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new, improved examples and numerous exercises. Key features include:

� The theory of coverage criteria is carefully, cleanly explained to help

students understand concepts before delving into practical applica-

tions.

� Extensive use of the JUnit test framework gives students practical

experience in a test framework popular in industry.

� Exercises feature specifically tailored tools that allow students to

check their own work.

� Instructor’s manual, PowerPoint slides, testing tools for students, and

example software programs in Java are available from the book’s

website.
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Preface to the Second Edition

Much has changed in the field of testing in the eight years since the first edition was

published. High-quality testing is now more common in industry. Test automation

is now ubiquitous, and almost assumed in large segments of the industry. Agile

processes and test-driven development are now widely known and used. Many

more colleges offer courses on software testing, both at the undergraduate and

graduate levels. The ACM curriculum guidelines for software engineering include

software testing in several places, including as a strongly recommended course

[Ardis et al., 2015].

The second edition of Introduction to Software Testing incorporates new features

and material, yet retains the structure, philosophy, and online resources that have

been so popular among the hundreds of teachers who have used the book.

What is new about the second edition?

The first thing any instructor has to do when presented with a new edition of a book

is analyze what must be changed in the course. Since we have been in that situation

many times, we want to make it as easy as possible for our audience. We start with

a chapter-to-chapter mapping.

First Edition Second Edition Topic

Part I: Foundations

Chapter 01 Why do we test software? (motivation)

Chapter 02 Model-driven test design (abstraction)

Chapter 1 Chapter 03 Test automation (JUnit)

Chapter 04 Putting testing first (TDD)

Chapter 05 Criteria-based test design (criteria)

Part II: Coverage Criteria

Chapter 2 Chapter 07 Graph coverage

Chapter 3 Chapter 08 Logic coverage

Chapter 4 Chapter 09 Syntax-based testing

Chapter 5 Chapter 06 Input space partitioning

xiv

www.cambridge.org/9781107172012
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-17201-2 — Introduction to Software Testing
Paul Ammann, Jeff Offutt
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface to the Second Edition xv

Part III: Testing in Practice

Chapter 10 Managing the test process

Chapter 11 Writing test plans

Chapter 6 Chapter 12 Test implementation

Chapter 13 Regression testing for evolving software

Chapter 14 Writing effective test oracles

Chapter 7 N/A Technologies

Chapter 8 N/A Tools

Chapter 9 N/A Challenges

The most obvious, and largest change, is that the introductory chapter 1 from

the first edition has been expanded into five separate chapters. This is a significant

expansion that we believe makes the book much better. The new part 1 grew out

of our lectures. After the first edition came out, we started adding more founda-

tional material to our testing courses. These new ideas were eventually reorganized

into five new chapters. The new chapter 011 has much of the material from the first

edition chapter 1, including motivation and basic definitions. It closes with a discus-

sion of the cost of late testing, taken from the 2002 RTI report that is cited in every

software testing research proposal. After completing the first edition, we realized

that the key novel feature of the book, viewing test design as an abstract activity

that is independent of the software artifact being used to design the tests, implied a

completely different process. This led to chapter 02, which suggests how test criteria

can fit into practice. Through our consulting, we have helped software companies

modify their test processes to incorporate this model.

A flaw with the first edition was that it did not mention JUnit or other test

automation frameworks. In 2016, JUnit is used very widely in industry, and is

commonly used in CS1 and CS2 classes for automated grading. Chapter 03 recti-

fies this oversight by discussing test automation in general, the concepts that make

test automation difficult, and explicitly teaches JUnit. Although the book is largely

technology-neutral, having a consistent test framework throughout the book helps

with examples and exercises. In our classes, we usually require tests to be auto-

mated and often ask students to try other “*-Unit” frameworks such as HttpUnit

as homework exercises. We believe that test organizations cannot be ready to apply

test criteria successfully before they have automated their tests.

Chapter 04 goes to the natural next step of test-driven development. Although

TDD is a different take on testing than the rest of the book, it’s an exciting topic for

test educators and researchers precisely because it puts testing front and center—

the tests become the requirements. Finally, chapter 05 introduces the concept of

test criteria in an abstract way. The jelly bean example (which our students love,

especially when we share), is still there, as are concepts such as subsumption.

