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1

Nonlinear Electrostatic Equations for

Collisionless Plasmas

This monograph presents a perturbative nonlinear kinetic theory of plasma turbu-

lence, known as the weak turbulence theory. At the outset, it should be pointed out

that this book does not include the effects of ambient magnetic field. Plasmas in

real situations are usually magnetized, so that applications of the method discussed

in this book will be somewhat limited, but the purpose is to lay out the fundamental

methodology and conceptual foundations so that more general applications for

magnetized plasmas may be developed on the basis of this book. This book also

limits the discussions to spatially homogeneous plasma.

Plasma kinetic theory has a long history, and many early papers can be found

in the literature that discuss the perturbative nonlinear kinetic theory of plasma

turbulence – see, for example, papers by Vedenov and Velikhov (1962); Kovrizh-

nykh and Tsytovich (1964, 1965); Kovrizhnykh (1965); Gorbunov and Silin (1965);

Gorbunov et al. (1965); Tsytovich (1967); Rogister and Oberman (1968, 1969), to

name just several. These are merely sample papers, among those that personally

influenced the author of this book.

If one is interested in the general background on plasma kinetic theory, there

are some excellent early monographs, among which may be, for instance, those

by Montgomery and Tidman (1964); Kadomtsev (1965); Klimontovich (1967,

1982); Pitaevskii and Lifshitz (1981); Sagdeev and Galeev (1969); Tsytovich

(1970, 1977a,b); Davidson (1972); Ichimaru (1973); Krall and Trivelpiece (1973);

Akhiezer et al. (1975); Hasegawa (1975); Kaplan and Tsytovich (1973); Sitenko

(1967, 1982); Melrose (1980a, 1986); Nicholson (1983); Alexandrov et al. (1984);

Chen (1987), etc. This list is incomplete, but they represent some standard works

that treat the foundations of plasma kinetic theory and/or weak plasma turbulence

theory. More recent books are also available. See, for example, those by Musher

et al. (1995); Sitenko and Malnev (1995); Treumann and Baumjohann (1997);

Tsytovich (1995); Kono and Škorić (2010); Diamond et al. (2010), etc., which deal

with the subject of plasma kinetic theory and nonlinear phenomena.
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4 Nonlinear Electrostatic Equations for Collisionless Plasmas

So, as the readers may appreciate, there is an abundance of resources on the topic

of plasma kinetic theory, and one may ask why another book? The rationale for

this book is as follows: Discussions of nonlinear plasma theories, particularly those

concerning the weak turbulence theory found in many of the above-cited works, are

sometimes not so easy to follow, especially for young researchers. Moreover, many

of the monographs cover wide-ranging topics with generally brief descriptions for

each subject area without going much into in-depth discussions. It is the purpose

of this book to focus only on the kinetic theory of weak plasma turbulence, but to

present the detailed fundamental discussions and derivations as clearly as possible,

without sacrificing the intermediate mathematical steps. Talking of the latter, many

authors omit too many intermediate steps, which can be a source of much frustra-

tions for young scientists. This book does not spare the readers the mathematical

details. This strategy means that some materials in the book can be a bit lengthy, and

casual readers may get lost in the maths. However, if one approaches the material

with enough patience, he or she will be rewarded with the intimate knowledge on

how the weak turbulence theory actually works, what are the essential assumptions

behind the theory, and so forth. Owing to the space devoted to mathematical details,

some standard topics often included in the textbooks and monographs on nonlin-

ear plasma theory are left out. For instance, parametric instabilities, solitary wave

theory, coherent nonlinear structure formation in plasma, etc., are not covered in

this book.

This book is intended for advanced undergraduate, graduate students, or young

researchers who are already familiar with the introductory level of plasma kinetic

theory, but wishing to familiarize themselves with a more in-depth understanding

on nonlinear theory of weak plasma turbulence. In spite of this, this book expounds

on foundational principles at the conceptual level as much as possible without

assuming too much prior knowledge on the part of the readers.

1.1 Preamble: Fundamental Concepts

We are interested in physical phenomena that are described as turbulent, which

loosely means physical quantities that are fluctuating in space and time. In order

to characterize such fluctuations, we employ statistical methods and concepts. That

is, we deal with averages in time, space, or over hypothetical collection of different

possible states called the ensemble. One is particularly interested in how fluctuating

quantities measured in two or more different times or in two or more different

spatial locations are correlated. We begin by considering many-body correlations

associated with fluctuating physical quantities, and the spectral transformation of

such quantities in space and time.
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1.1 Preamble: Fundamental Concepts 5

