
Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction to Software Testing

This extensively classroom-tested text takes an innovative approach to

explaining software testing that defines it as the process of applying a few

precise, general-purpose criteria to a structure or model of the software.

The text incorporates cutting-edge developments, including techniques to

test modern types of software such as OO, web applications, and embed-

ded software. This revised second edition significantly expands coverage

of the basics, thoroughly discussing test automaton frameworks, and adds

new, improved examples and numerous exercises. Key features include:

� The theory of coverage criteria is carefully, cleanly explained to help

students understand concepts before delving into practical applica-

tions.

� Extensive use of the JUnit test framework gives students practical

experience in a test framework popular in industry.

� Exercises feature specifically tailored tools that allow students to

check their own work.

� Instructor’s manual, PowerPoint slides, testing tools for students, and

example software programs in Java are available from the book’s

website.

Paul Ammann is Associate Professor of Software Engineering at George

Mason University. He earned the Volgenau School’s Outstanding Teach-

ing Award in 2007. He led the development of the Applied Computer

Science degree, and has served as Director of the MS Software Engi-

neering program. He has taught courses in software testing, applied

object-oriented theory, formal methods for software engineering, web

software, and distributed software engineering. Ammann has published

more than eighty papers in software engineering, with an emphasis

on software testing, security, dependability, and software engineering

education.

Jeff Offutt is Professor of Software Engineering at George Mason Uni-

versity. He leads the MS in Software Engineering program, teaches

software engineering courses at all levels, and developed new courses

on several software engineering subjects. He was awarded the George

Mason University Teaching Excellence Award, Teaching with Technol-

ogy, in 2013. Offutt has published more than 165 papers in areas such

as model-based testing, criteria-based testing, test automaton, empirical

software engineering, and software maintenance. He is Editor-in-Chief

of the Journal of Software Testing, Verification and Reliability; helped

found the IEEE International Conference on Software Testing; and is

the founder of the µJava project.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

INTRODUCTION TO

SOFTWARE

TESTING

Paul Ammann
George Mason University

Jeff Offutt
George Mason University

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,

a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107172012

DOI: 10.1017/9781316771273

© Paul Ammann and Jeff Offutt 2017

This publication is in copyright. Subject to statutory exception and to the provisions

of relevant collective licensing agreements, no reproduction of any part may take

place without the written permission of Cambridge University Press & Assessment.

First published 2017

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Ammann, Paul, 1961– author. | Offutt, Jeff, 1961– author.

Title: Introduction to software testing / Paul Ammann, George Mason

University, Jeff Offutt, George Mason University.

Description: Edition 2. | Cambridge, United Kingdom; New York, NY, USA:

Cambridge University Press, [2016]

Identi�ers: LCCN 2016032808 | ISBN 9781107172012 (hardback)

Subjects: LCSH: Computer software–Testing.

Classi�cation: LCC QA76.76.T48 A56 2016 | DDC 005.3028/7–dc23

LC record available at https://lccn.loc.gov/2016032808

ISBN 978-1-107-17201-2 Hardback

Additional resources for this publication at https://cs.gmu.edu/~offutt/softwaretest/.

Cambridge University Press & Assessment has no responsibility for the persistence

or accuracy of URLs for external or third-party internet websites referred to in this

publication and does not guarantee that any content on such websites is, or will

remain, accurate or appropriate.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