Part 2, which is the heart of the book, has changed the least for the second edi-

tion. In 2014, Jeff asked Paul a very simple question: “Why are the four chapters in

part 2 in that order?” The answer was stunned silence, as we realized that we had

never asked which order they should appear in. It turns out that the RIPR model,

1 To help reduce confusion, we developed the convention of using two digits for second edition chapters.

Thus, in this preface, chapter 01 implies the second edition, whereas chapter 1 implies the first.
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xvi Preface to the Second Edition

which is certainly central to software testing, dictates a logical order. Specifically,

input space partitioning does not require reachability, infection, or propagation.

Graph coverage criteria require execution to “get to” some location in the soft-

ware artifact under test, that is, reachability, but not infection or propagation. Logic

coverage criteria require that a predicate not only be reached, but be exercised in

a particular way to affect the result of the predicate. That is, the predicate must

be infected. Finally, syntax coverage not only requires that a location be reached,

and that the program state of the “mutated” version be different from the original

version, but that difference must be visible after execution finishes. That is, it must

propagate. The second edition orders these four concepts based on the RIPR model,

where each chapter now has successively stronger requirements. From a practical

perspective, all we did was move the previous chapter 5 (now chapter 06) in front of

the graph chapter (now chapter 07).

Another major structural change is that the second edition does not include

chapters 7 through 9 from the first edition. The first edition material has become

dated. Because it is used less than other material in the book, we decided not to

delay this new edition of the book while we tried to find time to write this material.

We plan to include better versions of these chapters in a third edition.

We also made hundreds of changes at a more detailed level. Recent research

has found that in addition to an incorrect value propagating to the output, testing

only succeeds if our automated test oracle looks at the right part of the software

output. That is, the test oracle must reveal the failure. Thus, the old RIP model is

now the RIPR model. Several places in the book have discussions that go beyond

or into more depth than is strictly needed. The second edition now includes “meta

discussions,” which are ancillary discussions that can be interesting or insightful to

some students, but unnecessarily complicated for others.

The new chapter 06 now has a fully worked out example of deriving an input

domain model from a widely used Java library interface (in section 06.4). Our

students have found this helps them understand how to use the input space par-

titioning techniques. The first edition included a section on “Representing graphs

algebraically.” Although one of us found this material to be fun, we both found it

hard to motivate and unlikely to be used in practice. It also has some subtle techni-

cal flaws. Thus, we removed this section from the second edition. The new chapter

08 (logic) has a significant structural modification. The DNF criteria (formerly in

section 3.6) properly belong at the front of the chapter. Chapter 08 now starts with

semantic logic criteria (ACC and ICC) in 08.1, then proceeds to syntactic logic crite-

ria (DNF) in 08.2. The syntactic logic criteria have also changed. One was dropped

(UTPC), and CUTPNFP has been joined by MUTP and MNFP. Together, these

three criteria comprise MUMCUT.

Throughout the book (especially part 2), we have improved the examples, sim-

plified definitions, and included more exercises. When the first edition was published

we had a partial solution manual, which somehow took five years to complete. We

are proud to say that we learned from that mistake: we made (and stuck by!) a rule

that we couldn’t add an exercise without also adding a solution. The reader might

think of this rule as testing for exercises. We are glad to say that the second edition

book website debuts with a complete solution manual.
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Preface to the Second Edition xvii

The second edition also has many dozens of corrections (starting with the errata

list from the first edition book website), but including many more that we found

while preparing the second edition. The second edition also has a better index. We

put together the index for the first edition in about a day, and it showed. This time

we have been indexing as we write, and committed time near the end of the process

to specifically focus on the index. For future book writers, indexing is hard work and

not easy to turn over to a non-author!

What is still the same in the second edition?

The things that have stayed the same are those that were successful in the first

edition. The overall observation that test criteria are based on only four types of

structures is still the key organizing principle of the second edition. The second edi-

tion is also written from an engineering viewpoint, assuming that users of the book

are engineers who want to produce the highest quality software with the lowest pos-

sible cost. The concepts are well grounded in theory, yet presented in a practical

manner. That is, the book tries to make theory meet practice; the theory is sound

according to the research literature, but we also show how the theory applies in

practice.