The statistical correlation is an important concept that characterizes the nature of

turbulence. Suppose that one measures a particular physical quantity, say velocity or

electromagnetic field, in a turbulent medium at a given time. Suppose also that one

measures the same quantity at another time separated by an interval. If one repeats

such series of measurements over and over again, then if the physical quantities

are uncorrelated, that is, if there is no cause and effect relationship between the

two measurements, then on average, the product of two measurements made at two

different time intervals may be zero, since by the very nature of turbulence, velocity

or field may have random directions. On the other hand, if the first measurement

affects the second measurement because there exists an underlying cause-and-effect

relationship, then the average of the products may be finite. A systematic way to

characterize how the statistical average of the products of physical quantities, or

equivalently, their correlation function, behaves in space and time can thus be useful

for understanding and characterizing the turbulence. Consequently, in this book

we will be concerned with the description of how the statistical average of the

correlation of fluctuating (i.e., turbulent) quantity,
〈

δa2
〉

, dynamically evolves. Here,

δa represents any dynamical quantity, and the symbol 〈· · · 〉 denotes the statistical

average.

The convention adopted in this book for the definition of spatial Fourier trans-

formation and its inverse is

fk = (2π)−3

∫

dr f (r) e−ik·r, f (r) =

∫

dk fk eik·r. (1.1)

Here f (r) is any physical quantity, which is a function of spatial coordinate r, and

which is bounded in space. The Fourier transformation of a product of two functions

is represented by the convolution

(2π)−3

∫

dr f (r) g(r) e−ik·r =

∫

dk′ fk′ gk−k′ =

∫

dk′ fk−k′ gk′ . (1.2)

The proof of this “convolution theorem” is straightforward. All one has to do is to

insert for f (r) and g(r), their respective Fourier transformations, and make use of

the well-known delta function identity
∫

dr eik·r = δ(k). (1.3)

Fourier transformation of a function f (r,t) in both space and time can be

defined by

fk,ω = (2π)−4

∫

dr

∫

dt f (r,t) e−ik·r+iωt,

f (r,t) =

∫

dk

∫

dω fk,ω eik·r−iωt . (1.4)
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6 Nonlinear Electrostatic Equations for Collisionless Plasmas

Convolution theorem for the spatio-temporal Fourier transformation is

(2π)−4

∫

dr

∫

dt f (r,t) g(r,t) e−ik·r+iωt

=

∫

dk′

∫

dω′ fk′,ω′ gk−k′,ω−ω′

=

∫

dk′

∫

dω′ fk−k′,ω−ω′ gk′,ω′ . (1.5)

When the angular frequency ω satisfies the dispersion relation ω = ωk+iγk, that

is, when (generally complex) ω is a function of k, then the Fourier representation

of function f (r,t) can be re-expressed by virtue of the fact that we may write the

spectral amplitude as

fk,ω = fkδ(ω − ωk − iγk), (1.6)

or

f (r,t) =

∫

dk fk exp(ik · r − iωkt + γkt). (1.7)

If f (r,t) is real then obviously f ∗(r,t) = f (r,t), where the asterisk ∗ represents

the complex conjugate. From this it follows that

∫

dk f ∗
k exp(−ik · r + iωkt) =

∫

dk fk exp(ik · r − iωkt), (1.8)

which leads to the following symmetry relations:

f ∗
k = f−k, ω−k = −ωk, γ−k = γk. (1.9)

Let δf (r,t) represent a fluctuating quantity whose ensemble average is zero:

〈δf (r,t)〉 = 0. (1.10)

In our notation, any quantity preceded by δ indicates that this quantity is fluctuating

in space and time, that is, turbulent. By “ensemble average” we may mean an

average over phase, space, or time. Or it could mean an average over all possible

configurations. Turbulence is called “homogeneous” if the spatial dependence of

the two-body correlation is only upon the relative distance,

〈δf (r,t) δf (r′,t)〉 = 〈δf 2〉r−r′,t,t ′ = 〈δf 2〉r′−r,t,t ′, (1.11)

and “stationary” if the temporal two-body correlation is a function of relative time

difference,

〈δf (r,t) δf (r,t ′)〉 = 〈δf 2〉r,r′,t−t ′ = 〈δf 2〉r,r′,t ′−t . (1.12)

www.cambridge.org/9781107172005
www.cambridge.org


Cambridge University Press
978-1-107-17200-5 — Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes
Peter H. Yoon 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Preamble: Fundamental Concepts 7

Thus, for homogeneous and stationary turbulence the two-body correlation function

is given by

〈δf (r,t) δf (r′,t ′)〉 = 〈δf 2〉r−r′,t−t ′ . (1.13)

It should be noted that not all fluctuating quantities in nature satisfy the zero ensem-

ble average property (1.10). Physical processes whose fluctuations satisfy (1.10)

are called “incoherent” phenomena, while “coherent” processes may be associated

with a nonvanishing ensemble average. For incoherent processes different phases

are uncorrelated such that when averaged over them, the result vanishes; hence,

such processes are characterized by the zero ensemble average property specified

by (1.10).

