dotted lines in Fig. 1.1 

(b)), cut the surface of the sphere at points P
1
, P

2
, P

3
, … P

N
 . Each of these points of intersection 

indicates a different direction of the motion of the gas molecule. Now in case the directions of motion 

of gas molecules are uniformly distributed in space then the points of intersection (P’s) should also 

be uniformly distributed on the surface of the sphere of radius r. The total number of points of 

intersection is N, one for each molecule and the total surface area of the sphere of radius r is 4pr2.

Therefore, for the uniform distribution of the directions of molecular velocities in space, the number 

of intersection points per unit surface area should be 
N

r4 2
p

. On the other hand if we consider a 

surface area, DS, then the number of intersection points on this area will be 
N

r
S

4 2
p

D .

Fig. 1.1  (a) shows the velocity vectors for some molecules of the gas in a container. In Fig. 1.1 (b) 

these velocity vectors are transported parallel to themselves to the origin O, which is the 

center of a sphere of radius r. The velocity vectors cut the surface of the sphere either 

themselves or on extension (dotted lines) at points P1, P2, P3,……PN , each of which gives 

the direction of motion of a gas molecule. The directions of motion of gas molecules will 

be uniformly distributed in space if the points of intersection are uniformly distributed on 

the surface of the sphere. 

It is now clear that the number of intersection points on a given area on the spherical surface is 

equal to the number of gas molecules moving in the direction of that surface area. An element of 

surface (i.e., a small surface area) on the spherical surface may be conveniently defined in spherical 

polar coordinates, with the origin of the coordinate system at the center of the sphere as is shown 

in Fig. 1.2
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Fig. 1.2 Definition of an element of area in spherical polar coordinates

As is clear from Fig. 1.2, the small element of surface area DS is given by the expression,

DS = r2 sinq q jD D 1.1

The number N(q,j) of molecules moving in the direction q and (q + Dq) and j and (j + Dj) and 

hitting the shaded area DS normally, is equal to the points of intersection on surface, DS, and is given by,

N(q,j) =
N

r
S

N

r
r

N

4 4 42 2

2

p p

q q j

p

q q jsin sinD D D D D= = 1.2 (a)

We divide both sides of this equation by the volume V of the container to get,

n(q,j) =
n

4p

q q jsin D D 1.2 (b)

Here n, and n(q,j) are, respectively, the number density of gas molecules (N/V) and the number 

density (N(q,j)/V) of molecules moving in direction q & (q + Dq); j & (j + Dj).

The velocity vectors of these N(q,j) molecules are in the direction q within a small spread Dq, and 

j within a small spread Dj, but these molecules may have all possible speeds from zero to infinity. 

We now select out of N(q,j) only those molecules that are moving in the direction q & (q + Dq) and j

& (j + Dj) and have their velocities between n and (n + Dn) and denote them by N(q,j,n). The velocity 

vectors of these N(q,j,n) molecules will all be confined within two concentric spheres of radii n and 

(n + Dn) as shown in Fig.1.3. The number density of (q,j,n) molecules is given by,

n(q,j,n) =
D D Dnv

4p

q q jsin
Ê
ËÁ

ˆ
¯̃

1.2 (c)

where, Dnn is the number density of molecules with velocities in the range n to (n + Dn).

Since we will consider the molecules that are moving in the direction q and (q + Dq) and j and (j

+ Dj), we simply refer them as n(q,j), the molecules moving in direction (q,j) and will understand 

that there are spreads of Dq and Dj in the directions without specifying it repetitively. It follows 

from Eq. 1.2(c) that;
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n(q,j) =
n

4p

q q fsin D D 1.3

Similarly, N(q, j, n) will indicate molecules moving in the direction (q, j) with velocities between 

n and (n + Dn) and will be called molecules moving in direction q, j with velocity n.

Fig.1.3 Bunch of molecules moving in direction q and (q + Dq), j and (j + Dj)

with velocities between n and (n + Dn)

1.1.4 Molecular flux

The flux of a system of moving particles is defined as the number of particles crossing an imaginary 

unit area per unit time. In case of the N ideal gas molecules that are in random motion and are held in 

a container of volume V, if DN molecules cross an imaginary area DS in time Dt, then the molecular 

flux F may be given as,

F =
D

D D
N

S t.
1.3 (a)

In case the imaginary area is taken somewhere within the volume of the container, then there 

will be two molecular fluxes through the area. One will be the flux of gas molecules crossing the 

imaginary area from one side of the surface (from right to left in Fig. 1.4 a) to the other and the other 

of gas molecules crossing the area in the opposite direction (from left to right in Fig. 1.4 a). The two 

fluxes will also be equal in magnitude because the number density of molecules in the container is 

constant on an average. If we choose the area on the wall of the container (lower part in Fig. 1.4 a), 

then also there will be two fluxes: one of gas molecules hitting the area from left to right and the 

other flux of molecules rebounded by the area on the wall and moving from right to left. Again, the 

two fluxes will be equal. In case when the area in consideration is at the wall of the container, the 

flux of molecules reflected from the wall will be related to the flux of incident molecules through 

the laws of elastic scattering. No such relationship between the two molecular fluxes will exist in 

case the area is taken somewhere in the volume of the gas.