The book is also written as a text book, with clear explanations, simple but illus-

trative examples, and lots of exercises suitable for in-class or out-of-class work. Each

chapter ends with bibliographic notes so that beginning research students can pro-

ceed to learning the deeper ideas involved in software testing. The book website

(https://cs.gmu.edu/∼offutt/softwaretest/) is rich in materials with solution manuals,

listings of all example programs in the text, high quality PowerPoint slides, and soft-

ware to help students with graph coverage, logic coverage, and mutation analysis.

Some explanatory videos are also available and we hope more will follow. The solu-

tion manual comes in two flavors. The student solution manual, with solutions to

about half the exercises, is available to everyone. The instructor solution manual

has solutions to all exercises and is only available to those who convince the authors

that they are using a book to teach a course.

Using the book in the classroom

The book chapters are built in a modular, component-based manner. Most chapters

are independent, and although they are presented in the order that we use them,

inter-chapter dependencies are few and they could be used in almost any order.

Our primary target courses at our university are a fourth-year course (SWE 437)

and a first-year graduate course (SWE 637). Interested readers can search on those

courses (“mason swe 437” or “mason swe 637”) to see our schedules and how we

use the book. Both courses are required; SWE 437 is required in the software engi-

neering concentration in our Applied Computer Science major, and SWE 637 is

required in our MS program in software engineering2. Chapters 01 and 03 can be

used in an early course such as CS2 in two ways. First, to sensitize early students to

2 Our MS program is practical in nature, not research-oriented. The majority of students are part-time

students with five to ten years of experience in the software industry. SWE 637 begat this book when

we realized Beizer’s classic text [Beizer, 1990] was out of print.
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the importance of software quality, and second to get them started with test automa-

tion (we use JUnit at Mason). A second-year course in testing could cover all of

part 1, chapter 06 from part 2, and all or part of part 3. The other chapters in part

2 are probably more than what such students need, but input space partitioning is

a very accessible introduction to structured, high-end testing. A common course in

north American computer science programs is a third-year course on general soft-

ware engineering. Part 1 would be very appropriate for such a course. In 2016 we

are introducing an advanced graduate course on software testing, which will span

cutting-edge knowledge and current research. This course will use some of part

3, the material that we are currently developing for part 4, and selected research

papers.

Teaching software testing

Both authors have become students of teaching over the past decade. In the early

2000s, we ran fairly traditional classrooms. We lectured for most of the available

class time, kept organized with extensive PowerPoint slides, required homework

assignments to be completed individually, and gave challenging, high-pressure

exams. The PowerPoint slides and exercises in the first edition were designed for

this model.

However, our teaching has evolved. We replaced our midterm exam with weekly

quizzes, given in the first 15 minutes of class. This distributed a large component of

the grade through the semester, relieved much of the stress of midterms, encouraged

the students to keep up on a weekly basis instead of cramming right before the exam,

and helped us identify students who were succeeding or struggling early in the term.

After learning about the “flipped classroom” model, we experimented with

recorded lectures, viewed online, followed by doing the “homework” assignments in

class with us available for immediate help. We found this particularly helpful with

the more mathematically sophisticated material such as logic coverage, and espe-

cially beneficial to struggling students. As the educational research evidence against

the benefits of lectures has mounted, we have been moving away from the “sage

on a stage” model of talking for two hours straight. We now often talk for 10 to 20

minutes, then give in-class exercises3 where the students immediately try to solve

problems or answer questions. We confess that this is difficult for us, because we

love to talk! Or, instead of showing an example during our lecture, we introduce

the example, let the students work the next step in small groups, and then share

the results. Sometimes our solutions are better, sometimes theirs are better, and

sometimes solutions differ in interesting ways that spur discussion.

There is no doubt that this approach to teaching takes time and cannot acccomo-

date all of the PowerPoint slides we have developed. We believe that although we

cover less material, we uncover more, a perception consistent with how our students

perform on our final exams.

Most of the in-class exercises are done in small groups. We also encourage stu-

dents to work out-of-class assignments collaboratively. Not only does evidence show

3 These in-class exercises are not yet a formal part of the book website. But we often draw them from

regular exercises in the text. Interested readers can extract recent versions from our course web pages

with a search engine.
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that students learn more when they work collaboratively (“peer-learning”), they

enjoy it more, and it matches the industrial reality. Very few software engineers

work alone.

Of course, you can use this book in your class as you see fit. We offer these

insights simply as examples for things that work for us. We summarize our current

philosophy of teaching simply: Less talking, more teaching.
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