List of Figures page ix

List of Tables xii

Preface to the Second Edition xiv

Part 1 Foundations 1

1 Why Do We Test Software? 3

1.1 When Software Goes Bad 4

1.2 Goals of Testing Software 8

1.3 Bibliographic Notes 17

2 Model-Driven Test Design 19

2.1 Software Testing Foundations 20

2.2 Software Testing Activities 21

2.3 Testing Levels Based on Software Activity 22

2.4 Coverage Criteria 25

2.5 Model-Driven Test Design 27

2.5.1 Test Design 28

2.5.2 Test Automation 29

2.5.3 Test Execution 29

2.5.4 Test Evaluation 29

2.5.5 Test Personnel and Abstraction 29

2.6 Why MDTD Matters 31

2.7 Bibliographic Notes 33

3 Test Automation 35

3.1 Software Testability 36

3.2 Components of a Test Case 36

v

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

vi Contents

3.3 A Test Automation Framework 39

3.3.1 The JUnit Test Framework 40

3.3.2 Data-Driven Tests 44

3.3.3 Adding Parameters to Unit Tests 47

3.3.4 JUnit from the Command Line 50

3.4 Beyond Test Automation 50

3.5 Bibliographic Notes 53

4 Putting Testing First 54

4.1 Taming the Cost-of-Change Curve 54

4.1.1 Is the Curve Really Tamed? 56

4.2 The Test Harness as Guardian 57

4.2.1 Continuous Integration 58

4.2.2 System Tests in Agile Methods 59

4.2.3 Adding Tests to Legacy Systems 60

4.2.4 Weaknesses in Agile Methods for Testing 61

4.3 Bibliographic Notes 62

5 Criteria-Based Test Design 64

5.1 Coverage Criteria Defined 64

5.2 Infeasibility and Subsumption 68

5.3 Advantages of Using Coverage Criteria 68

5.4 Next Up 70

5.5 Bibliographic Notes 70

Part 2 Coverage Criteria 73

6 Input Space Partitioning 75

6.1 Input Domain Modeling 77

6.1.1 Interface-Based Input Domain Modeling 79

6.1.2 Functionality-Based Input Domain Modeling 79

6.1.3 Designing Characteristics 80

6.1.4 Choosing Blocks and Values 81

6.1.5 Checking the Input Domain Model 84

6.2 Combination Strategies Criteria 86

6.3 Handling Constraints Among Characteristics 92

6.4 Extended Example: Deriving an IDM from JavaDoc 93

6.4.1 Tasks in Designing IDM-Based Tests 93

6.4.2 Designing IDM-Based Tests for Iterator 94

6.5 Bibliographic Notes 102

7 Graph Coverage 106

7.1 Overview 106

7.2 Graph Coverage Criteria 111

7.2.1 Structural Coverage Criteria 112

7.2.2 Touring, Sidetrips, and Detours 116

7.2.3 Data Flow Criteria 123

7.2.4 Subsumption Relationships Among Graph

Coverage Criteria 130

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents vii

7.3 Graph Coverage for Source Code 131

7.3.1 Structural Graph Coverage for Source Code 132

7.3.2 Data Flow Graph Coverage for Source Code 136

7.4 Graph Coverage for Design Elements 146

7.4.1 Structural Graph Coverage for Design Elements 147

7.4.2 Data Flow Graph Coverage for Design Elements 148

7.5 Graph Coverage for Specifications 157

7.5.1 Testing Sequencing Constraints 157

7.5.2 Testing State Behavior of Software 160

7.6 Graph Coverage for Use Cases 169

7.6.1 Use Case Scenarios 171

7.7 Bibliographic Notes 173

8 Logic Coverage 177

8.1 Semantic Logic Coverage Criteria (Active) 178

8.1.1 Simple Logic Expression Coverage Criteria 179

8.1.2 Active Clause Coverage 181

8.1.3 Inactive Clause Coverage 185

8.1.4 Infeasibility and Subsumption 186

8.1.5 Making a Clause Determine a Predicate 187

8.1.6 Finding Satisfying Values 192

8.2 Syntactic Logic Coverage Criteria (DNF) 197

8.2.1 Implicant Coverage 198

8.2.2 Minimal DNF 199

8.2.3 The MUMCUT Coverage Criterion 200

8.2.4 Karnaugh Maps 205

8.3 Structural Logic Coverage of Programs 208

8.3.1 Satisfying Predicate Coverage 212

8.3.2 Satisfying Clause Coverage 213

8.3.3 Satisfying Active Clause Coverage 215

8.3.4 Predicate Transformation Issues 217

8.3.5 Side Effects in Predicates 220

8.4 Specification-Based Logic Coverage 223

8.5 Logic Coverage of Finite State Machines 226

8.6 Bibliographic Notes 231

9 Syntax-Based Testing 234

9.1 Syntax-Based Coverage Criteria 234

9.1.1 Grammar-Based Coverage Criteria 234

9.1.2 Mutation Testing 237

9.2 Program-Based Grammars 241

9.2.1 BNF Grammars for Compilers 241

9.2.2 Program-Based Mutation 242

9.3 Integration and Object-Oriented Testing 259

9.3.1 BNF Integration Testing 259

9.3.2 Integration Mutation 259

9.4 Specification-Based Grammars 266

9.4.1 BNF Grammars 266

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

9.4.2 Specification-Based Mutation 267

9.5 Input Space Grammars 271

9.5.1 BNF Grammars 271

