ADVANCED STRUCTURAL DYNAMICS

Advanced Structural Dynamics will appeal to a broad readership that includes both undergraduate and graduate engineering students, doctoral candidates, engineering scientists working in various technical disciplines, and practicing professionals in an engineering office. The book has broad applicability and draws examples from aeronautical, civil, earthquake, mechanical, and ocean engineering, and at times it even dabbles in issues of geophysics and seismology. The material presented is based on miscellaneous course and lecture notes offered by the author at the Massachusetts Institute of Technology for many years. The modular approach allows for a selective use of chapters, making it appropriate for use not only as an introductory textbook but later on functioning also as a treatise for an advanced course, covering materials not typically found in competing textbooks on the subject.

Professor Eduardo Kausel is a specialist in structural dynamics in the Department of Civil Engineering at the Massachusetts Institute of Technology. He is especially well known for two papers on the collapse of the Twin Towers on September 11, 2001. The first of this pair, published on the web at MIT only a few days after the terrorist act, attracted more readers around the world than all other works and publications on the subject combined. Professor Kausel is the author of the 2006 book Fundamental Solutions in Elastodynamics (Cambridge University Press).
Advanced Structural Dynamics

EDUARDO KAUSEL
Massachusetts Institute of Technology
To my former graduate student and dear Guardian Angel Hyangly Lee,
in everlasting gratitude for her continued support of my work at MIT.
Contents

Preface page xxii
Notation and Symbols xxv
Unit Conversions xxix

1 Fundamental Principles 1

1.1 Classification of Problems in Structural Dynamics 1

1.2 Stress–Strain Relationships 2

1.2.1 Three-Dimensional State of Stress–Strain 2

1.2.2 Plane Strain 2

1.2.3 Plane Stress 2

1.2.4 Plane Stress versus Plane Strain: Equivalent Poisson's Ratio 3

1.3 Stiffnesses of Some Typical Linear Systems 3

1.4 Rigid Body Condition of Stiffness Matrix 12

1.5 Mass Properties of Rigid, Homogeneous Bodies 12

1.6 Estimation of Miscellaneous Masses 17

1.6.1 Estimating the Weight (or Mass) of a Building 17

1.6.2 Added Mass of Fluid for Fully Submerged Tubular Sections 18

1.6.3 Added Fluid Mass and Damping for Bodies Floating in Deep Water 20

1.7 Degrees of Freedom 20

1.7.1 Static Degrees of Freedom 20

1.7.2 Dynamic Degrees of Freedom 21

1.8 Modeling Structural Systems 22

1.8.1 Levels of Abstraction 22

1.8.2 Transforming Continuous Systems into Discrete Ones Heuristic Method 25

1.8.3 Direct Superposition Method 25

1.8.4 Direct Stiffness Approach 26

1.8.5 Flexibility Approach 27

1.8.6 Viscous Damping Matrix 29
Contents

1.9 Fundamental Dynamic Principles for a Rigid Body 31
 1.9.1 Inertial Reference Frames 31
 1.9.2 Kinematics of Motion 31
 Cardanian Rotation 32
 Eulerian Rotation 33
 1.9.3 Rotational Inertia Forces 34
 1.9.4 Newton's Laws 35
 (a) Rectilinear Motion 35
 (b) Rotational Motion 36
 1.9.5 Kinetic Energy 36
 1.9.6 Conservation of Linear and Angular Momentum 36
 (a) Rectilinear Motion 37
 (b) Rotational Motion 37
 1.9.7 D'Alembert's Principle 37
 1.9.8 Extension of Principles to System of Particles and
 Deformable Bodies 38
 1.9.9 Conservation of Momentum versus
 Conservation of Energy 38
 1.9.10 Instability of Rigid Body Spinning Freely in Space 39

1.10 Elements of Analytical Mechanics 39
 1.10.1 Generalized Coordinates and Its Derivatives 40
 1.10.2 Lagrange's Equations 42
 (a) Elastic Forces 42
 (b) Damping Forces 43
 (c) External Loads 44
 (d) Inertia Forces 45
 (e) Combined Virtual Work 45

2 Single Degree of Freedom Systems 55
 2.1 The Damped SDOF Oscillator 55
 2.1.1 Free Vibration: Homogeneous Solution 56
 Underdamped Case ($\xi < 1$) 57
 Critically Damped Case ($\xi = 1$) 58
 Overdamped Case ($\xi > 1$) 59
 2.1.2 Response Parameters 59
 2.1.3 Homogeneous Solution via Complex Frequencies:
 System Poles 60
 2.1.4 Free Vibration of an SDOF System with
 Time-Varying Mass 61
 2.1.5 Free Vibration of SDOF System with
 Frictional Damping 63
 (a) System Subjected to Initial Displacement 64
 (b) Arbitrary Initial Conditions 65
 2.2 Phase Portrait: Another Way to View Systems 67
 2.2.1 Preliminaries 67
 2.2.2 Fundamental Properties of Phase Lines 69
 Trajectory Arrows 69
 Intersection of Phase Lines with Horizontal Axis 70
 Asymptotic Behavior at Singular Points and Separatrix 70
 Period of Oscillation 71
Contents