In a similar way, the three-body correlation function for homogeneous and sta-

tionary turbulence is a function of distances between any two points, say (r,t) and

(r′,t ′), among three points (r,t), (r′,t ′), (r′′,t ′′), in coordinate-time space:

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′)〉 = 〈δf 3〉r−r′,r−r′′;t−t ′,t−t ′′ . (1.14)

The four-body correlation function for homogeneous and stationary turbulence can

be defined likewise:

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′) δf (r′′′,t ′′′)〉

= 〈δf 2〉r−r′;t−t ′ 〈δf
2〉r′′−r′′′;t ′′−t ′′′ + 〈δf 2〉r−r′′;t−t ′′ 〈δf

2〉r′−r′′′;t ′−t ′′′

+〈δf 2〉r−r′′′;t−t ′′′ 〈δf
2〉r′−r′′;t ′−t ′′

+〈δf 4〉r−r′,r′−r′′,r′′−r′′′;t−t ′,t ′−t ′′′,t ′′−t ′′′ . (1.15)

Let us represent the two-body correlation function in spectral form:

〈δf (r,t) δf (r′,t ′)〉 =

∫

dk

∫

dω 〈δf 2〉k,ω eik·(r−r′)−iω(t−t ′)

=

∫

dk

∫

dω

∫

dk′

∫

dω′ 〈δfk,ω δfk′,ω′〉 eik·r+ik′·r′−iωt−iω′t ′,

(1.16)

where in the second line we have made use of the spectral representations for

individual functions δf (r,t) and δf (r′,t ′). From this, it is seen that the equality

can be obtained if the following condition is satisfied:

〈δfk,ω δfk′,ω′〉 = δ(k + k′) δ(ω + ω′) 〈δf 2〉k,ω. (1.17)

If we write the spectral component δfk,ω with an explicit phase factor,

δfk,ω = f̂k,ωeiφk,ω, (1.18)
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8 Nonlinear Electrostatic Equations for Collisionless Plasmas

where φk,ω represents the phase, then we have

〈δfk,ω δfk′,ω′〉 = 〈f̂k,ω f̂k′,ω′eiφk,ω+iφk′,ω′ 〉. (1.19)

For homogeneous and stationary turbulence the phase is assumed to be random (or

uncorrelated). As such, the ensemble average over random phases becomes nonzero

only if

φk,ω + φk′,ω′ = 0, (1.20)

which can be satisfied under the assumption that, if for k = −k′ and ω = −ω′, the

following is also satisfied:

φ−k,−ω = −φk,ω. (1.21)

This is but the rephrasing of condition (1.17). The assumption of homogeneous and

stationary turbulence is thus equivalent to the “random phase approximation.” In

short, the property

〈δf 2〉k,ω = 〈δfk,ω δf−k,−ω〉 (1.22)

is a useful spectral characteristic for homogeneous and stationary turbulence, or

equivalently, fluctuations with random phases.

Next, consider the three-body correlation, which we may write as

〈δf (r,t) δf (r′,t ′) δf (r′′,t ′′)〉 =

∫

dk

∫

dω

∫

dk′

∫

dω′ 〈δf 3〉k,ω;k′,ω′

× eik·(r−r′)+ik′·(r′−r′′)−iω(t−t ′)−iω′(t ′−t ′′)

=

∫

dk

∫

dω

∫

dk′

∫

dω′

∫

dk′′

∫

dω′′

×〈δfk,ω δfk′,ω′ δfk′′,ω′′〉

× eik·r+ik′·r′+ik′′·r′′−iωt−iω′t ′−iω′′t ′′ . (1.23)

From this we obtain the identity

〈δfk,ω δfk′,ω′ δfk′′,ω′′〉 = δ(k + k′ + k′′) δ(ω + ω′ + ω′′) 〈δf 3〉k,ω;k+k′,ω+ω′ .

(1.24)

A similar analysis can be carried out for the four-body correlation. The derivation

is tedious but straightforward, and is thus omitted.

