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Introduction

In this first chapter, we give an introduction to random graphs and complex networks. We

discuss examples of real-world networks and their empirical properties, and give a brief

introduction to the kinds of models that we investigate in the book. Further, we introduce

the key elements of the notation used throughout the book.

1.1 Motivation

The advent of the computer age has incited an increasing interest in the fundamental prop-

erties of real-world networks. Due to the increased computational power, large data sets can

now easily be stored and investigated, and this has had a profound impact on the empirical

studies of large networks. As we explain in detail in this chapter, many real-world networks

are small worlds and have large fluctuations in their degrees. These realizations have had

fundamental implications for scientific research on networks. Network research is aimed to

both to understand why many networks share these fascinating features, and also to inves-

tigate what the properties of these networks are in terms of the spread of diseases, routing

information and ranking of the vertices present.

The study of complex networks plays an increasingly important role in science. Exam-

ples of such networks are electrical power grids and telecommunication networks, social

relations, the World-Wide Web and Internet, collaboration and citation networks of sci-

entists, etc. The structure of such networks affects their performance. For instance, the

topology of social networks affects the spread of information or disease (see, e.g., Stro-

gatz (2001)). The rapid evolution and success of the Internet have spurred fundamental

research on the topology of networks. See Barabási (2002) and Watts (2003) for exposi-

tory accounts of the discovery of network properties by Barabási, Watts and co-authors. In

Newman et al. (2006), you can find some of the original papers detailing the empirical find-

ings of real-world networks and the network models invented for them. The introductory

book by Newman (2010) lists many of the empirical properties of, and scientific methods

for, networks.

One common feature of complex networks is that they are large. As a result, a global

description is utterly impossible, and researchers, both in the applications and in mathemat-

ics, have turned to their local description: how many vertices they have, by which local rules

vertices connect to one another, etc. These local rules are probabilistic, reflecting the fact

that there is a large amount of variability in how connections can be formed. Probability

theory offers a highly effective way to deal with the complexity of networks, and leads us to

consider random graphs. The simplest imaginable random graph is the Erdős-Rényi random
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2 Introduction

graph, which arises by taking n vertices, and placing an edge between any pair of distinct

vertices with a fixed probability p, independently for all pairs. We give an informal intro-

duction to the classical Erdős-Rényi random graph in Section 1.8. We continue with a bit of

graph theory.

1.2 Graphs and Their Degree and Connectivity Structure

This book describes random graphs, so we start by discussing graphs. A graph G = (V, E)

consists of a collection of vertices, called vertex set, V , and a collection of edges, called

edge set, E . The vertices correspond to the objects that we model, the edges indicate some

relation between pairs of these objects. In our settings, graphs are usually undirected. Thus,

an edge is an unordered pair {u, v} ∈ E indicating that u and v are directly connected. When

G is undirected, if u is directly connected to v, then also v is directly connected to u. Thus,

an edge can be seen as a pair of vertices. When dealing with social networks, the vertices

represent the individuals in the population, while the edges represent the friendships among

them.

Sometimes, we also deal with directed graphs, where edges are indicated by the ordered

pair (u, v). In this case, when the edge (u, v) is present, the reverse edge (v, u) need not

be present. One may argue about whether friendships in social networks are directed or not.

In most applications, however, it is clear whether edges are directed or not. For example, in

the World-Wide Web (WWW), where vertices represent web pages, an edge (u, v) indicates

that the web page u has a hyperlink to the web page v, so the WWW is a directed network.

In the Internet, instead, the vertices correspond to routers, and an edge {u, v} is present when

there is a physical cable linking u and v. This cable can be used in both directions, so that

the Internet is undirected.

In this book, we only consider finite graphs. This means that V is a finite set of size, say,

n ∈ N. In this case, by numbering the vertices as 1, 2, . . . , n, we may as well assume that

V = [n] ≡ {1, . . . , n}, which we will do from now on. A special role is played by the

complete graph denoted by Kn , for which the edge set is every possible pair of vertices, i.e.,

E = {{i, j} : 1 ≤ i < j ≤ n}. The complete graph Kn is the most highly connected graph

on n vertices, and every other graph may be considered to be a subgraph of Kn obtained by

keeping some edges and removing the rest. Of course, infinite graphs are also of interest, but

since networks are finite, we stick to finite graphs.