9.5.2 Mutating Input Grammars 273

9.6 Bibliographic Notes 281

Part 3 Testing in Practice 283

10 Managing the Test Process 285

10.1 Overview 285

10.2 Requirements Analysis and Specification 286

10.3 System and Software Design 287

10.4 Intermediate Design 288

10.5 Detailed Design 288

10.6 Implementation 289

10.7 Integration 289

10.8 System Deployment 290

10.9 Operation and Maintenance 290

10.10 Implementing the Test Process 291

10.11 Bibliographic Notes 291

11 Writing Test Plans 292

11.1 Level Test Plan Example Template 293

11.2 Bibliographic Notes 295

12 Test Implementation 296

12.1 Integration Order 297

12.2 Test Doubles 298

12.2.1 Stubs and Mocks: Variations of Test Doubles 299

12.2.2 Using Test Doubles to Replace Components 300

12.3 Bibliographic Notes 303

13 Regression Testing for Evolving Software 304

13.1 Bibliographic Notes 306

14 Writing Effective Test Oracles 308

14.1 What Should Be Checked? 308

14.2 Determining Correct Values 310

14.2.1 Specification-Based Direct Verification of Outputs 310

14.2.2 Redundant Computations 311

14.2.3 Consistency Checks 312

14.2.4 Metamorphic Testing 312

14.3 Bibliographic Notes 314

List of Criteria 316

Bibliography 318

Index 337

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Figures

1.1 Cost of late testing 12

2.1 Reachability, Infection, Propagation, Revealability (RIPR) model 21

2.2 Activities of test engineers 22

2.3 Software development activities and testing levels – the “V Model” 23

2.4 Model-driven test design 30

2.5 Example method, CFG, test requirements and test paths 31

3.1 Calc class example and JUnit test 41

3.2 Minimum element class 42

3.3 First three JUnit tests for Min class 43

3.4 Remaining JUnit test methods for Min class 45

3.5 Data-driven test class for Calc 46

3.6 JUnit Theory about sets 48

3.7 JUnit Theory data values 48

3.8 AllTests for the Min class example 49

4.1 Cost-of-change curve 55

4.2 The role of user stories in developing system (acceptance) tests 60

6.1 Partitioning of input domain D into three blocks 76

6.2 Subsumption relations among input space partitioning criteria 89

7.1 Graph (a) has a single initial node, graph (b) multiple initial nodes, and

graph (c) (rejected) with no initial nodes 108

7.2 Example of paths 108

7.3 A Single-Entry Single-Exit graph 110

7.4 Test case mappings to test paths 110

7.5 A set of test cases and corresponding test paths 111

7.6 A graph showing Node Coverage and Edge Coverage 114

7.7 Two graphs showing prime path coverage 116

7.8 Graph with a loop 117

7.9 Tours, sidetrips, and detours in graph coverage 117

7.10 An example for prime test paths 119

7.11 A graph showing variables, def sets and use sets 124

7.12 A graph showing an example of du-paths 126

ix

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x List of Figures

7.13 Graph showing explicit def and use sets 128

7.14 Example of the differences among the three data flow coverage criteria 129

7.15 Subsumption relations among graph coverage criteria 132

7.16 CFG fragment for the if-else structure 133

7.17 CFG fragment for the if structure without an else 133

7.18 CFG fragment for the if structure with a return 133

7.19 CFG fragment for the while loop structure 134

7.20 CFG fragment for the for loop structure 134

7.21 CFG fragment for the do-while structure 135

7.22 CFG fragment for the while loop with a break structure 136

7.23 CFG fragment for the case structure 136

7.24 CFG fragment for the try-catch structure 137

7.25 Method patternIndex() for data flow example 141

7.26 A simple call graph 147

7.27 A simple inheritance hierarchy 148

7.28 An inheritance hierarchy with objects instantiated 149

7.29 An example of parameter coupling 150

7.30 Coupling du-pairs 151

7.31 Last-defs and first-uses 151

7.32 Quadratic root program 153

7.33 Def-use pairs under intra-procedural and inter-procedural data flow 154

7.34 Def-use pairs in object-oriented software 155

7.35 Def-use pairs in web applications and other distributed software 155

7.36 Control flow graph using the File ADT 159

7.37 Elevator door open transition 161

7.38 Watch–Part A 163

7.39 Watch–Part B 164

7.40 An FSM representing Watch, based on control flow graphs of the

methods 165

7.41 An FSM representing Watch, based on the structure of the

software 165

7.42 An FSM representing Watch, based on modeling state variables 167