2.2.3 Examples of Application 71
 Phase Lines of a Linear SDOF System 71
 Ball Rolling on a Smooth Slope 71
2.3 Measures of Damping 73
 2.3.1 Logarithmic Decrement 74
 2.3.2 Number of Cycles to 50% Amplitude 75
 2.3.3 Other Forms of Damping 76
2.4 Forced Vibrations 76
 2.4.1 Forced Vibrations: Particular Solution 76
 (a) Heuristic Method 77
 (b) Variation of Parameters Method 78
 2.4.2 Forced Vibrations: General Solution 79
 2.4.3 Step Load of Infinite Duration 80
 2.4.4 Step Load of Finite Duration (Rectangular Load, or Box Load) 81
 2.4.5 Impulse Response Function 81
 2.4.6 Arbitrary Forcing Function: Convolution 83
 Convolution Integral 83
 Time Derivatives of the Convolution Integral 84
 Convolution as a Particular Solution 84
2.5 Support Motion in SDOF Systems 85
 2.5.1 General Considerations 85
 2.5.2 Response Spectrum 88
 Tripartite Spectrum 88
 2.5.3 Ship on Rough Seas, or Car on Bumpy Road 89
2.6 Harmonic Excitation: Steady-State Response 92
 2.6.1 Transfer Function Due to Harmonic Force 92
 2.6.2 Transfer Function Due to Harmonic Support Motion 96
 2.6.3 Eccentric Mass Vibrator 100
 Experimental Observation 101
 2.6.4 Response to Suddenly Applied Sinusoidal Load 102
 2.6.5 Half-Power Bandwidth Method 103
 Application of Half-Power Bandwidth Method 105
2.7 Response to Periodic Loading 106
 2.7.1 Periodic Load Cast in Terms of Fourier Series 106
 2.7.2 Nonperiodic Load as Limit of Load with Infinite Period 107
 2.7.3 System Subjected to Periodic Loading: Solution in the Time Domain 109
 2.7.4 Transfer Function versus Impulse Response Function 111
 2.7.5 Fourier Inversion of Transfer Function by Contour Integration 111
 Location of Poles, Fourier Transforms, and Causality 113
 2.7.6 Response Computation in the Frequency Domain 114
 (1) Trailing Zeros 115
 (2) Exponential Window Method: The Preferred Strategy 115
2.8 Dynamic Stiffness or Impedance 115
 2.8.1 Connection of Impedances in Series and/or Parallel Standard Solid 118
Contents

2.9 Energy Dissipation through Damping

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.1 Viscous Damping</td>
<td>119</td>
</tr>
<tr>
<td>Instantaneous Power and Power Dissipation</td>
<td>119</td>
</tr>
<tr>
<td>Human Power</td>
<td>120</td>
</tr>
<tr>
<td>Average Power Dissipated in Harmonic Support Motion</td>
<td>120</td>
</tr>
<tr>
<td>Ratio of Energy Dissipated to Energy Stored</td>
<td>121</td>
</tr>
<tr>
<td>Hysteresis Loop for Spring–Dashpot System</td>
<td>122</td>
</tr>
<tr>
<td>2.9.2 Hysteretic Damping</td>
<td>123</td>
</tr>
<tr>
<td>Ratio of Energy Dissipated to Energy Stored</td>
<td>123</td>
</tr>
<tr>
<td>Instantaneous Power and Power Dissipation via the Hilbert Transform</td>
<td>124</td>
</tr>
<tr>
<td>2.9.3 Power Dissipation during Broadband Base Excitation</td>
<td>124</td>
</tr>
<tr>
<td>2.9.4 Comparing the Transfer Functions for Viscous and Hysteretic Damping</td>
<td>125</td>
</tr>
<tr>
<td>Best Match between Viscous and Hysteretic Oscillator</td>
<td>126</td>
</tr>
<tr>
<td>2.9.5 Locus of Viscous and Hysteretic Transfer Function</td>
<td>127</td>
</tr>
</tbody>
</table>