We now calculate the flux F(q, j, n) of (q, j, n) molecules through an imaginary area DS inside 

the volume of the ideal gas held in a container of volume V as shown in Fig. 1.4 (b). As shown in 

Fig. 1.4 (b), the normal to the area DS is contained in the shaded plane and makes an angle q with 

the direction of motion of (q, j, n) molecules. The angle j is also indicated in the figure. We now 

construct a cylinder with area DS as the base and slant lengths of magnitude (n Dt) as sides, as shown 

in the Fig. 1.4 (b). A large number of gas molecules will be contained in this cylindrical volume 

which may be categorized as 
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(a) Molecules moving in direction q & (q + Dq), j & (j + Dj), with their velocities in the range 

of n & (n + Dn). These are the molecules of our interest.

(b) Molecules moving in direction q & (q + Dq), j & (j + Dj), with their velocities NOT in the 

range of n & (n + Dn). We are not interested in these molecules.

(c) Molecules having their velocities in the range of n & (n + Dn) but NOT moving in the direction 

q & (q + Dq), j & (j + Dj). These molecules are also not of interest to us.

Fig. 1.4 (a) Gas molecules crossing an imaginary area inside the volume 

Fig. 1.4 (b) All molecules moving in direction q, j with velocity n contained in the 

cylindrical volume will cross the area DS in time Dt

If collisions between molecules contained in the cylindrical volume are neglected, then all the 

(q, j, n) molecules contained within the volume of the cylinder will definitely cross through the 

area DS. It is because all the (q, j, n) molecules that are at the other edge of the cylinder, moving 

with velocity n in direction (q, j) will cover a distance (n Dt) in time Dt and will cross the area DS.

The number N(q, j, n) of (q, j, n) molecules that will pass through the area DS is equal to the volume 

Vcyl of the cylinder multiplied by the number density n(q, j, n) of (q, j, n) molecules. Since Vcyl = (DS

cosq).n Dt; therefore,
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N(q, j, n) = n S v t
vq j

q

, ,
cos

( ) ◊ D D 1.3 (b)

Hence, F(q, j, n) =
N

S t

n S v t

S t

v v
q j

q j

q

, , , ,
cos( ) ( )

= ◊
D D

D D
D D

or F(q, j, n) = n v
vq j

q

, ,
cos

( )
1.3 (c)

or F(q, j, n) =
D D Dn

v
v

4p

q q q jcos sin 1.4

In Eq. 1.4, Dq and Dj are infinitesimally small elements of angle q and j and may be replaced 

by their corresponding differential elements dq and dj. Further, the angles q and j in polar coordinates 

may vary, respectively, from 0 to 
p

2
 and 0 to 2p. Integration of Eq. 1.4 over all values of j will yield 

the molecular flux of those molecules that have velocities in the range n to (n + Dn) coming from 

direction q to (q + Dq) with all values of j (from 0 to 2p).

F(n, q) = cos sin
D Dn

v d d
n

v d
v v

4 20

2

p

q q q j q q q

p

cos sin Ú = 1.4 (a)

and the flux Fq  of molecules of all velocities coming in direction q may be obtained by summing 

Eq. 1.4 (a) over all values of Dnn

n.

Fq =
1
2

cos sinq q qd n vvÂD 1.4 (b)

On the other hand

 Fn = F Dq j

p p

q j

p

q q q j

, ,
/

cos sin
v

v

d d
n

v d d
( )ÚÚ = Ú Ú

4 0

2

0

2

or Fn =
Dn

v
v

4
1
2

2
p

p( )( )  = 
v nvD

4
 = 

1
4

v nvD 1.5

Equation 1.5 tells that the flux of molecules having their velocities between n and (n + Dn), coming 

from any direction, is one fourth of the multiplication of the velocity n with their number density. 