The degree du of a vertex u is equal to the number of edges containing u, i.e.,

du = #{v ∈ V : {u, v} ∈ E}. (1.2.1)

Sometimes the degree is called the valency. In the social networks context, the degree of

an individual is the number of her/his friends. We will often be interested in the structural

properties of the degrees in a network, as indicated by the collection of degrees of all vertices

or the degree sequence d = (dv)v∈[n]. Such properties can be described nicely in terms of

the typical degree denoted by Dn = dU , where U ∈ [n] is a vertex chosen uniformly at

random from the collection of vertices. In turn, if we draw a histogram of the proportion of

vertices having degree k for all k, then this histogram is precisely equal to the probability

mass function k �→ P(Dn = k) of the random variable Dn , and it represents the empirical

distribution of the degrees in the graph.
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1.2 Graphs and Their Degree and Connectivity Structure 3

We continue by discussing certain related degrees. For example, when we draw an edge

uniformly at random from E , and choose one of its two vertices uniformly at random, this

corresponds to an individual engaged in a random friendship. Denote the degree of the corre-

sponding random vertex by D�
n . Note that this vertex is not chosen uniformly at random from

the collection of vertices! In the following theorem, we describe the law of D�
n explicitly:

Theorem 1.1 (Friends in a random friendship) Let G = ([n], E) be a finite graph with

degree sequence d = (dv)v∈[n]. Let D�
n be the degree of a random element in an edge that is

drawn uniformly at random from E. Then

P(D�
n = k) =

k

E[Dn]
P(Dn = k). (1.2.2)

In Theorem 1.1,

E[Dn] =
1

n

∑

i∈[n]

di (1.2.3)

is the average degree in the graph. The representation in (1.2.2) has a nice interpretation in

terms of size-biased random variables. For a non-negative random variable X with E[X ] >

0, we define its size-biased version X� by

P(X� ≤ x) =
E[X1{X≤x}]

E[X ]
. (1.2.4)

Then, indeed, D�
n is the size-biased version of Dn . In particular, note that, since the variance

of a random variable Var(X) = E[X2] − E[X ]2 is non-negative,

E[D�
n] =

E[D2
n]

E[Dn]
= E[Dn] +

Var(Dn)

E[Dn]
≥ E[Dn], (1.2.5)

the average number of friends of an individual in a random friendship is at least as large as

that of a random individual. The inequality in (1.2.5) is strict whenever the degrees are not

all equal, since then Var(Dn) > 0. In Section 2.3, we further investigate the relation between

Dn and D�
n . There, we show that, in some sense, D�

n ≥ Dn with probability 1. We will make

the notion D�
n ≥ Dn perfectly clear in Section 2.3.

We next extend the above result to a random friend of a random individual. For this, we

define the random vector (Xn, Yn) by drawing an individual U uniformly at random from

[n], and then drawing a friend Z of U uniformly at random from the dU friends of U and

letting Xn = dU and Yn = dZ .

Theorem 1.2 (Your friends have more friends than you do) Let G = ([n], E) be a finite

graph with degree sequence d = (dv)v∈[n]. Assume that dv ≥ 1 for every v ∈ [n]. Let Xn

be the degree of a vertex drawn uniformly at random from [n], and Yn be the degree of a

uniformly drawn neighbor of this vertex. Then

E[Yn] ≥ E[Xn], (1.2.6)

the inequality being strict unless all degrees are equal.
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4 Introduction

When I view myself as the random individual, I see that Theorem 1.2 has the interpretation

that, on average, a random friend of mine has more friends than I do! We now give a formal

proof of this fact:

Proof We note that the joint law of (Xn, Yn) is equal to

P(Xn = k, Yn = l) =
1

n

∑

(u,v)∈E ′

1{du=k,dv=l}

1

du

, (1.2.7)

where the sum is over all directed edges E ′, i.e., we now consider (u, v) to be a different edge

than (v, u) and we notice that, given that u is chosen as the uniform vertex, the probability

that its neighbor v is chosen is 1/du . Clearly, |E ′| = 2|E | =
∑

i∈[n] di . Thus,

E[Xn] =
1

n

∑

(u,v)∈E ′

∑

k,l

k1{du=k,dv=l}

1

du

=
1

n

∑

(u,v)∈E ′

1, (1.2.8)

while

E[Yn] =
1

n

∑

(u,v)∈E ′

∑

k,l

l1{du=k,dv=l}

1

du

=
1

n

∑

(u,v)∈E ′

dv

du

. (1.2.9)