3 Multiple Degree of Freedom Systems

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Multidegree of Freedom Systems</td>
<td>131</td>
</tr>
<tr>
<td>3.1.1 Free Vibration Modes of Undamped MDOF Systems</td>
<td>131</td>
</tr>
<tr>
<td>Orthogonality Conditions</td>
<td>132</td>
</tr>
<tr>
<td>Normalized Eigenvectors</td>
<td>134</td>
</tr>
<tr>
<td>3.1.2 Expansion Theorem</td>
<td>134</td>
</tr>
<tr>
<td>3.1.3 Free Vibration of Undamped System Subjected to Initial Conditions</td>
<td>137</td>
</tr>
<tr>
<td>3.1.4 Modal Partition of Energy in an Undamped MDOF System</td>
<td>137</td>
</tr>
<tr>
<td>3.1.5 What If the Stiffness and Mass Matrices Are Not Symmetric?</td>
<td>138</td>
</tr>
<tr>
<td>3.1.6 Physically Homogeneous Variables and Dimensionless Coordinates</td>
<td>139</td>
</tr>
<tr>
<td>3.2 Effect of Static Loads on Structural Frequencies: Π-Δ Effects</td>
<td>141</td>
</tr>
<tr>
<td>3.2.1 Effective Lateral Stiffness</td>
<td>141</td>
</tr>
<tr>
<td>3.2.2 Vibration of Cantilever Column under Gravity Loads</td>
<td>144</td>
</tr>
<tr>
<td>3.2.3 Buckling of Column with Rotations Prevented</td>
<td>145</td>
</tr>
<tr>
<td>3.2.4 Vibration of Cantilever Shear Beam</td>
<td>146</td>
</tr>
<tr>
<td>3.3 Estimation of Frequencies</td>
<td>146</td>
</tr>
<tr>
<td>3.3.1 Rayleigh Quotient</td>
<td>147</td>
</tr>
<tr>
<td>Rayleigh–Schwarz Quotients</td>
<td>149</td>
</tr>
<tr>
<td>3.3.2 Dunkerley–Mikhlin Method</td>
<td>149</td>
</tr>
<tr>
<td>Dunkerley’s Method for Systems with Rigid-Body Modes</td>
<td>154</td>
</tr>
<tr>
<td>3.3.3 Effect on Frequencies of a Perturbation in the Structural Properties</td>
<td>157</td>
</tr>
<tr>
<td>Perturbation of Mass Matrix</td>
<td>158</td>
</tr>
<tr>
<td>Perturbation of Stiffness Matrix</td>
<td>159</td>
</tr>
<tr>
<td>Qualitative Implications of Perturbation Formulas</td>
<td>160</td>
</tr>
</tbody>
</table>
3.4 Spacing Properties of Natural Frequencies

3.4.1 The Minimax Property of Rayleigh's Quotient
3.4.2 Interlacing of Eigenvalues for Systems with Single External Constraint
 Single Elastic External Support
3.4.3 Interlacing of Eigenvalues for Systems with Single Internal Constraint
 Single Elastic Internal Constraint
3.4.4 Number of Eigenvalues in Some Frequency Interval
 Sturm Sequence Property
 The Sign Count of the Shifted Stiffness Matrix
 Root Count for Dynamically Condensed Systems
 Generalization to Continuous Systems

3.5 Vibrations of Damped MDOF Systems

3.5.1 Vibrations of Proportionally Damped MDOF Systems
3.5.2 Proportional versus Nonproportional Damping Matrices
3.5.3 Conditions under Which a Damping Matrix Is Proportional
3.5.4 Bounds to Coupling Terms in Modal Transformation
3.5.5 Rayleigh Damping
3.5.6 Caughey Damping
3.5.7 Damping Matrix Satisfying Prescribed Modal Damping Ratios
3.5.8 Construction of Nonproportional Damping Matrices
3.5.9 Weighted Modal Damping: The Biggs–Roësset Equation

3.6 Support Motions in MDOF Systems

3.6.1 Structure with Single Translational DOF at Each Mass Point
 Solution by Modal Superposition (Proportional Damping)
3.6.2 MDOF System Subjected to Multicomponent Support Motion
3.6.3 Number of Modes in Modal Summation
3.6.4 Static Correction
3.6.5 Structures Subjected to Spatially Varying Support Motion

3.7 Nonclassical, Complex Modes

3.7.1 Quadratic Eigenvalue Problem
3.7.2 Poles or Complex Frequencies
3.7.3 Doubled-Up Form of Differential Equation
3.7.4 Orthogonality Conditions
3.7.5 Modal Superposition with Complex Modes
3.7.6 Computation of Complex Modes

3.8 Frequency Domain Analysis of MDOF Systems

3.8.1 Steady-State Response of MDOF Systems to Structural Loads
3.8.2 Steady-State Response of MDOF System Due to Support Motion
3.8.3 In-Phase, Antiphase, and Opposite-Phase Motions 231
3.8.4 Zeros of Transfer Functions at Point of Application of Load 233
3.8.5 Steady-State Response of Structures with Hysteretic Damping 234
3.8.6 Transient Response of MDOF Systems via Fourier Synthesis 235
3.8.7 Decibel Scale 236
3.8.8 Reciprocity Principle 236
3.9 Harmonic Vibrations Due to Vortex Shedding 238
3.10 Vibration Absorbers 239
 3.10.1 Tuned Mass Damper 239
 3.10.2 Lanchester Mass Damper 243
 3.10.3 Examples of Application of Vibration Absorbers 244
 3.10.4 Torsional Vibration Absorber 249

4 Continuous Systems 251
 4.1 Mathematical Characteristics of Continuous Systems 251
 4.1.1 Taut String 251
 4.1.2 Rods and Bars 252
 4.1.3 Bending Beam, Rotational Inertia Neglected 252
 4.1.4 Bending Beam, Rotational Inertia Included 254
 4.1.5 Timoshenko Beam 254
 4.1.6 Plate Bending 256
 4.1.7 Vibrations in Solids 257
 4.1.8 General Mathematical Form of Continuous Systems 258
 4.1.9 Orthogonality of Modes in Continuous Systems 259
 4.2 Exact Solutions for Simple Continuous Systems 260
 4.2.1 Homogeneous Rod 260
 Normal Modes of a Finite Rod 262
 Fixed–Fixed Rod 262
 Free–Free Rod 263
 Fixed–Free Rod 264
 Normal Modes of a Rod without Solving a Differential Equation 264
 Orthogonality of Rod Modes 265
 4.2.2 Euler–Bernoulli Beam (Bending Beam) 267
 Normal Modes of a Finite-Length Euler–Bernoulli Beam 268
 Simply Supported Beam 269
 Other Boundary Conditions 269
 Normal Modes of a Free–Free Beam 270
 Normal Modes of a Cantilever Beam 273
 Orthogonality Conditions of a Bending Beam 274
 Strain and Kinetic Energies of a Beam 274
 4.2.3 Bending Beam Subjected to Moving Harmonic Load 274
 Homogeneous Solution 275
 Particular Solution 275
 4.2.4 Nonuniform Bending Beam 277
Contents

