Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

Why Do We Test Software?

The true subject matter of the tester is not testing, but the design of test cases.

The purpose of this book is to teach software engineers how to test. This knowledge
is useful whether you are a programmer who needs to unit test your own software, a
full-time tester who works mostly from requirements at the user level, a manager in
charge of testing or development, or any position in between. As the software indus-
try moves into the second decade of the 21st century, software quality is increasingly
becoming essential to all businesses and knowledge of software testing is becoming
necessary for all software engineers.

Today, software defines behaviors that our civilization depends on in systems
such as network routers, financial calculation engines, switching networks, the Web,
power grids, transportation systems, and essential communications, command, and
control services. Over the past two decades, the software industry has become much
bigger, is more competitive, and has more users. Software is an essential component
of exotic embedded applications such as airplanes, spaceships, and air traffic control
systems, as well as mundane appliances such as watches, ovens, cars, DVD players,
garage door openers, mobile phones, and remote controllers. Modern households
have hundreds of processors, and new cars have over a thousand; all of them running
software that optimistic consumers assume will never fail! Although many factors
affect the engineering of reliable software, including, of course, careful design and
sound process management, testing is the primary way industry evaluates software
during development. The recent growth in agile processes puts increased pressure
on testing; unit testing is emphasized heavily and test-driven development makes
tests key to functional requirements. It is clear that industry is deep into a revolution
in what testing means to the success of software products.

Fortunately, a few basic software testing concepts can be used to design tests
for a large variety of software applications. A goal of this book is to present these
concepts in such a way that students and practicing engineers can easily apply them
to any software testing situation.

This textbook differs from other software testing books in several respects. The
most important difference is in how it views testing techniques. In his landmark

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

4 Foundations

book Software Testing Techniques, Beizer wrote that testing is simple—all a tester
needs to do is “find a graph and cover it.” Thanks to Beizer’s insight, it became evi-
dent to us that the myriad of testing techniques present in the literature have much
more in common than is obvious at first glance. Testing techniques are typically pre-
sented in the context of a particular software artifact (for example, a requirements
document or code) or a particular phase of the lifecycle (for example, require-
ments analysis or implementation). Unfortunately, such a presentation obscures
underlying similarities among techniques.

This book clarifies these similarities with two innovative, yet simplifying,
approaches. First, we show how testing is more efficient and effective by using a clas-
sical engineering approach. Instead of designing and developing tests on concrete
software artifacts like the source code or requirements, we show how to develop
abstraction models, design tests at the abstract level, and then implement actual
tests at the concrete level by satisfying the abstract designs. This is the exact process
that traditional engineers use, except whereas they usually use calculus and algebra
to describe the abstract models, software engineers usually use discrete mathemat-
ics. Second, we recognize that all test criteria can be defined with a very short list
of abstract models: input domain characterizations, graphs, logical expressions, and
syntactic descriptions. These are directly reflected in the four chapters of Part II of
this book.

This book provides a balance of theory and practical application, thereby
presenting testing as a collection of objective, quantitative activities that can be
measured and repeated. The theory is based on the published literature, and pre-
sented without excessive formalism. Most importantly, the theoretical concepts are
presented when needed to support the practical activities that test engineers follow.
That is, this book is intended for all software developers.

WHEN SOFTWARE GOES BAD

As said, we consider the development of software to be engineering. And like any
engineering discipline, the software industry has its shares of failures, some spectac-
ular, some mundane, some costly, and sadly, some that have resulted in loss of life.
Before learning about software disasters, it is important to understand the differ-
ence between faults, errors, and failures. We adopt the definitions of software fault,
error, and failure from the dependability community.

Definition 1.1 Software Fault: A static defect in the software.

Definition 1.2 Software Error: An incorrect internal state that is the manifes-
tation of some fault.

Definition 1.3 Software Failure: External, incorrect behavior with respect to
the requirements or another description of the expected behavior.

