Twenty Lectures on Algorithmic Game Theory

Computer science and economics have engaged in a lively interaction over the past 15 years, resulting in the new field of algorithmic game theory. Many problems central to modern computer science, ranging from resource allocation in large networks to online advertising, involve interactions between multiple self-interested parties. Economics and game theory offer a host of useful models and definitions to reason about such problems. The flow of ideas also travels in the other direction, and concepts from computer science are increasingly important in economics.

This book grew out of the author’s Stanford course on algorithmic game theory, and aims to give students and other newcomers a quick and accessible introduction to many of the most important concepts in the field. The book also includes case studies on online advertising, wireless spectrum auctions, kidney exchange, and network management.

Tim Roughgarden is an Associate Professor of Computer Science at Stanford University. For his research in algorithmic game theory, he has been awarded the ACM Grace Murray Hopper Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), the Kalai Prize in Game Theory and Computer Science, the Social Choice and Welfare Prize, the Mathematical Programming Society’s Tucker Prize, and the EATCS-SIGACT Gödel Prize. He wrote the book *Selfish Routing and the Price of Anarchy* (2005) and coedited the book *Algorithmic Game Theory* (2007).
Twenty Lectures on
Algorithmic Game Theory

Tim Roughgarden

Stanford University, California
To Emma
Contents

Preface

xi

1 Introduction and Examples

1.1 The Science of Rule-Making 1
1.2 When Is Selfish Behavior Near-Optimal? 3
1.3 Can Strategic Players Learn an Equilibrium? 6
Notes, Problems, and Exercises 9

2 Mechanism Design Basics

2.1 Single-Item Auctions 11
2.2 Sealed-Bid Auctions 12
2.3 First-Price Auctions 12
2.4 Second-Price Auctions and Dominant Strategies 13
2.5 Ideal Auctions 15
2.6 Case Study: Sponsored Search Auctions 16
Notes, Problems, and Exercises 20

3 Myerson’s Lemma

3.1 Single-Parameter Environments 24
3.2 Allocation and Payment Rules 26
3.3 Statement of Myerson’s Lemma 26
*3.4 Proof of Myerson’s Lemma 28
3.5 Applying the Payment Formula 31
Notes, Problems, and Exercises 34

4 Algorithmic Mechanism Design

4.1 Knapsack Auctions 39
4.2 Algorithmic Mechanism Design 42
4.3 The Revelation Principle 46
Notes, Problems, and Exercises 49

© in this web service Cambridge University Press
www.cambridge.org
Contents

5 **Revenue-Maximizing Auctions** 55
5.1 The Challenge of Revenue Maximization 55
5.2 Characterization of Optimal DSIC Mechanisms 58
5.3 Case Study: Reserve Prices in Sponsored Search 65
*5.4 Proof of Lemma 5.1 66
Notes, Problems, and Exercises 69

6 **Simple Near-Optimal Auctions** 74
6.1 Optimal Auctions Can Be Complex 74
6.2 The Prophet Inequality 75
6.3 Simple Single-Item Auctions 77
6.4 Prior-Independent Mechanisms 79
Notes, Problems, and Exercises 82

7 **Multi-Parameter Mechanism Design** 87
7.1 General Mechanism Design Environments 87
7.2 The VCG Mechanism 88
7.3 Practical Considerations 91
Notes, Problems, and Exercises 93

8 **Spectrum Auctions** 97
8.1 Indirect Mechanisms 97
8.2 Selling Items Separately 98
8.3 Case Study: Simultaneous Ascending Auctions 100
8.4 Package Bidding 105
8.5 Case Study: The 2016 FCC Incentive Auction 106
Notes, Problems, and Exercises 110

9 **Mechanism Design with Payment Constraints** 113
9.1 Budget Constraints 113
9.2 The Uniform-Price Multi-Unit Auction 114
*9.3 The Clinching Auction 116
9.4 Mechanism Design without Money 119
Notes, Problems, and Exercises 123