We will bound E[Xn] from above by E[Yn]. For this, we note that

1 ≤
1

2
(

x

y
+

y

x
) (1.2.10)

for every x, y > 0, to obtain that

E[Xn] ≤
1

n

∑

(u,v)∈E ′

1

2
(
du

dv

+
dv

du

) =
1

n

∑

(u,v)∈E ′

du

dv

= E[Yn], (1.2.11)

the penultimate equality following from the symmetry in (u, v).

After the discussion of degrees in graphs, we continue with graph distances. For u, v ∈

[n] and a graph G = ([n], E), we let the graph distance distG(u, v) between u and v be equal

to the minimal number of edges in a path linking u and v. When u and v are not in the same

connected component, we set distG(u, v) = ∞. We are interested in settings where G has a

high amount of connectivity, so that many pairs of vertices are connected to one another by

short paths. In order to describe how large distances between vertices typically are, we draw

U1 and U2 uniformly at random from [n] and we let

Hn = distG(U1, U2). (1.2.12)

Often, we will consider Hn conditionally on Hn < ∞. This means that we consider the

typical number of edges between a uniformly chosen pair of connected vertices. As a result,

Hn is sometimes referred to as the typical distance. Exercise 1.1 investigates the probability

that Hn < ∞.

Just like the degree of a random vertex Dn , Hn is also a random variable even when the

graph G is deterministic. The nice fact is that the distribution of Hn tells us something about
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1.3 Complex Networks: the Infamous Internet Example 5

all distances in the graph. An alternative and frequently used measure of distances in a graph

is the diameter diam(G), defined as

diam(G) = max
u,v∈[n]

distG(u, v). (1.2.13)

However, the diameter has several disadvantages. First, in many instances, the diameter

is algorithmically more difficult to compute than the typical distances (since one has to

measure the distances between all pairs of vertices and maximize over them). Second, it is

a number instead of the distribution of a random variable, and therefore contains far less

information than the distribution of Hn . Finally, the diameter is highly sensitive to small

changes of the graph. For example, adding a small string of connected vertices to a graph

may change the diameter dramatically, while it hardly influences the typical distances. As a

result, in this book as well as Volume II, we put more emphasis on the typical distances. For

many real-world networks, we will give plots of the distribution of Hn .

1.3 Complex Networks: the Infamous Internet Example

Complex networks have received a tremendous amount of attention in the past decades. In

this section we use the Internet as an example of a real-world network to illustrate some of

their properties. For an artistic impression of the Internet, see Figure 1.1.

Measurements have shown that many real-world networks share two fundamental prop-

erties: the small-world phenomenon roughly stating that distances in real-world networks

are quite small and the scale-free phenomenon roughly stating that the degrees in real-world

networks show an enormous amount of variability. We next discuss these two phenomena in

detail.

Figure 1.1 Artistic impression of the Internet topology in 2001 taken from
http://www.fractalus.com/steve/stuff/ipmap/.
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6 Introduction

Small-World Phenomenon

The first fundamental network property is the fact that typical distances between vertices are

small. This is called the ‘small-world’ phenomenon (see, e.g., the book by Watts (1999)). In

particular, such networks are highly connected: their largest connected component contains

a significant proportion of the vertices. Many networks, such as the Internet, even consist

of one connected component, since otherwise e-mail messages could not be delivered. For

example, in the Internet, IP-packets cannot use more than a threshold of physical links, and

if distances in the Internet were larger than this threshold, then e-mail service would simply

break down. Thus, the graph of the Internet has evolved in such a way that typical distances

are relatively small, even though the Internet itself is rather large. For example, as seen

in Figure 1.2(a), the number of Autonomous Systems (AS) traversed by an e-mail data set,

sometimes referred to as the AS-count, is typically at most 7. In Figure 1.2(b), the proportion

of routers traversed by an e-mail message between two uniformly chosen routers, referred to

as the hopcount, is shown. It shows that the number of routers traversed is at most 27, while

the distribution resembles a Poisson probability mass function.