Consider a medical doctor diagnosing a patient. The patient enters the doctor’s
office with a list of failures (that is, symptoms). The doctor then must discover the

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

1 Why Do We Test Software? 5

fault, or root cause of the symptoms. To aid in the diagnosis, a doctor may order tests
that look for anomalous internal conditions, such as high blood pressure, an irregu-
lar heartbeat, high levels of blood glucose, or high cholesterol. In our terminology,
these anomalous internal conditions correspond to errors.

While this analogy may help the student clarify his or her thinking about faults,
errors, and failures, software testing and a doctor’s diagnosis differ in one cru-
cial way. Specifically, faults in software are design mistakes. They do not appear
spontaneously, but exist as a result of a decision by a human. Medical problems
(as well as faults in computer system hardware), on the other hand, are often
a result of physical degradation. This distinction is important because it limits
the extent to which any process can hope to control software faults. Specifically,
since no foolproof way exists to catch arbitrary mistakes made by humans, we can
never eliminate all faults from software. In colloquial terms, we can make soft-
ware development foolproof, but we cannot, and should not attempt to, make it
damn-foolproof.

For a more precise example of the definitions of fault, error, and failure, we need
to clarify the concept of the state. A program state is defined during execution of a
program as the current value of all live variables and the current location, as given
by the program counter. The program counter (PC) is the next statement in the
program to be executed and can be described with a line number in the file (PC = 5)
or the statement as a string (PC = “if (x > y)”). Most of the time, what we mean by
a statement is obvious, but complex structures such as for loops have to be treated
specially. The program line “for (i=1; i<N; i++)” actually has three statements that
can result in separate states. The loop initialization (“i=1") is separate from the loop
test (“i<N”), and the loop increment (“i++”) occurs at the end of the loop body. As
an illustrative example, consider the following Java method:

/**
* Counts zeroes in an array
*
* @param x array to count zeroes in
* @return number of occurrences of 0 in x
* @throws NullPointerException if x is null
*
/
public static int numZero (int[] x)
{
int count = 0;
for (int i = 1; i < x.length; i++)
{
if (x[i] == 0) count++;

}

return count;

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

6 Foundations

Sidebar

Programming Language Independence

This book strives to be independent of language, and most of the concepts in the book are.
At the same time, we want to illustrate these concepts with specific examples. We choose
Java, and emphasize that most of these examples would be very similar in many other
common languages.

The fault in this method is that it starts looking for zeroes at index 1 instead of
index 0, as is necessary for arrays in Java. For example, numZero ([2, 7, 0]) correctly
evaluates to 1, while numZero ([0, 7, 2]) incorrectly evaluates to 0. In both tests the
faulty statement is executed. Although both of these tests result in an error, only
the second results in failure. To understand the error states, we need to identify the
state for the method. The state for numZero() consists of values for the variables x,
count, i, and the program counter (PC). For the first example above, the state at the
loop test on the very first iteration of the loop is (x =[2,7, 0], count=0,i=1,PC=“i <
x.length”). Notice that this state is erroneous precisely because the value of i should
be zero on the first iteration. However, since the value of count is coincidentally
correct, the error state does not propagate to the output, and hence the software
does not fail. In other words, a state is in error simply if it is not the expected state,
even if all of the values in the state, considered in isolation, are acceptable. More
generally, if the required sequence of states is sg, s1, 52, . .., and the actual sequence
of states is sg, 52, 53, ..., then state s; is in error in the second sequence. The fault
model described here is quite deep, and this discussion gives the broad view without
going into unneeded details. The exercises at the end of the section explore some of
the subtleties of the fault model.

In the second test for our example, the error state is (x = [0, 7, 2], count = 0, i
=1, PC = “i < x.length”). In this case, the error propagates to the variable count and
is present in the return value of the method. Hence a failure results.