10 **Kidney Exchange and Stable Matching** 128
10.1 Case Study: Kidney Exchange 128
10.2 Stable Matching 136
*10.3 Further Properties 139
Contents

Notes, Problems, and Exercises 142

11 Selfish Routing and the Price of Anarchy 145

11.1 Selfish Routing: Examples 145
11.2 Main Result: Informal Statement 147
11.3 Main Result: Formal Statement 149
11.4 Technical Preliminaries 152
*11.5 Proof of Theorem 11.2 153
Notes, Problems, and Exercises 156

12 Over-Provisioning and Atomic Selfish Routing 159

12.1 Case Study: Network Over-Provisioning 159
12.2 A Resource Augmentation Bound 161
*12.3 Proof of Theorem 12.1 162
12.4 Atomic Selfish Routing 163
*12.5 Proof of Theorem 12.3 165
Notes, Problems, and Exercises 169

13 Equilibria: Definitions, Examples, and Existence 173

13.1 A Hierarchy of Equilibrium Concepts 173
13.2 Existence of Pure Nash Equilibria 179
13.3 Potential Games 181
Notes, Problems, and Exercises 183

14 Robust Price-of-Anarchy Bounds in Smooth Games 187

*14.1 A Recipe for POA Bounds 187
*14.2 A Location Game 188
*14.3 Smooth Games 194
*14.4 Robust POA Bounds in Smooth Games 195
Notes, Problems, and Exercises 199

15 Best-Case and Strong Nash Equilibria 202

15.1 Network Cost-Sharing Games 202
15.2 The Price of Stability 205
15.3 The POA of Strong Nash Equilibria 208
*15.4 Proof of Theorem 15.3 210
Notes, Problems, and Exercises 213

16 Best-Response Dynamics 216

16.1 Best-Response Dynamics in Potential Games 216
16.2 Approximate PNE in Selfish Routing Games 219
*16.3 Proof of Theorem 16.3 221
*16.4 Low-Cost Outcomes in Smooth Potential Games 223
Notes, Problems, and Exercises 226

17 No-Regret Dynamics 230
17.1 Online Decision Making 230
17.2 The Multiplicative Weights Algorithm 234
*17.3 Proof of Theorem 17.6 236
17.4 No Regret and Coarse Correlated Equilibria 239
Notes, Problems, and Exercises 242

18 Swap Regret and the Minimax Theorem 247
18.1 Swap Regret and Correlated Equilibria 247
*18.2 Proof of Theorem 18.5 249
18.3 The Minimax Theorem for Zero-Sum Games 253
*18.4 Proof of Theorem 18.7 255
Notes, Problems, and Exercises 258

19 Pure Nash Equilibria and \textit{PLS}-Completeness 261
19.1 When Are Equilibrium Concepts Tractable? 261
19.2 Local Search Problems 264
19.3 Computing a PNE of a Congestion Game 271
Notes, Problems, and Exercises 276

20 Mixed Nash Equilibria and \textit{PPAD}-Completeness 279
20.1 Computing a MNE of a Bimatrix Game 279
20.2 Total \textit{NP} Search Problems (\textit{TFN}P) 280
*20.3 \textit{PPAD}: A Syntactic subclass of \textit{TFN}P 285
*20.4 A Canonical \textit{PPAD} Problem: Sperner’s Lemma 288
*20.5 MNE and \textit{PPAD} 290
20.6 Discussion 293
Notes, Problems, and Exercises 294

The Top 10 List 299
Hints to Selected Exercises and Problems 301
Bibliography 309
Index 329
Preface

Computer science and economics have engaged in a lively interaction over the past 15 years, resulting in a new field called algorithmic game theory or alternatively economics and computation. Many problems central to modern computer science, ranging from resource allocation in large networks to online advertising, fundamentally involve interactions between multiple self-interested parties. Economics and game theory offer a host of useful models and definitions to reason about such problems. The flow of ideas also travels in the other direction, as recent research in computer science complements the traditional economic literature in several ways. For example, computer science offers a focus on and a language to discuss computational complexity; has popularized the widespread use of approximation bounds to reason about models where exact solutions are unrealistic or unknowable; and proposes several alternatives to Bayesian or average-case analysis that encourage robust solutions to economic design problems.