4.2.5 Nonclassical Modes of Uniform Shear Beam 279
Dynamic Equations of Shear Beam 280
Modes of Rotationally Unrestrained Shear Beam 281
Concluding Observations 287

4.2.6 Inhomogeneous Shear Beam 287
Solution for Shear Modulus Growing Unboundedly with Depth 288
Finite Layer of Inhomogeneous Soil 289
Special Case: Shear Modulus Zero at Free Surface 290
Special Case: Linearly Increasing Shear Wave Velocity 291

4.2.7 Rectangular Prism Subjected to SH Waves 292
Normal Modes 292
Forced Vibration 293

4.2.8 Cones, Frustums, and Horns 295
(a) Exponential Horn 296
(b) Frustum Growing as a Power of the Axial Distance 299
(c) Cones of Infinite Depth with Bounded Growth of Cross Section 301

4.2.9 Simply Supported, Homogeneous, Rectangular Plate 302
Orthogonality Conditions of General Plate 302
Simply Supported, Homogeneous Rectangular Plate 303

4.3 Continuous, Wave-Based Elements (Spectral Elements) 305
4.3.1 Impedance of a Finite Rod 306
4.3.2 Impedance of a Semi-infinite Rod 311
4.3.3 Viscoelastic Rod on a Viscous Foundation (Damped Rod) 311
Stress and Velocity 313
Power Flow 314

4.3.4 Impedance of a Euler Beam 318
4.3.5 Impedance of a Semi-infinite Beam 322
4.3.6 Infinite Euler Beam with Springs at Regular Intervals 323
Cutoff Frequencies 326
Static Roots 327

4.3.7 Semi-infinite Euler Beam Subjected to Bending Combined with Tension 328
Power Transmission 331
Power Transmission after Evanescent Wave Has Decayed 331

5 Wave Propagation 333
5.1 Fundamentals of Wave Propagation 333
5.1.1 Waves in Elastic Bodies 333
5.1.2 Normal Modes and Dispersive Properties of Simple Systems 334
An Infinite Rod 334
Gravity Waves in a Deep Ocean 336
An Infinite Bending Beam 337
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A Bending Beam on an Elastic Foundation</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>A Bending Beam on an Elastic Half-Space</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Elastic Thick Plate (Mindlin Plate)</td>
<td>341</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Standing Waves, Wave Groups, Group Velocity, and Wave Dispersion</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>Standing Waves</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>Groups and Group Velocity</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>Wave Groups and the Beating Phenomenon</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>Summary of Concepts</td>
<td>344</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Impedance of an Infinite Rod</td>
<td>345</td>
</tr>
<tr>
<td>5.2</td>
<td>Waves in Layered Media via Spectral Elements</td>
<td>348</td>
</tr>
<tr>
<td>5.2.1</td>
<td>SH Waves and Generalized Love Waves</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>(A) Normal Modes</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>(B) Source Problem</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>(C) Wave Amplification Problem</td>
<td>355</td>
</tr>
<tr>
<td>5.2.2</td>
<td>SV-P Waves and Generalized Rayleigh Waves</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>Normal Modes</td>
<td>362</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Stiffness Matrix Method in Cylindrical Coordinates</td>
<td>362</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Accurate Integration of Wavenumber Integrals</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>Maximum Wavenumber for Truncation and Layer Coupling</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>Static Asymptotic Behavior: Tail of Integrals</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Wavenumber Step</td>
<td>369</td>
</tr>
<tr>
<td>6</td>
<td>Numerical Methods</td>
<td>371</td>
</tr>
<tr>
<td>6.1</td>
<td>Normal Modes by Inverse Iteration</td>
<td>371</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Fundamental Mode</td>
<td>371</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Higher Modes: Gram–Schmidt Sweeping Technique</td>
<td>374</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Inverse Iteration with Shift by Rayleigh Quotient</td>
<td>374</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Improving Eigenvectors after Inverse Iteration</td>
<td>376</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Inverse Iteration for Continuous Systems</td>
<td>377</td>
</tr>
<tr>
<td>6.2</td>
<td>Method of Weighted Residuals</td>
<td>378</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Point Collocation</td>
<td>381</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Sub-domain</td>
<td>381</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Least Squares</td>
<td>381</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Galerkin</td>
<td>381</td>
</tr>
<tr>
<td>6.3</td>
<td>Rayleigh–Ritz Method</td>
<td>384</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Boundary Conditions and Continuity Requirements in Rayleigh–Ritz</td>
<td>385</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Rayleigh–Ritz versus Galerkin</td>
<td>386</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Rayleigh–Ritz versus Finite Elements</td>
<td>387</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Rayleigh–Ritz Method for Discrete Systems</td>
<td>388</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Trial Functions versus True Modes</td>
<td>390</td>
</tr>
<tr>
<td>6.4</td>
<td>Discrete Systems via Lagrange’s Equations</td>
<td>391</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Assumed Modes Method</td>
<td>391</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Partial Derivatives</td>
<td>391</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Examples of Application</td>
<td>392</td>
</tr>
<tr>
<td>6.4.4</td>
<td>What If Some of the Discrete Equations Remain Uncoupled?</td>
<td>399</td>
</tr>
</tbody>
</table>
Contents