The term bug is often used informally to refer to all three of fault, error, and
failure. This book will usually use the specific term, and avoid using “bug.” A
favorite story of software engineering teachers is that Grace Hopper found a moth
stuck in a relay on an early computing machine, which started the use of bug as
a problem with software. It is worth noting, however, that the term bug has an
old and rich history, predating software by at least a century. The first use of bug
to generally mean a problem we were able to find is from a quote by Thomas
Edison:

It has been just so in all of my inventions. The first step is an intuition, and comes
with a burst, then difficulties arise—this thing gives out and [it is] then that ‘Bugs’-
as such little faults and difficulties are called—show themselves and months of intense
watching, study and labor are requisite.

— Thomas Edison

A very public failure was the Mars lander of September 1999, which crashed
due to a misunderstanding in the units of measure used by two modules created by
separate software groups. One module computed thruster data in English units and

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

1 Why Do We Test Software? 7

forwarded the data to a module that expected data in metric units. This is a very
typical integration fault (but in this case enormously expensive, both in terms of
money and prestige).

One of the most famous cases of software killing people is the Therac-25 radi-
ation therapy machine. Software faults were found to have caused at least three
deaths due to excessive radiation. Another dramatic failure was the launch failure
of the first Ariane 5 rocket, which exploded 37 seconds after liftoff in 1996. The
low-level cause was an unhandled floating point conversion exception in an iner-
tial guidance system function. It turned out that the guidance system could never
encounter the unhandled exception when used on the Ariane 4 rocket. That is, the
guidance system function was correct for Ariane 4. The developers of the Ariane 5
quite reasonably wanted to reuse the successful inertial guidance system from the
Ariane 4, but no one reanalyzed the software in light of the substantially differ-
ent flight trajectory of the Ariane 5. Furthermore, the system tests that would have
found the problem were technically difficult to execute, and so were not performed.
The result was spectacular—-and expensive!

The famous Pentium bug was an early alarm of the need for better testing,
especially unit testing. Intel introduced its Pentium microprocessor in 1994, and
a few months later, Thomas Nicely, a mathematician at Lynchburg College in Vir-
ginia, found that the chip gave incorrect answers to certain floating-point division
calculations.

The chip was slightly inaccurate for a few pairs of numbers; Intel claimed (proba-
bly correctly) that only one in nine billion division operations would exhibit reduced
precision. The fault was the omission of five entries in a table of 1,066 values (part
of the chip’s circuitry) used by a division algorithm. The five entries should have
contained the constant +2, but the entries were not initialized and contained zero
instead. The MIT mathematician Edelman claimed that “the bug in the Pentium
was an easy mistake to make, and a difficult one to catch,” an analysis that misses
an essential point. This was a very difficult mistake to find during system testing,
and indeed, Intel claimed to have run millions of tests using this table. But the table
entries were left empty because a loop termination condition was incorrect; that is,
the loop stopped storing numbers before it was finished. Thus, this would have been
a very simple fault to find during unit testing; indeed analysis showed that almost
any unit level coverage criterion would have found this multimillion dollar mistake.

The great northeast blackout of 2003 was started when a power line in Ohio
brushed against overgrown trees and shut down. This is called a fault in the power
industry. Unfortunately, the software alarm system failed in the local power com-
pany, so system operators could not understand what happened. Other lines also
sagged into trees and switched off, eventually overloading other power lines, which
then cut off. This cascade effect eventually caused a blackout throughout southeast-
ern Canada and eight states in the northeastern part of the US. This is considered the
biggest blackout in North American history, affecting 10 million people in Canada
and 40 million in the USA, contributing to at least 11 deaths and costing up to $6
billion USD.

Some software failures are felt widely enough to cause severe embarrassment
to the company. In 2011, a centralized students data management system in Korea
miscalculated the academic grades of over 29,000 middle and high school students.

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

8 Foundations

This led to massive confusion about college admissions and a government inves-
tigation into the software engineering practices of the software vendor, Samsung
Electronics.