7.43 ATM actor and use cases 169

7.44 Activity graph for ATM withdraw funds 172

8.1 Subsumption relations among logic coverage criteria 187

8.2 Fault detection relationships 202

8.3 Thermostat class 210

8.4 PC true test for Thermostat class 213

8.5 CC test assignments for Thermostat class 214

8.6 Calendar method 226

8.7 FSM for a memory car seat–Nissan Maxima 2012 227

9.1 Method Min and six mutants 243

9.2 Mutation testing process 246

9.3 Partial truth table for (a ∧ b) 253

9.4 Finite state machine for SMV specification 268

9.5 Mutated finite state machine for SMV specification 269

9.6 Finite state machine for bank example 271

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

List of Figures xi

9.7 Finite state machine for bank example grammar 272

9.8 Simple XML message for books 274

9.9 XML schema for books 275

12.1 Test double example: Replacing a component 300

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Tables

6.1 First partitioning of triang()’s inputs (interface-based) 82

6.2 Second partitioning of triang()’s inputs (interface-based) 82

6.3 Possible values for blocks in the second partitioning in Table 6.2 83

6.4 Geometric partitioning of triang()’s inputs (functionality-based) 83

6.5 Correct geometric partitioning of triang()’s inputs (functionality-based) 84

6.6 Possible values for blocks in geometric partitioning in Table 6.5 84

6.7 Examples of invalid block combinations 93

6.8 Table A for Iterator example: Input parameters and characteristics 95

6.9 Table B for Iterator example: Partitions and base case 96

6.10 Table C for Iterator example: Refined test requirements 97

6.11 Table A for Iterator example: Input parameters and characteristics

(revised) 100

6.12 Table C for Iterator example: Refined test requirements (revised) 101

7.1 Defs and uses at each node in the CFG for patternIndex() 139

7.2 Defs and uses at each edge in the CFG for patternIndex() 139

7.3 du-path sets for each variable in patternIndex() 140

7.4 Test paths to satisfy all du-paths coverage on patternIndex() 142

7.5 Test paths and du-paths covered in patternIndex() 143

8.1 DNF fault classes 201

8.2 Reachability for Thermostat predicates 211

8.3 Clauses in the Thermostat predicate on lines 28–30 212

8.4 Correlated active clause coverage for Thermostat 215

8.5 Correlated active clause coverage for cal() preconditions 225

8.6 Predicates from memory seat example 229

9.1 Java’s access levels 261

10.1 Testing objectives and activities during requirements analysis and

specification 287

10.2 Testing objectives and activities during system and software

design 288

10.3 Testing objectives and activities during intermediate design 289

10.4 Testing objectives and activities during detailed design 289

xii

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

List of Tables xiii

10.5 Testing objectives and activities during implementation 290

10.6 Testing objectives and activities during integration 290

10.7 Testing objectives and activities during system deployment 291

10.8 Testing objectives and activities during operation and maintenance 291

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface to the Second Edition

Much has changed in the field of testing in the eight years since the first edition was

published. High-quality testing is now more common in industry. Test automation

is now ubiquitous, and almost assumed in large segments of the industry. Agile

processes and test-driven development are now widely known and used. Many

more colleges offer courses on software testing, both at the undergraduate and

graduate levels. The ACM curriculum guidelines for software engineering include

software testing in several places, including as a strongly recommended course

[Ardis et al., 2015].

The second edition of Introduction to Software Testing incorporates new features

and material, yet retains the structure, philosophy, and online resources that have

been so popular among the hundreds of teachers who have used the book.

What is new about the second edition?

The first thing any instructor has to do when presented with a new edition of a book

is analyze what must be changed in the course. Since we have been in that situation

many times, we want to make it as easy as possible for our audience. We start with

a chapter-to-chapter mapping.