Interestingly, various different data sets (focussing on different regional parts of the Inter-

net) show roughly the same AS-counts. This shows that the AS-count is somewhat robust

and it hints at the fact that the AS graph is relatively homogeneous. See Figure 1.3. For exam-

ple, the AS-counts in North America and in Europe are quite close to the one in the entire

AS graph. This implies that the dependence on geometry of the AS-count is rather weak,

even though one would expect geometry to play a role. As a result, most of the models for

the Internet, as well as for the AS graph, ignore geometry altogether.

Scale-Free Phenomenon

The second, maybe more surprising, fundamental property of many real-world networks is

that the number of vertices with degree at least k decays slowly for large k. This implies that

degrees are highly variable and that, even though the average degree is not so large, there

exist vertices with extremely high degree. Often, the tail of the empirical degree distribution

seems to fall off as an inverse power of k. This is called a ‘power-law degree sequence’,

and resulting graphs often go under the name ‘scale-free graphs’. It is visualized for the AS
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Figure 1.2 (a) Number of AS traversed in hopcount data. (b) Internet hopcount
data. Courtesy of Hongsuda Tangmunarunkit.
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1.3 Complex Networks: the Infamous Internet Example 7

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

number of traversed AS

p
ro

p
o
rt

io
n

RIPE

AMSIX

LINX

Figure 1.3 Number of AS traversed in various data sets. Data courtesy of Piet Van
Mieghem.

graph in Figure 1.5, where the degree distribution of the AS graph is plotted on a log-log

scale. Thus, we see a plot of log k �→ log Nk , where Nk is the number of vertices with

degree k. When Nk is approximately proportional to an inverse power of k, i.e., when, for

some normalizing constant cn and some exponent τ ,

Nk ≈ cnk−τ , (1.3.1)

then

log Nk ≈ log cn − τ log k, (1.3.2)

so that the plot of log k �→ log Nk is close to a straight line. This is the reason why degree

sequences in networks are often depicted in a log-log fashion, rather than in the more cus-

tomary form of k �→ Nk . Here and in the remainder of this section, we write ≈ to denote

an uncontrolled approximation. The power-law exponent τ can be estimated by the slope of

the line in the log-log plot. Naturally, we must have that
∑

k

Nk = n < ∞, (1.3.3)

so that it is reasonable to assume that τ > 1.

For Internet, such log-log plots of the degrees first appeared in a paper by the Faloutsos

brothers (1999) (see Figure 1.4 for the degree sequence in the Autonomous Systems graph).

Here the power-law exponent is estimated as τ ≈ 2.15 − 2.20.

In recent years, many more Internet data sets have been collected. We particularly refer to

the Center for Applied Internet Data Analysis (CAIDA) website for extensive measurements

(see e.g., Krioukov et al. (2012) for a description of the data). See Figure 1.5, where the

power-law exponent is now estimated as τ ≈ 2.1. See also Figure 1.7 for two examples of

more recent measurements of the degrees of the Internet at the router or Internet Protocol

(IP) level.

Measuring the Internet is quite challenging, particularly since the Internet is highly decen-

tralized and distributed, so that a central authority is lacking. Huffaker et al. (2012) compare

various data sets in terms of their coverage of the Internet and their accuracy.1 The tool of the

trade to obtain Internet data is called traceroute, an algorithm that allows you to send a

1 See, in particular, http://www.caida.org/research/topology/topo_comparison/.
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Figure 1.4 Degree sequence of Autonomous Systems (AS) on December 1998 on
a log-log scale from Faloutsos, Faloutsos and Faloutsos (1999). These data suggest
power-law degrees with exponent τ ≈ 2.15 − 2.20, the estimate on the basis of the
data is 2.20288 with a multiplicative constant that is estimated as e8.11393. This
corresponds to cn in (1.3.1).
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Figure 1.5 (a) Log-log plot of the probability mass function of the degree
sequence of Autonomous Systems (AS) on April 2014 on a log-log scale from
Krioukov et al. (2012) (data courtesy of Dmitri Krioukov). Due to the binning
procedure that is applied, the figure looks smoother than many other log-log plots of
degree sequences.

message between a source and a destination and to receive a list of the visited routers along

the way. By piecing together many of such paths, one gets a picture of the Internet as a graph.