A 1999 study commissioned by the U.S. National Research Council and the U.S.
President’s commission on critical infrastructure protection concluded that the cur-
rent base of science and technology is inadequate for building systems to control
critical software infrastructure. A 2002 report commissioned by the National Insti-
tute of Standards and Technology (NIST) estimated that defective software costs
the U.S. economy $359.5 billion per year. The report further estimated that 64% of
the costs were a result of user mistakes and 36% a result of design and development
mistakes, and suggested that improvements in testing could reduce this cost by about
a third, or $22.5 billion. Blumenstyk reported that web application failures lead to
huge losses in businesses; $150,000 per hour in media companies, $2.4 million per
hour in credit card sales, and $6.5 million per hour in the financial services market.

Software faults do not just lead to functional failures. According to a Symantec
security threat report in 2007, 61 percent of all vulnerabilities disclosed were due to
faulty software. The most common are web application vulnerabilities that can be
attacked by some common attack techniques using invalid inputs.

These public and expensive software failures are getting more common and
more widely known. This is simply a symptom of the change in expectations of
software. As we move further into the 21st century, we are using more safety crit-
ical, real-time software. Embedded software has become ubiquitous; many of us
carry millions of lines of embedded software in our pockets. Corporations rely more
and more on large-scale enterprise applications, which by definition have large user
bases and high reliability requirements. Security, which used to depend on cryp-
tography, then database security, then avoiding network vulnerabilities, is now
largely about avoiding software faults. The Web has had a major impact. It fea-
tures a deployment platform that offers software services that are very competitive
and available to millions of users. They are also distributed, adding complexity,
and must be highly reliable to be competitive. More so than at any previous time,
industry desperately needs to apply the accumulated knowledge of over 30 years of
testing research.

GOALS OF TESTING SOFTWARE

Surprisingly, many software engineers are not clear about their testing goals. Is it
to show correctness, find problems, or something else? To explore this concept, we
first must separate validation and verification. Most of the definitions in this book
are taken from standards documents, and although the phrasing is ours, we try to
be consistent with the standards. Useful standards for reading in more detail are the
IEEE Standard Glossary of Software Engineering Terminology, DOD-STD-2167A
and MIL-STD-498 from the US Department of Defense, and the British Computer
Society’s Standard for Software Component Testing.

Definition 1.4 Verification: The process of determining whether the prod-
ucts of a phase of the software development process fulfill the requirements
established during the previous phase.

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

1 Why Do We Test Software? 9

Definition 1.5 Validation: The process of evaluating software at the end of
software development to ensure compliance with intended usage.

Verification is usually a more technical activity that uses knowledge about the
individual software artifacts, requirements, and specifications. Validation usually
depends on domain knowledge; that is, knowledge of the application for which the
software is written. For example, validation of software for an airplane requires
knowledge from aerospace engineers and pilots.

As a familiar example, consider a light switch in a conference room. Verification
asks if the lighting meets the specifications. The specifications might say something
like, “The lights in front of the projector screen can be controlled independently of
the other lights in the room.” If the specifications are written down somewhere and
the lights cannot be controlled independently, then the lighting fails verification,
precisely because the implementation does not satisfy the specifications. Validation
asks whether users are satisfied, an inherently fuzzy question that has nothing to do
with verification. If the “independent control” specification is neither written down
nor satisfied, then, despite the disappointed users, verification nonetheless succeeds,
because the implementation satisfies the specification. But validation fails, because
the specification for the lighting does not reflect the true needs of the users. This is
an important general point: validation exposes flaws in specifications.

The acronym “IV&V” stands for “Independent Verification and Validation,”
where “independent” means that the evaluation is done by non-developers. Some-
times the IV&V team is within the same project, sometimes the same company, and
sometimes it is entirely an external entity. In part because of the independent nature
of IV&YV, the process often is not started until the software is complete and is often
done by people whose expertise is in the application domain rather than software
development. This can sometimes mean that validation is given more weight than
verification. This book emphasizes verification more than validation, although most
of the specific test criteria we discuss can be used for both activities.

Beizer discussed the goals of testing in terms of the “test process maturity lev-
els” of an organization, where the levels are characterized by the testers’ goals. He
defined five levels, where the lowest level is not worthy of being given a number.