6.5 Numerical Integration in the Time Domain 400

6.5.1 Physical Approximations to the Forcing Function 401
6.5.2 Physical Approximations to the Response 403
Constant Acceleration Method 403
Linear Acceleration Method 404
Newmark’s β Method 404
Impulse Acceleration Method 405

6.5.3 Methods Based on Mathematical Approximations 406
Multistep Methods for First-Order Differential Equations 407
Difference and Integration Formulas 409
Multistep Methods for Second-Order Differential Equations 409

6.5.4 Runge–Kutta Type Methods 410
Euler’s Method 411
Improved and Modified Euler Methods 411
The Normal Runge–Kutta Method 412

6.5.5 Stability and Convergence Conditions for Multistep Methods 413
Conditional and Unconditional Stability of Linear Systems 413

6.5.6 Stability Considerations for Implicit Integration Schemes 416

6.6 Fundamentals of Fourier Methods 417

6.6.1 Fourier Transform 417
6.6.2 Fourier Series 420
6.6.3 Discrete Fourier Transform 422
6.6.4 Discrete Fourier Series 423
6.6.5 The Fast Fourier Transform 426

6.6.6 Orthogonality Properties of Fourier Expansions 427
(a) Fourier Transform 427
(b) Fourier Series 427
(c) Discrete Fourier Series 427

6.6.7 Fourier Series Representation of a Train of Periodic Impulses 428
6.6.8 Wraparound, Folding, and Aliasing 428
6.6.9 Trigonometric Interpolation and the Fundamental Sampling Theorem 430

6.6.10 Smoothing, Filtering, Truncation, and Data Decimation 432
6.6.11 Mean Value 432
6.6.12 Parseval’s Theorem 433
6.6.13 Summary of Important Points 434
6.6.14 Frequency Domain Analysis of Lightly Damped or Undamped Systems 434
Exponential Window Method: The Preferred Tool 435

6.7 Fundamentals of Finite Elements 440

6.7.1 Gaussian Quadrature 441
Normalization 442
Contents

6 Integration in the Plane 444
- (a) Integral over a Rectangular Area 446
- (b) Integral over a Triangular Area 447
- (c) Curvilinear Triangle 448
- (d) Quadrilateral 450
- (e) Curvilinear Quadrilateral 451

Inadmissible Shapes 451

6.7 Finite Elements via Principle of Virtual Displacements 451
- (a) Consistency 454
- (b) Conformity 454
- (c) Rigid Body Test 454
- (d) Convergence (Patch Test) 454

6.7.4 Plate Stretching Elements (Plane Strain) 455
- (a) Triangular Element 455
- (b) Rectangular Element 457

6.7.5 Isoparametric Elements 459
- Plane Strain Curvilinear Quadrilaterals 459
- Cylindrical Coordinates 463

7 Earthquake Engineering and Soil Dynamics 481

7.1 Stochastic Processes in Soil Dynamics 481
- Expectations of a Random Process 481
- Functions of Random Variable 482
- Stationary Processes 482
- Ergodic Processes 483
- Spectral Density Functions 483
- Coherence Function 484
- Estimation of Spectral Properties 484
- Spatial Coherence of Seismic Motions 488
- Coherence Function Based on Statistical Analyses of Actual Earthquake Motions 488
- Wave Model for Random Field 490
- Simple Cross-Spectrum for SH Waves 490
- Stochastic Deconvolution 493

7.2 Earthquakes, and Measures of Quake Strength 494
- Magnitude 495
- Seismic Moment 495
- Moment Magnitude 497
- Seismic Intensity 497
- Seismic Risk: Gutenberg–Richter Law 499
- Direction of Intense Shaking 500