This picture becomes more accurate when the number of sources and destinations increases,

even though, as we describe in more detail below, it is not entirely understood how accurate

these data sets are. In traceroute, also the direction of paths is obtained, and thus the

graph reconstruction gives rise to a directed graph. The in- and out-degree sequences of this

graph turn out to be quite different, as can be seen in Figure 1.6. It is highly interesting to

explain such differences.
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Figure 1.6 Log-log plots of in- and out-degree sequence of the Autonomous
Systems graph. (a) Probability mass function. (b) Complementary cumulative
distribution function.
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Figure 1.7 Log-log plot of the probability mass function of the degree distribution
at router level from April 2014 (data courtesy of Dmitri Krioukov). The data set
consists of 55,663,339 nodes and 59,685,901 edges. For a detailed explanation of
how the data set was obtained, we refer to http://www.caida.org/data/
internet-topology-data-kit/.

An interesting topic of research, receiving quite a bit of attention recently, is how the

Internet behaves under malicious attacks or random breakdown (see, e.g., Albert et al.

(2001) or Cohen et al. (2000, 2001)). The conclusion, based on various models for the Inter-

net, is that the topology is critical for the vulnerability. When vertices with high degrees

are taken out, the random graph models for the Internet cease to have the necessary con-

nectivity properties. In particular, Albert et al. (2001) claim that when 2.5 percent of the

Internet routers are randomly removed, the diameter of the Internet is unaffected, suggest-

ing a remarkable tolerance to random attacks. Instead, when about 3 percent of the highest
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degree routers are deterministically removed, the Internet breaks down completely. Such

results would have great implications for the resilience of networks, both to random and

deliberate attacks.

A critical look at the proposed models for the Internet, and particularly, the claim of

power-law degree sequences and the suggestion that attachment of edges in the Internet

has a preference towards high-degree vertices, was given by Willinger, Govindan, Paxson

and Shenker (2002). The authors conclude that the Barabási–Albert model (as described in

more detail in Chapter 8) does not model the growth of the AS or IP graph appropriately,

particularly since the degrees of the receiving vertices in the AS graph are even larger than

for the Barabási–Albert model.

This criticism was most vehemently argued by Willinger, Anderson and Doyle (2009),

with the suggestive title ‘Mathematics and the internet: A source of enormous confu-

sion and great potential’. In this view, the problem comes from the quality of the data.

Indeed, the data set on which Faloutsos et al. (1999) base their analysis, and which is

used again by Albert et al. (2001) to investigate the resilience properties of the Internet,

was collected by Pansiot and Grad (1998) in order to study the efficiency of multicast

versus unicast, which are different ways to send packages. The data was collected using

traceroute, a tool that was not designed to be used to reconstruct the Internet as a

graph. Pansiot and Grad realized that their way of reconstructing the Internet graph had

some problems, and they write, ‘We mention some problems we found in tracing routes, and

we discuss the realism of the graph we obtained.’ However, the Faloutsos brothers (1999)

simply used the Pansiot–Grad data set, and took it at face value. This was then repeated

by Albert, Jeong and Barabási (2001), which puts their results in a somewhat different

light.

We now give some details of the problems with the data sets. Readers who are eager

to continue can skip this part and move to the next section. Let us follow Willinger et al.

(2009) to discuss the difficulties in using traceroute data to reconstruct a graph, which

are threefold:

IP Alias Resolution Problem. A fundamental problem is that traceroute reports

so-called input interfaces. Internet routers, the nodes of the Internet graph, may consist

of several input interfaces, and it is a non-trivial problem to map these interfaces to

routers. When errors are made in this procedure, the data does not truthfully represent

the connectivity structure of the Internet routers.

Opaque Layer-2 Clouds. The Internet consists of different layers that facilitate the inter-

operability between heterogeneous network topologies. Since traceroute acts on

layer-3, it is sometimes unable to trace through layer-2 clouds. This means that the

internal connectivity structure of a larger unit of routers in layer-2 could be invisible

for traceroute, so that traceroute shows connections between many, or even

all, of these routers, even though most of these connections actually do not exist. This

causes routers to be wrongfully assigned a very high degree.

Measuring Biases. Due to the way traceroute data is collected, an incomplete picture

of the Internet is obtained, since only connections between routers that are actually

being used by the data are reported. When this data set would be unbiased, a truthful

picture of the Internet could still be obtained. Unfortunately, routers with a high degree
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