If it is required to find the total flux F of all molecules, coming from all directions and having all 

possible velocities, then it may be found by summing Eq.1.5 over all values of velocities. i.e.,

F =
1
4

Âv nvD 1.6 (a)

There are molecules of velocity say n
1
 with number density Dn

v1, n

2
 with number density Dn

v2 ,

n

3
 with number density Dn

v3, and so on, then expression 1.6 (a) may be expended as;

F = [
1
4 1 2 3

1 2 3Â + +v n v n v n
v v vD D D + v n

v
4

4D + …] 1.6 (b)

We multiply both the numerator and the denominator of Eq.1.6 (b) by n
N
V

=( )  the number density 

of molecules in the container.
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F = [
n v n v n v n v n

n

v v v v

4
1 2 3 4

1 2 3 4

Â
+ + + + ºD D D D

]

or F =
1
4

nv 1.6 (c)

where the average velocity (speed) v
v n v n v n v n

n

v v v v

= Â
+ + + + º

[ ]1 2 3 4
1 2 3 4D D D D

1.6 (d)

or n =
1
n

n vvÂD 1.6 (e)

Equation 1.6 (c) shows that the molecular flux at any place inside the container is proportional to 

the average or mean velocity, n .

Substitution of nv n vv= ÂD  from Eq. 1.6 (e) into Eq. 1.4 (b), the molecular flux in direction q

may be written as

Fq =
1
2

1
2

cos sin cos sinq q q q q qd n v nv dvÂ =D 1.6 (f)

1.1.5 Pressure exerted by an ideal gas

Randomly moving ideal gas molecules when hit the walls of the container get elastically scattered 

and reflected back. As a result of reflection, the directions of motion of molecules get changed and 

so also their linear momentum. However, rate of change of momentum is equal to force. Molecules 

colliding with the container walls exert a force on the wall. The average force exerted per unit area 

of the walls is equal to the pressure exerted by the gas.

In Fig. 1.5 an area of unit dimension at the wall of the container is shown. The normal to the 

unit area is also shown in the figure. A group of molecules with velocity n moving in the direction 

q with the normal to the unit area hit the unit area and are elastically scattered. The velocity vector 

of both the incident and the scattered molecules may be resolved in to two mutually perpendicular 

components as shown in the figure. The tangential component nsinq remains unaltered after scattering 

as the container walls and hence the surface of the unit area is assumed to be smooth. The normal 

component n cosq after scattering from the surface becomes (– n cosq). Thus the scattered particles 

move out making an angle q with the normal, as shown in the figure. The number of (n,q) particles 

hitting the unit area per unit time is equal to the flux F(n, q). If the mass of each molecule is m, then 

the change in the linear momentum Dp per unit time of F(n, q). molecules will be,

 Dp = mv mv
v

cos cos
,

q q

q- -( ){ } ( )F 1.7 (a)

Hence the force F(n, q) exerted by F(n, q) molecules when they are elastically scattered by the unit 

area on the container wall is given by;

F(n, q) = 2mv
v

cos
,

q

q{ } ( )F 1.7 (b)

But from Eq. 1.4 (a), F(n, q) = 
Dn

v d
v

2
cos sinq q q ; therefore,
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F(n, q) = 2
2

m v
n

v d
v

cos cos sinq q q q{ } D

= m n v dv cos sinD 2 2
q q q 1.7 ( c)

Fig. 1.5 Gas molecules moving with velocity n in direction q are elastically scattered 

by the unit area at the wall of the container

In order to find the force F(n) exerted on the unit surface at the wall of the container by all molecules 

with velocity n coming from all directions may be obtained by integrating Eq. 1.7 ( c) over q from 

0 to 
p

2
. Integration becomes easy if the substitution cos q = t is made so that dt = –sinq  dq and the 

integration in the given limits results in

F(n) =
1
3

2m v nvD 1.7 (d)

The total force F exerted by all the gas molecules coming from all directions having all possible 

velocities and hitting the unit area may be obtained by summing Eq. 1.7 (d) over all velocities. You 

may wonder why we do not integrate the above equation over n as we have done it in case of q and 

j. The reason is that if the expression is integrated over n it will give infinite value as the upper limit 

for v is •. To avoid this we sum it over all values of n.

Force F experienced by the unit area on the container wall by all gas molecules hitting the area 

=
1
3 3

2 1
2

2
2

3
2

4
21 2 3 4

m v n
n

m
v n v n v n v n

n
v

v v v v

Â = Â
— + — + — + — + º

D

Force per unit area is pressure; hence pressure P (= F ) may be written as

or P mn v
average

= ( )1
3

2 = 1
3

2mnv  = 
1
3

r v2 , r  is the density of the gas 1.8

www.cambridge.org/9781107172883
www.cambridge.org