7.3 Ground Response Spectra 502
- Preliminary Concepts 502
- Tripartite Response Spectrum 504
- Design Spectra 505
- Design Spectrum in the style of ASCE/SEI-7-05 506
- Design Earthquake 506
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 Response of Soil Deposits to Blast Loads</td>
</tr>
<tr>
<td>76.1 Effects of Ground-Borne Blast Vibrations on Structures</td>
</tr>
<tr>
<td>Frequency Effects</td>
</tr>
<tr>
<td>Distance Effects</td>
</tr>
<tr>
<td>Structural Damage</td>
</tr>
<tr>
<td>8 Advanced Topics</td>
</tr>
<tr>
<td>8.1 The Hilbert Transform</td>
</tr>
<tr>
<td>8.1.1 Definition</td>
</tr>
<tr>
<td>8.1.2 Fourier Transform of the Sign Function</td>
</tr>
<tr>
<td>8.1.3 Properties of the Hilbert Transform</td>
</tr>
<tr>
<td>8.1.4 Causal Functions</td>
</tr>
<tr>
<td>8.1.5 Kramers–Kronig Dispersion Relations</td>
</tr>
<tr>
<td>Minimum Phase Systems</td>
</tr>
<tr>
<td>Time-Shifted Causality</td>
</tr>
<tr>
<td>8.2 Transfer Functions, Normal Modes, and Residues</td>
</tr>
<tr>
<td>8.2.1 Poles and Zeros</td>
</tr>
<tr>
<td>8.2.2 Special Case: No Damping</td>
</tr>
<tr>
<td>8.2.3 Amplitude and Phase of the Transfer Function</td>
</tr>
<tr>
<td>8.2.4 Normal Modes versus Residues</td>
</tr>
<tr>
<td>8.3 Correspondence Principle</td>
</tr>
<tr>
<td>8.4 Numerical Correspondence of Damped and Undamped Solutions</td>
</tr>
<tr>
<td>8.4.1 Numerical Quadrature Method</td>
</tr>
<tr>
<td>8.4.2 Perturbation Method</td>
</tr>
<tr>
<td>8.5 Gyroscopic Forces Due to Rotor Support Motions</td>
</tr>
<tr>
<td>8.6 Rotationally Periodic Structures</td>
</tr>
<tr>
<td>8.6.1 Structures Composed of Identical Units and with Polar Symmetry</td>
</tr>
<tr>
<td>8.6.2 Basic Properties of Block-Circulant Matrices</td>
</tr>
<tr>
<td>8.6.3 Dynamics of Rotationally Periodic Structures</td>
</tr>
<tr>
<td>8.7 Spatially Periodic Structures</td>
</tr>
<tr>
<td>8.7.1 Method 1: Solution in Terms of Transfer Matrices</td>
</tr>
<tr>
<td>8.7.2 Method 2: Solution via Static Condensation and Cloning</td>
</tr>
<tr>
<td>Example: Waves in a Thick Solid Rod Subjected to Dynamic Source</td>
</tr>
<tr>
<td>8.7.3 Method 3: Solution via Wave Propagation Modes</td>
</tr>
<tr>
<td>Example 1: Set of Identical Masses Hanging from a Taut String</td>
</tr>
<tr>
<td>Example 2: Infinite Chain of Viscoelastically Supported Masses and Spring-Dashpots</td>
</tr>
<tr>
<td>8.8 The Discrete Shear Beam</td>
</tr>
<tr>
<td>8.8.1 Continuous Shear Beam</td>
</tr>
<tr>
<td>8.8.2 Discrete Shear Beam</td>
</tr>
</tbody>
</table>
Contents

9 Mathematical Tools 619

9.1 Dirac Delta and Related Singularity Functions 619
9.1.1 Related Singularity Functions 620
Doublet Function 620
Dirac Delta Function 620
Unit Step Function (Heaviside Function) 620
Unit Ramp Function 621

9.2 Functions of Complex Variables: A Brief Summary 621

9.3 Wavelets 626
9.3.1 Box Function 626
9.3.2 Hanning Bell (or Window) 626
9.3.3 Gaussian Bell 627
9.3.4 Modulated Sine Pulse (Antisymmetric Bell) 628
9.3.5 Ricker Wavelet 628

9.4 Useful Integrals Involving Exponentials 630
9.4.1 Special Cases 630

9.5 Integration Theorems in Two and Three Dimensions 630
9.5.1 Integration by Parts 631
9.5.2 Integration Theorems 631
9.5.3 Particular Cases: Gauss, Stokes, and Green 633

9.6 Positive Definiteness of Arbitrary Square Matrix 633

9.7 Derivative of Matrix Determinant: The Trace Theorem 640

9.8 Circulant and Block-Circulant Matrices 642
9.8.1 Circulant Matrices 642
9.8.2 Block-Circulant Matrices 644

10 Problem Sets 647

Author Index 713
Subject Index 714
Preface

The material in this book slowly accumulated, accreted, and grew out of the many lectures on structural dynamics, soil dynamics, earthquake engineering, and structural mechanics that I gave at MIT in the course of several decades of teaching. At first these constituted mere handouts to the students, meant to clarify further the material covered in the lectures, but soon the notes transcended the class environment and began steadily growing in size and content as well as complication. Eventually, the size was such that I decided that it might be worthwhile for these voluminous class notes to see the light as a regular textbook, but the sheer effort required to clean out and polish the text so as to bring it up to publication standards demanded too much of my time and entailed sacrifices elsewhere in my busy schedule that I simply couldn’t afford. Or expressing it in MIT-speak, I applied the Principle of Selective Neglect. But after years (and even decades) of procrastination, eventually I finally managed to break the vicious cycle of writer’s block and brought this necessary task to completion.

Make no mistake: the material covered in this book far exceeds what can be taught in any one-semester graduate course in structural dynamics or mechanical vibration, and indeed, even in a sequence of two such courses. Still, it exhaustively covers the fundamentals in vibration theory, and then goes on well beyond the standard fare in – and conventional treatment of – a graduate course in structural dynamics, as a result of which most can (and should) be excluded from an introductory course outline, even if it can still be used for that purpose. Given the sheer volume of material, the text is admittedly terse and at times rather sparse in explanations, but that is deliberate, for otherwise the book would have been unduly long, not to mention tedious to read and follow. Thus, the reader is expected to have some background in the mechanical sciences such that he or she need not be taken by the hand. Still, when used in the classroom for a first graduate course, it would suffice to jump over advanced sections, and do so without sacrifices in the clarity and self-sufficiency of the retained material.