Level 0 There is no difference between testing and debugging.
Level 1 The purpose of testing is to show correctness.
Level 2 The purpose of testing is to show that the software does not work.

Level 3 The purpose of testing is not to prove anything specific, but to reduce the
risk of using the software.

Level 4 Testing is a mental discipline that helps all IT professionals develop higher-
quality software.

Level 0 is the view that testing is the same as debugging. This is the view that
is naturally adopted by many undergraduate Computer Science majors. In most CS
programming classes, the students get their programs to compile, then debug the
programs with a few inputs chosen either arbitrarily or provided by the professor.

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

10 Foundations

This model does not distinguish between a program’s incorrect behavior and a mis-
take within the program, and does very little to help develop software that is reliable
or safe.

In Level 1 testing, the purpose is to show correctness. While a significant step
up from the naive level 0, this has the unfortunate problem that in any but the most
trivial of programs, correctness is virtually impossible to either achieve or demon-
strate. Suppose we run a collection of tests and find no failures. What do we know?
Should we assume that we have good software or just bad tests? Since the goal of
correctness is impossible, test engineers usually have no strict goal, real stopping
rule, or formal test technique. If a development manager asks how much testing
remains to be done, the test manager has no way to answer the question. In fact,
test managers are in a weak position because they have no way to quantitatively
express or evaluate their work.

In Level 2 testing, the purpose is to show failures. Although looking for failures
is certainly a valid goal, it is also inherently negative. Testers may enjoy finding the
problem, but the developers never want to find problems—they want the software to
work (yes, level 1 thinking can be natural for the developers). Thus, level 2 testing
puts testers and developers into an adversarial relationship, which can be bad for
team morale. Beyond that, when our primary goal is to look for failures, we are still
left wondering what to do if no failures are found. Is our work done? Is our software
very good, or is the testing weak? Having confidence in when testing is complete is
an important goal for all testers. It is our view that this level currently dominates the
software industry.

The thinking that leads to Level 3 testing starts with the realization that test-
ing can show the presence, but not the absence, of failures. This lets us accept
the fact that whenever we use software, we incur some risk. The risk may be
small and the consequences unimportant, or the risk may be great and the con-
sequences catastrophic, but risk is always there. This allows us to realize that the
entire development team wants the same thing—to reduce the risk of using the
software. In level 3 testing, both testers and developers work together to reduce
risk. We see more and more companies move to this testing maturity level every
year.

Once the testers and developers are on the same “team,” an organization can
progress to real Level 4 testing. Level 4 thinking defines testing as a mental disci-
pline that increases quality. Various ways exist to increase quality, of which creating
tests that cause the software to fail is only one. Adopting this mindset, test engi-
neers can become the technical leaders of the project (as is common in many other
engineering disciplines). They have the primary responsibility of measuring and
improving software quality, and their expertise should help the developers. Beizer
used the analogy of a spell checker. We often think that the purpose of a spell
checker is to find misspelled words, but in fact, the best purpose of a spell checker
is to improve our ability to spell. Every time the spell checker finds an incorrectly
spelled word, we have the opportunity to learn how to spell the word correctly.
The spell checker is the “expert” on spelling quality. In the same way, level 4 test-
ing means that the purpose of testing is to improve the ability of the developers

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

1 Why Do We Test Software? 11

to produce high-quality software. The testers should be the experts who train your
developers!

As a reader of this book, you probably start at level 0, 1, or 2. Most software
developers go through these levels at some stage in their careers. If you work in
software development, you might pause to reflect on which testing level describes
your company or team. The remaining chapters in Part I should help you move to
level 2 thinking, and to understand the importance of level 3. Subsequent chapters
will give you the knowledge, skills, and tools to be able to work at level 3. An
ultimate goal of this book is to provide a philosophical basis that will allow read-
ers to become “change agents” in their organizations for level 4 thinking, and test
engineers to become software quality experts. Although level 4 thinking is cur-
rently rare in the software industry, it is common in more mature engineering
fields.