First Edition Second Edition Topic

Part I: Foundations

Chapter 01 Why do we test software? (motivation)

Chapter 02 Model-driven test design (abstraction)

Chapter 1 Chapter 03 Test automation (JUnit)

Chapter 04 Putting testing first (TDD)

Chapter 05 Criteria-based test design (criteria)

Part II: Coverage Criteria

Chapter 2 Chapter 07 Graph coverage

Chapter 3 Chapter 08 Logic coverage

Chapter 4 Chapter 09 Syntax-based testing

Chapter 5 Chapter 06 Input space partitioning

xiv

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface to the Second Edition xv

Part III: Testing in Practice

Chapter 10 Managing the test process

Chapter 11 Writing test plans

Chapter 6 Chapter 12 Test implementation

Chapter 13 Regression testing for evolving software

Chapter 14 Writing effective test oracles

Chapter 7 N/A Technologies

Chapter 8 N/A Tools

Chapter 9 N/A Challenges

The most obvious, and largest change, is that the introductory chapter 1 from

the first edition has been expanded into five separate chapters. This is a significant

expansion that we believe makes the book much better. The new part 1 grew out

of our lectures. After the first edition came out, we started adding more founda-

tional material to our testing courses. These new ideas were eventually reorganized

into five new chapters. The new chapter 011 has much of the material from the first

edition chapter 1, including motivation and basic definitions. It closes with a discus-

sion of the cost of late testing, taken from the 2002 RTI report that is cited in every

software testing research proposal. After completing the first edition, we realized

that the key novel feature of the book, viewing test design as an abstract activity

that is independent of the software artifact being used to design the tests, implied a

completely different process. This led to chapter 02, which suggests how test criteria

can fit into practice. Through our consulting, we have helped software companies

modify their test processes to incorporate this model.

A flaw with the first edition was that it did not mention JUnit or other test

automation frameworks. In 2016, JUnit is used very widely in industry, and is

commonly used in CS1 and CS2 classes for automated grading. Chapter 03 recti-

fies this oversight by discussing test automation in general, the concepts that make

test automation difficult, and explicitly teaches JUnit. Although the book is largely

technology-neutral, having a consistent test framework throughout the book helps

with examples and exercises. In our classes, we usually require tests to be auto-

mated and often ask students to try other “*-Unit” frameworks such as HttpUnit

as homework exercises. We believe that test organizations cannot be ready to apply

test criteria successfully before they have automated their tests.

Chapter 04 goes to the natural next step of test-driven development. Although

TDD is a different take on testing than the rest of the book, it’s an exciting topic for

test educators and researchers precisely because it puts testing front and center—

the tests become the requirements. Finally, chapter 05 introduces the concept of

test criteria in an abstract way. The jelly bean example (which our students love,

especially when we share), is still there, as are concepts such as subsumption.

Part 2, which is the heart of the book, has changed the least for the second edi-

tion. In 2014, Jeff asked Paul a very simple question: “Why are the four chapters in

part 2 in that order?” The answer was stunned silence, as we realized that we had

never asked which order they should appear in. It turns out that the RIPR model,

1 To help reduce confusion, we developed the convention of using two digits for second edition chapters.

Thus, in this preface, chapter 01 implies the second edition, whereas chapter 1 implies the first.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xvi Preface to the Second Edition

which is certainly central to software testing, dictates a logical order. Specifically,

input space partitioning does not require reachability, infection, or propagation.

Graph coverage criteria require execution to “get to” some location in the soft-

ware artifact under test, that is, reachability, but not infection or propagation. Logic

coverage criteria require that a predicate not only be reached, but be exercised in

a particular way to affect the result of the predicate. That is, the predicate must

be infected. Finally, syntax coverage not only requires that a location be reached,

and that the program state of the “mutated” version be different from the original

version, but that difference must be visible after execution finishes. That is, it must

propagate. The second edition orders these four concepts based on the RIPR model,

where each chapter now has successively stronger requirements. From a practical

perspective, all we did was move the previous chapter 5 (now chapter 06) in front of

the graph chapter (now chapter 07).

Another major structural change is that the second edition does not include

chapters 7 through 9 from the first edition. The first edition material has become

dated. Because it is used less than other material in the book, we decided not to

delay this new edition of the book while we tried to find time to write this material.