In a typical semester, I would start by reviewing the basic principles of dynamics, namely Newton’s laws, impulse and conservation of linear and angular momenta, D’Alembert’s principle, the concept of point masses obtained by means of mass lumping and tributary areas, and most importantly, explicating the difference between static and dynamic degrees of freedom (or master–slave DOF), all while assuming small displacements and skipping initially over the section that deals with Lagrange’s equations. From
there on I would move on to cover the theory of single-DOF systems and devote just about half of the semester to that topic, inasmuch as multi-DOF systems and continuous systems can largely be regarded as generalizations of those more simple systems. In the lectures, I often interspersed demonstration experiments to illustrate basic concepts and made use of brief Matlab® models to demonstrate the application of the concepts being learned. I also devoted a good number of lectures to explain harmonic analysis and the use of complex Fourier series, which in my view is one of the most important yet difficult concepts for students to comprehend and assimilate properly. For that purpose, I usually started by explaining the concepts of amplitude and phase by considering a simple complex number of the form $z = x + iy$, and then moving on to see what those quantities would be for products and ratios of complex numbers of the form $z = z_1 z_2$, $z = z_1 / z_2 = |z_1| |z_2| e^{i(\theta_1 - \theta_2)}$, and in particular $z = 1/\overline{z_2} = e^{-i\phi} / \overline{z_2}$. I completely omitted the use of sine and cosine Fourier series, and considered solely the complex exponential form of Fourier series and the Fourier transform, which I used in the context of periodic loads, and then in the limit of an infinite period, namely a transient load. From there the relationship between impulse response function and transfer functions arose naturally. In the context of harmonic analysis, I would also demonstrate the great effectiveness of the (virtually unknown) Exponential Window Method (in essence, a numerical implementation of the Laplace Transform) for the solution of lightly damped system via complex frequencies, which simultaneously disposes of the problems of added trailing zeroes and undesired periodicity of the response function, and thus ultimately of the “wraparound” problem, that is, causality.

Discrete systems would then take me some two thirds of the second half of the semester, focusing on classical modal analysis and harmonic analysis, and concluding with some lectures on the vibration absorber. This left me just about one third of the half semester (i.e., some two to three weeks) for the treatment of continuous systems, at which time I would introduce the use of Lagrange’s equations as a tool to solve continuous media by discretizing those systems via the Assumed Modes Method.

In the early version of the class lecture notes I included support motions and ground response spectra as part of the single-DOF lectures. However, as the material dealing with earthquake engineering grew in size and extent, in due time I moved that material out to a separate section, even if I continued to make seamless use of parts of those in my classes.

Beyond lecture materials for the classroom, this book contains extensive materials not included in competing books on structural dynamics, of which there already exist a plethora of excellent choices, and this was the main reason why I decided it was worthwhile to publish it. For this reason, I also expect this book to serve as a valuable reference for practicing engineers, and perhaps just as importantly, to aspiring young PhD graduates with academic aspirations in the fields of structural dynamics, soil dynamics, earthquake engineering, or mechanical vibration.

Last but not least, I wish to acknowledge my significant indebtedness and gratitude to Prof. José Manuel Roësset, now retired from the Texas A&M University, for his most invaluable advice and wisdom over all of the years that have spanned my academic career at MIT. It was while I was a student and José a tenured professor here that I learned with him mechanics and dynamics beyond my wildest expectations and...
dreams, and it could well be said that everything I know and acquired expertise in is ultimately due to him, and that in a very real sense he has been the ghost writer and coauthor of this book.

In problems relating to vibrations, nature has provided us with a range of mysteries which for their elucidation require the exercise of a certain amount of mathematical dexterity. In many directions of engineering practice, that vague commodity known as common sense will carry one a long way, but no ordinary mortal is endowed with an inborn instinct for vibrations; mechanical vibrations in general are too rapid for the utilization of our sense of sight, and common sense applied to these phenomena is too common to be other than a source of danger.

C. E. Inglis, FRS, James Forrest Lecture, 1944
Notation and Symbols

Although we may from time to time change the meaning of certain symbols and deviate temporarily from the definitions given in this list, by and large we shall adopt in this book the notation given herein, and we shall do so always in the context of an upright, right-handed coordinate system.

Vectors and matrices: we use **boldface** symbols, while non-boldface symbols (in italics) are scalars. Capital letters denote matrices, and lowercase letters are vectors. (Equivalence with blackboard symbols: \(q \) is the same as \(\mathbf{q} \), and \(M \) is the same as \(
abla \)).