These considerations help us decide at a strategic level why we test. At a more
tactical level, it is important to know why each test is present. If you do not know
why you are conducting each test, the test will not be very helpful. What fact is each
test trying to verify? It is essential to document test objectives and test requirements,
including the planned coverage levels. When the test manager attends a planning
meeting with the other managers and the project manager, the test manager must be
able to articulate clearly how much testing is enough and when testing will complete.
In the 1990s, we could use the “date criterion,” that is, testing is “complete” when
the ship date arrives or when the budget is spent.

Figure 1.1 dramatically illustrates the advantages of testing early rather than
late. This chart is based on a detailed analysis of faults that were detected and fixed
during several large government contracts. The bars marked ‘A’ indicate what per-
centage of faults appeared in that phase. Thus, 10% of faults appeared during the
requirements phase, 40% during design, and 50% during implementation. The bars
marked ‘D’ indicated the percentage of faults that were detected during each phase.
About 5% were detected during the requirements phase, and over 35% during sys-
tem testing. Lastly is the cost analysis. The solid bars marked ‘C’ indicate the relative
cost of finding and fixing faults during each phase. Since each project was different,
this is averaged to be based on a “unit cost.” Thus, faults detected and fixed during
requirements, design, and unit testing were a single unit cost. Faults detected and
fixed during integration testing cost five times as much, 10 times as much during
system testing, and 50 times as much after the software is deployed.

If we take the simple assumption of $1000 USD unit cost per fault, and 100
faults, that means we spend $39,000 to find and correct faults during requirements,
design, and unit testing. During integration testing, the cost goes up to $100,000.
But system testing and deployment are the serious problems. We find more faults
during system testing at ten times the cost, for a total of $360,000. And even though
we only find a few faults after deployment, the cost being 50 X unit means we spend
$250,000! Avoiding the work early (requirements analysis and unit testing) saves
money in the short term. But it leaves faults in software that are like little bombs,
ticking away, and the longer they tick, the bigger the explosion when they finally
go off.

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

Cambridge University Press
978-1-107-17201-2 — Introduction to Software Testing

Paul Ammann , Jeff Offutt
Excerpt
More Information

12 Foundations

60 A : % faults appeared in this phase
50 D : % faults detected in this phase
A C : Cost of finding and fixing a fault
40 in this phase
A
30 i
20— il i L
D
c
D D
0 | | N
@ & & &
{@\ ef’\g & .\@Q; &
@ * <& ©
& P& N
@ QEUF <f

Figure 1.1. Cost of late testing.

To put Beizer’s level 4 test maturity level in simple terms, the goal of testing is
to eliminate faults as early as possible. We can never be perfect, but every time we
eliminate a fault during unit testing (or sooner!), we save money. The rest of this
book will teach you how to do that.

Chapter 1.

1. What are some factors that would help a development organization move
from Beizer’s testing level 2 (testing is to show errors) to testing level 4
(a mental discipline that increases quality)?

2. What is the difference between software fault and software failure?

3. What do we mean by “level 3 thinking is that the purpose of testing is to reduce
risk?” What risk? Can we reduce the risk to zero?

4. The following exercise is intended to encourage you to think of testing in a
more rigorous way than you may be used to. The exercise also hints at the
strong relationship between specification clarity, faults, and test cases'.

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)

The method should return a Vector of objects that are in either of the two
argument Vectors.

(b) Upon reflection, you may discover a variety of defects and ambiguities
in the given assignment. In other words, ample opportunities for faults
exist. Describe as many possible faults as you can. (Note: Vector is a Java
Collection class. If you are using another language, interpret Vector as a list.)

(c) Create aset of test cases that you think would have a reasonable chance of
revealing the faults you identified above. Document a rationale for each
test in your test set. If possible, characterize all of your rationales in some
concise summary. Run your tests against your implementation.

I Liskov’s Program Development in Java, especially chapters 9 and 10, is a great source for students who
wish to learn more about this.

© in this web service Cambridge University Press www.cambridge.org

www.cambridge.org/9781107172012
www.cambridge.org