This book grew out of my lecture notes for my course “Algorithmic Game Theory,” which I taught at Stanford five times between 2004 and 2013. The course aims to give students a quick and accessible introduction to many of the most important concepts in the field, with representative models and results chosen to illustrate broader themes. This book has the same goal, and I have stayed close to the structure and spirit of my classroom lectures. Brevity necessitates omitting several important topics, including Bayesian mechanism design, compact game representations, computational social choice, contest design, cooperative game theory, incentives in cryptocurrencies and networked systems, market equilibria, prediction markets, privacy, reputation systems, and social computing. Many of these areas are covered in the books by Brandt et al. (2016), Hartline (2016), Nisan et al. (2007), Parkes and Seuken (2016), Shoham and Leyton-Brown (2009), and Vojnović (2016).
Reading the first paragraph of every lecture provides a quick sense of the book’s narrative, and the “top 10 list” on pages 299–300 summarizes the key results in the book. In addition, each lecture includes an “Upshot” section that highlights its main points. After the introductory lecture, the book is loosely organized into three parts. Lectures 2–10 cover several aspects of “mechanism design”—the science of rule-making—including case studies in online advertising, wireless spectrum auctions, and kidney exchange. Lectures 11–15 outline the theory of the “price of anarchy”—approximation guarantees for equilibria of games found “in the wild,” such as large networks with competing users. Lectures 16–20 describe positive and negative results for the computation of equilibria, both by distributed learning algorithms and by computationally efficient centralized algorithms. The second and third parts can be read independently of the first part. The third part depends only on Lecture 13, with the exceptions that Sections 16.2–16.3 depend on Section 12.4 and Section 16.4 on Lecture 14. The starred sections are the more technical ones, and they can be omitted on a first reading.

I assume that the reader has a certain amount of mathematical maturity, and Lectures 4, 19, and 20 assume familiarity with polynomial-time algorithms and \mathcal{NP}-completeness. I assume no background in game theory or economics, nor can this book substitute for a traditional book on these subjects. At Stanford, the course is attended by advanced undergraduates, masters students, and first-year PhD students from many different fields, including computer science, economics, electrical engineering, operations research, and mathematics.

Every lecture concludes with brief bibliographic notes, exercises, and problems. Most of the exercises fill in or reinforce the lecture material. The problems are more difficult, and often take the reader step-by-step through recent research results. Hints to exercises and problems that are marked with an “(H)” appear at the end of the book.

Videos of my classroom lectures in the most recent (2013) offering of the course have been uploaded to YouTube and can be accessed through my home page (www.timroughgarden.org). Lecture notes and videos on several other topics in theoretical computer science are also available there.

I am grateful to all of the Stanford students who took my course,
which has benefited from their many excellent questions and comments. I am especially indebted to my teaching assistants: Peerapong Dhangwatnotai, Kostas Kollias, Okke Schrijvers, Mukund Sundararajan, and Sergei Vassilvitskii. Kostas and Okke helped prepare several of the figures in this book. I thank Yannai Gonczarowski, Warut Sukatsompong, and Inbal Talmash-Cohen for particularly detailed feedback on an earlier draft of this book, and Lauren Cowles, Michal Feldman, Vasilis Gkatzelis, Weiwei Jiang, Yishay Mansour, Michael Ostrovsky, Shay Palachy, and Rakesh Vohra for many helpful comments. The cover art is by Max Greenleaf Miller. The writing of this book was supported in part by NSF awards CCF-1215965 and CCF-1524062.

I always appreciate suggestions and corrections from readers.

Stanford University
Stanford, California

Tim Roughgarden
June 2016