We plan to include better versions of these chapters in a third edition.

We also made hundreds of changes at a more detailed level. Recent research

has found that in addition to an incorrect value propagating to the output, testing

only succeeds if our automated test oracle looks at the right part of the software

output. That is, the test oracle must reveal the failure. Thus, the old RIP model is

now the RIPR model. Several places in the book have discussions that go beyond

or into more depth than is strictly needed. The second edition now includes “meta

discussions,” which are ancillary discussions that can be interesting or insightful to

some students, but unnecessarily complicated for others.

The new chapter 06 now has a fully worked out example of deriving an input

domain model from a widely used Java library interface (in section 06.4). Our

students have found this helps them understand how to use the input space par-

titioning techniques. The first edition included a section on “Representing graphs

algebraically.” Although one of us found this material to be fun, we both found it

hard to motivate and unlikely to be used in practice. It also has some subtle techni-

cal flaws. Thus, we removed this section from the second edition. The new chapter

08 (logic) has a significant structural modification. The DNF criteria (formerly in

section 3.6) properly belong at the front of the chapter. Chapter 08 now starts with

semantic logic criteria (ACC and ICC) in 08.1, then proceeds to syntactic logic crite-

ria (DNF) in 08.2. The syntactic logic criteria have also changed. One was dropped

(UTPC), and CUTPNFP has been joined by MUTP and MNFP. Together, these

three criteria comprise MUMCUT.

Throughout the book (especially part 2), we have improved the examples, sim-

plified definitions, and included more exercises. When the first edition was published

we had a partial solution manual, which somehow took five years to complete. We

are proud to say that we learned from that mistake: we made (and stuck by!) a rule

that we couldn’t add an exercise without also adding a solution. The reader might

think of this rule as testing for exercises. We are glad to say that the second edition

book website debuts with a complete solution manual.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface to the Second Edition xvii

The second edition also has many dozens of corrections (starting with the errata

list from the first edition book website), but including many more that we found

while preparing the second edition. The second edition also has a better index. We

put together the index for the first edition in about a day, and it showed. This time

we have been indexing as we write, and committed time near the end of the process

to specifically focus on the index. For future book writers, indexing is hard work and

not easy to turn over to a non-author!

What is still the same in the second edition?

The things that have stayed the same are those that were successful in the first

edition. The overall observation that test criteria are based on only four types of

structures is still the key organizing principle of the second edition. The second edi-

tion is also written from an engineering viewpoint, assuming that users of the book

are engineers who want to produce the highest quality software with the lowest pos-

sible cost. The concepts are well grounded in theory, yet presented in a practical

manner. That is, the book tries to make theory meet practice; the theory is sound

according to the research literature, but we also show how the theory applies in

practice.

The book is also written as a text book, with clear explanations, simple but illus-

trative examples, and lots of exercises suitable for in-class or out-of-class work. Each

chapter ends with bibliographic notes so that beginning research students can pro-

ceed to learning the deeper ideas involved in software testing. The book website

(https://cs.gmu.edu/∼offutt/softwaretest/) is rich in materials with solution manuals,

listings of all example programs in the text, high quality PowerPoint slides, and soft-

ware to help students with graph coverage, logic coverage, and mutation analysis.

Some explanatory videos are also available and we hope more will follow. The solu-

tion manual comes in two flavors. The student solution manual, with solutions to

about half the exercises, is available to everyone. The instructor solution manual

has solutions to all exercises and is only available to those who convince the authors

that they are using a book to teach a course.

Using the book in the classroom

The book chapters are built in a modular, component-based manner. Most chapters

are independent, and although they are presented in the order that we use them,

inter-chapter dependencies are few and they could be used in almost any order.