We summarize the general properties of the many-body correlations, or many-

body cumulants for homogeneous and stationary turbulence:

〈δfk,ω δfk′,ω′〉 = δ(k + k′) δ(ω + ω′)〈δf 2〉k,ω,

〈δfk,ω δfk′,ω′ δfk′′,ω′′〉 = δ(k + k′ + k′′)δ(ω + ω′ + ω′′)〈δf 3〉k,ω;k+k′,ω+ω′,
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1.2 Electrostatic Vlasov Equation 9

〈δfk,ω δfk′,ω′ δfk′′,ω′′ δfk′′′ω′′′〉 = δ(k + k′ + k′′ + k′′′) δ(ω + ω′ + ω′′ + ω′′′)

× [δ(k + k′) δ(ω + ω′) 〈δf 2〉k,ω 〈δf 2〉k′′,ω′′

+ δ(k + k′′) δ(ω + ω′′) 〈δf 2〉k,ω 〈δf 2〉k′,ω′

+ δ(k′ + k′′) δ(ω′ + ω′′) 〈δf 2〉k,ω 〈δf 2〉k′,ω′

+ 〈δf 4〉k,ω;k+k′,ω+ω′;k+k′+k′′,ω+ω′+ω′′]. (1.25)

An important consequence of this result is that an ensemble average of two fluctu-

ating quantities δf and δg, where they are related to each other, can be expressed

in terms of their spectral counterparts as follows:

〈δf (r,t) δg(r,t)〉 =

∫

dk

∫

dω 〈δfk,ω δg−k,−ω〉. (1.26)

1.2 Electrostatic Vlasov Equation

A simple and intuitive definition of plasma is that it is an ionized gas. Individual

electrons and ions that make up the plasma interact through collective electromag-

netic force. Collective behavior of a plasma is described by a statistical means.

In this book we are concerned with a fully ionized plasma. For partially ionized

plasma, atomic processes such as the recombination and collisions between charged

particles and neutrals cannot be ignored, which complicate the matter. Vlasov equa-

tion (Vlasov, 1938) describes the statistical property of a plasma governed by col-

lective processes. The system under consideration is a spatially uniform plasma

made of single-species ions (protons) and electrons, and there is no net electric or

magnetic field. We also assume zero average charge or current in the system. If we

make the simplifying approximation that the plasma particles interact primarily

through electrostatic field, then the dynamics can be described by the Vlasov–

Poisson system of equations

(

∂

∂t
+ v · ∇ +

ea

ma

E ·
∂

∂v

)

fa = 0,

∇ · E = 4π
∑

a

ea

∫

dv fa, (1.27)

where ea and ma are charge and mass of species a (= e,i) for electrons and

ions (ea = e for protons and ea = −e for electrons). The one-particle distribu-

tion function fa(r,v,t) is the probability density of finding a collection of plasma

particles of species a, at a particular state in phase space (r,v) at a given time t .

Consequently, if we integrate fa(r,v,t) over v, or equivalently, if we collect all

possible configuration in velocity space, then the result becomes the density of

charged particle species labeled a,
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10 Nonlinear Electrostatic Equations for Collisionless Plasmas

ρa(r,t) =

∫

dv fa(r,v,t). (1.28)

Multiplying the charge ea and summing over all charged particle species leads to

the total charge density

ρ(r,t) =
∑

a

eaρa(r,t). (1.29)

Since fa(r,v,t) is the probability density, it is normalized to the ambient charged

particle number density na ,

1

V

∫

dr

∫

dv fa(r,v,t) = na, (1.30)

where V is the volume of the system. That is, if we collect all possible config-

urations in velocity space at a given time, and integrate over the entire volume

under consideration and divide by V , that is, take the spatial average, then the result

should be the total number of particles per volume, na = Na/V , or equivalently,

the ambient density. Since in the absence of source or sink, plasma particles cannot

be created or annihilated (that is, no recombination into neutrals or reionization),

the one-particle distribution function must be conserved. Hence,

dfa

dt
=

(

∂

∂t
+ ṙ · ∇ + v̇ ·

∂

∂v

)

fa = 0. (1.31)

By virtue of the equation of motion,

ṙ = v and v̇ =
ea

ma

E, (1.32)

we obtain the Vlasov equation in (1.27). Because of the charge neutrality condition,

the ambient density is the same for both ions and electrons,

ne = ni = n. (1.33)

Let us separate the physical quantities into average and fluctuating parts. The

average particle distribution function is independent of the spatial coordinate r

since we assume uniform plasma, and there is no average electric field, so that

we may write

fa(r,v,t) = naFa(v,t) + δfa(r,v,t),

E(r,t) = δE(r,t), (1.34)

where δ represents fluctuating quantities whose phases are supposed to be random.

When averaged over their phases, these quantities vanish. In (1.34) we have intro-

duced a normalized one-particle distribution function Fa(v,t) [
∫

dv Fa(v,t) = 1].

Inserting (1.34) back into the coupled Vlasov–Poisson equation, we obtain
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