Our primary target courses at our university are a fourth-year course (SWE 437)

and a first-year graduate course (SWE 637). Interested readers can search on those

courses (“mason swe 437” or “mason swe 637”) to see our schedules and how we

use the book. Both courses are required; SWE 437 is required in the software engi-

neering concentration in our Applied Computer Science major, and SWE 637 is

required in our MS program in software engineering2. Chapters 01 and 03 can be

used in an early course such as CS2 in two ways. First, to sensitize early students to

2 Our MS program is practical in nature, not research-oriented. The majority of students are part-time

students with five to ten years of experience in the software industry. SWE 637 begat this book when

we realized Beizer’s classic text [Beizer, 1990] was out of print.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xviii Preface to the Second Edition

the importance of software quality, and second to get them started with test automa-

tion (we use JUnit at Mason). A second-year course in testing could cover all of

part 1, chapter 06 from part 2, and all or part of part 3. The other chapters in part

2 are probably more than what such students need, but input space partitioning is

a very accessible introduction to structured, high-end testing. A common course in

north American computer science programs is a third-year course on general soft-

ware engineering. Part 1 would be very appropriate for such a course. In 2016 we

are introducing an advanced graduate course on software testing, which will span

cutting-edge knowledge and current research. This course will use some of part

3, the material that we are currently developing for part 4, and selected research

papers.

Teaching software testing

Both authors have become students of teaching over the past decade. In the early

2000s, we ran fairly traditional classrooms. We lectured for most of the available

class time, kept organized with extensive PowerPoint slides, required homework

assignments to be completed individually, and gave challenging, high-pressure

exams. The PowerPoint slides and exercises in the first edition were designed for

this model.

However, our teaching has evolved. We replaced our midterm exam with weekly

quizzes, given in the first 15 minutes of class. This distributed a large component of

the grade through the semester, relieved much of the stress of midterms, encouraged

the students to keep up on a weekly basis instead of cramming right before the exam,

and helped us identify students who were succeeding or struggling early in the term.

After learning about the “flipped classroom” model, we experimented with

recorded lectures, viewed online, followed by doing the “homework” assignments in

class with us available for immediate help. We found this particularly helpful with

the more mathematically sophisticated material such as logic coverage, and espe-

cially beneficial to struggling students. As the educational research evidence against

the benefits of lectures has mounted, we have been moving away from the “sage

on a stage” model of talking for two hours straight. We now often talk for 10 to 20

minutes, then give in-class exercises3 where the students immediately try to solve

problems or answer questions. We confess that this is difficult for us, because we

love to talk! Or, instead of showing an example during our lecture, we introduce

the example, let the students work the next step in small groups, and then share

the results. Sometimes our solutions are better, sometimes theirs are better, and

sometimes solutions differ in interesting ways that spur discussion.

There is no doubt that this approach to teaching takes time and cannot acccomo-

date all of the PowerPoint slides we have developed. We believe that although we

cover less material, we uncover more, a perception consistent with how our students

perform on our final exams.

Most of the in-class exercises are done in small groups. We also encourage stu-

dents to work out-of-class assignments collaboratively. Not only does evidence show

3 These in-class exercises are not yet a formal part of the book website. But we often draw them from

regular exercises in the text. Interested readers can extract recent versions from our course web pages

with a search engine.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface to the Second Edition xix

that students learn more when they work collaboratively (“peer-learning”), they

enjoy it more, and it matches the industrial reality. Very few software engineers

work alone.

Of course, you can use this book in your class as you see fit. We offer these

insights simply as examples for things that work for us. We summarize our current

philosophy of teaching simply: Less talking, more teaching.

Acknowledgments

It is our pleasure to acknowledge by name the many contributers to this text. We

begin with students at George Mason who provided excellent feedback on early

draft chapters from the second edition: Firass Almiski, Natalia Anpilova, Khalid

Bargqdle, Mathew Fadoul, Mark Feghali, Angelica Garcia, Mahmoud Hammad,

Husam Hilal, Carolyn Koerner, Han-Tsung Liu, Charon Lu, Brian Mitchell, Tuan

Nguyen, Bill Shelton, Dzung Tran, Dzung Tray, Sam Tryon, Jing Wu, Zhonghua

Xi, and Chris Yeung.

We are particularly grateful to colleagues who used draft chapters of the sec-

ond edition. These early adopters provided valuable feedback that was extremely

helpful in making the final document classroom-ready. Thanks to: Moataz Ahmed,

King Fahd University of Petroleum & Minerals; Jeff Carver, University of Alabama;

Richard Carver, George Mason University; Jens Hannemann, Kentucky State

University; Jane Hayes, University of Kentucky; Kathleen Keogh, Federation Uni-

versity Australia; Robyn Lutz, Iowa State University; Upsorn Praphamontripong,

George Mason University; Alper Sen, Bogazici University; Marjan Sirjani, Reyk-

javik University; Mary Lou Soffa, University of Virginia; Katie Stolee, North

Carolina State University; and Xiaohong Wang, Salisbury University.

Several colleagues provided exceptional feedback from the first edition: Andy

Brooks, Mark Hampton, Jian Zhou, Jeff (Yu) Lei, and six anonymous review-

ers contacted by our publisher. The following individuals corrected, and in some

cases developed, exercise solutions: Sana’a Alshdefat, Yasmine Badr, Jim Bowring,

Steven Dastvan, Justin Donnelly, Martin Gebert, JingJing Gu, Jane Hayes, Rama

Kesavan, Ignacio Martín, Maricel Medina-Mora, Xin Meng, Beth Paredes, Matt

Rutherford, Farida Sabry, Aya Salah, Hooman Safaee, Preetham Vemasani, and

Greg Williams. The following George Mason students found, and often corrected,

errors in the first edition: Arif Al-Mashhadani, Yousuf Ashparie, Parag Bhagwat,

Firdu Bati, Andrew Hollingsworth, Gary Kaminski, Rama Kesavan, Steve Kinder,

John Krause, Jae Hyuk Kwak, Nan Li, Mohita Mathur, Maricel Medina Mora,

Upsorn Praphamontripong, Rowland Pitts, Mark Pumphrey, Mark Shapiro, Bill

Shelton, David Sracic, Jose Torres, Preetham Vemasani, Shuang Wang, Lance

Witkowski, Leonard S. Woody III, and Yanyan Zhu. The following individuals from

elsewhere found, and often corrected, errors in the first edition: Sana’a Alshde-

fat, Alexandre Bartel, Don Braffitt, Andrew Brooks, Josh Dehlinger, Gordon

Fraser, Rob Fredericks, Weiyi Li, Hassan Mirian, Alan Moraes, Miika Nurmi-

nen, Thomas Reinbacher, Hooman Rafat Safaee, Hossein Saiedian, Aya Salah, and

Markku Sakkinen. Lian Yu of Peking University translated the the first edition into

Mandarin Chinese.

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xx Preface to the Second Edition

We also want to acknowledge those who implicitly contributed to the second

edition by explicitly contributing to the first edition: Aynur Abdurazik, Muham-

mad Abdulla, Roger Alexander, Lionel Briand, Renee Bryce, George P. Burdell,

Guillermo Calderon-Meza, Jyothi Chinman, Yuquin Ding, Blaine Donley, Patrick

Emery, Brian Geary, Hassan Gomaa, Mats Grindal, Becky Hartley, Jane Hayes,

Mark Hinkle, Justin Hollingsworth, Hong Huang, Gary Kaminski, John King,

Yuelan Li, Ling Liu, Xiaojuan Liu, Chris Magrin, Darko Marinov, Robert Nils-

son, Andrew J. Offutt, Buzz Pioso, Jyothi Reddy, Arthur Reyes, Raimi Rufai,

Bo Sanden, Jeremy Schneider, Bill Shelton, Michael Shin, Frank Shukis, Greg

Williams, Quansheng Xiao, Tao Xie, Wuzhi Xu, and Linzhen Xue.

While developing the second edition, our graduate teaching assistants at George

Mason gave us fantastic feedback on early drafts of chapters: Lin Deng, Jingjing Gu,

Nan Li, and Upsorn Praphamontripong. In particular, Nan Li and Lin Deng were

instrumental in completing, evolving, and maintaining the software coverage tools

available on the book website.

We are grateful to our editor, Lauren Cowles, for providing unwavering support

and enforcing the occasional deadline to move the project along, as well as Heather

Bergmann, our former editor, for her strong support on this long-running project.

Finally, of course none of this is possible without the support of our families.

Thanks to Becky, Jian, Steffi, Matt, Joyce, and Andrew for helping us stay balanced.

Just as all programs contain faults, all texts contain errors. Our text is no

different. And, as responsibility for software faults rests with the developers,

responsibility for errors in this text rests with us, the authors. In particular, the bibli-

ographic notes sections reflect our perspective of the testing field, a body of work we

readily acknowledge as large and complex. We apologize in advance for omissions,

and invite pointers to relevant citations.

www.cambridge.org/9781107172012
www.cambridge.org