Special Constants (non-italic)

- \(e \) Natural base of logarithms \(= 2.71828182845905… \)
- \(i \) Imaginary unit \(= \sqrt{-1} \)
- \(\pi \) 3.14159265358979…

Roman Symbols

- \(a \) Acceleration
- \(\mathbf{a} \) Acceleration vector
- \(A \) Amplitude of a transfer function or a wave; also area or cross section
- \(A_s \) Shear area
- \(b \) Body load, \(b = b(x,t) \)
- \(\mathbf{b} \) Vector of body loads, \(\mathbf{b} = \mathbf{b}(x,t) \)
- \(c \) Viscous damping (dashpot) constant
- \(C_1, C_2 \) Constants of integration
- \(C_S \) Shear wave velocity \(\left(\sqrt{G/\rho} \right) \)
- \(C_r \) Rod wave velocity \(\left(\sqrt{E/\rho} \right) \)
- \(C_f \) Flexural wave velocity \(\left(\sqrt{C_r \omega} \right) \)
- \(\mathbf{C} \) Viscous damping matrix
- \(\mathbf{C} \) Modally transformed, diagonal damping matrix \(\left(\Phi^T C \Phi \right) \)
- \(D \) Diameter
- \(f \) Frequency in Hz; it may also denote a flexibility
Notation and Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_d</td>
<td>Damped natural frequency, in Hz</td>
</tr>
<tr>
<td>f_n</td>
<td>Natural frequency, in Hz</td>
</tr>
<tr>
<td>\hat{e}</td>
<td>Cartesian, unit base vector ${\hat{e}_1, \hat{e}_2, \hat{e}_3 = \hat{i}, \hat{j}, \hat{k}}$</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus, $E = 2G(1 + \nu)$</td>
</tr>
<tr>
<td>E_d</td>
<td>Energy dissipated</td>
</tr>
<tr>
<td>E_s</td>
<td>Elastic energy stored</td>
</tr>
<tr>
<td>\hat{g}</td>
<td>Curvilinear base vector ${\hat{g}_1, \hat{g}_2, \hat{g}_3}$</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration of gravity</td>
</tr>
<tr>
<td>$g(t)$</td>
<td>Unit step-load response function</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
</tr>
<tr>
<td>h</td>
<td>Depth or thickness of beam, element, or plate</td>
</tr>
<tr>
<td>$h(t)$</td>
<td>Impulse response function</td>
</tr>
<tr>
<td>H</td>
<td>Height</td>
</tr>
<tr>
<td>$H(\omega)$</td>
<td>Transfer function (frequency response function for a unit input)</td>
</tr>
<tr>
<td>I</td>
<td>Area moment of inertia</td>
</tr>
<tr>
<td>j</td>
<td>Most often an index for a generic mode</td>
</tr>
<tr>
<td>J</td>
<td>Mass moment of inertia</td>
</tr>
<tr>
<td>k</td>
<td>Usually stiffness, but sometimes a wavenumber</td>
</tr>
<tr>
<td>k_c</td>
<td>Complex stiffness or impedance</td>
</tr>
<tr>
<td>K</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>K</td>
<td>Stiffness matrix</td>
</tr>
<tr>
<td>L</td>
<td>Length of string, rod, beam, member, or element</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>M</td>
<td>Mass matrix</td>
</tr>
<tr>
<td>n</td>
<td>Abbreviation for natural; also, generic degree of freedom</td>
</tr>
<tr>
<td>N</td>
<td>Total number of degrees of freedom</td>
</tr>
<tr>
<td>$p(t)$</td>
<td>Applied external force</td>
</tr>
<tr>
<td>$\tilde{p}(\omega)$</td>
<td>Fourier transform of $p(t)$, i.e., load in the frequency domain</td>
</tr>
<tr>
<td>p_0</td>
<td>Force magnitude</td>
</tr>
<tr>
<td>p</td>
<td>External force vector, $p = p(t)$</td>
</tr>
<tr>
<td>$q(t)$</td>
<td>Generalized coordinate, or modal coordinate</td>
</tr>
<tr>
<td>$\mathbf{q}(t)$</td>
<td>Vector of generalized coordinates</td>
</tr>
<tr>
<td>r</td>
<td>Tuning ratio $r = \omega / \omega_n$; radial coordinate</td>
</tr>
<tr>
<td>r</td>
<td>Radial position vector</td>
</tr>
<tr>
<td>R</td>
<td>Radius of gyration or geometric radius</td>
</tr>
<tr>
<td>S_a</td>
<td>Ground response spectrum for absolute acceleration (pseudo-acceleration)</td>
</tr>
<tr>
<td>S_d</td>
<td>Ground response spectrum for relative displacements</td>
</tr>
<tr>
<td>S_v</td>
<td>Ground response spectrum for relative pseudo-velocity</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_d</td>
<td>Time duration of load</td>
</tr>
<tr>
<td>t_p</td>
<td>Period of repetition of load</td>
</tr>
<tr>
<td>T</td>
<td>Period ($= 1/f$), or duration</td>
</tr>
<tr>
<td>T_d</td>
<td>Damped natural period</td>
</tr>
</tbody>
</table>
Notation and Symbols

- T_n: Natural period
- $u(t)$: Absolute displacement. In general, $u = u(x, t) = u(x, y, z, t)$
- $\hat{u}(\omega)$: Fourier transform of $u(t)$; frequency response function
- u_0: Initial displacement, or maximum displacement
- \dot{u}_0: Initial velocity
- u_g: Ground displacement
- u_h: Homogeneous solution (free vibration)
- u_p: Particular solution
- u_{p0}: Initial displacement value (not condition!) of particular solution
- \dot{u}_{p0}: Initial velocity value (not condition!) of particular solution
- \mathbf{u}: Absolute displacement vector
- $\mathbf{\dot{u}}$: Absolute velocity vector
- $\mathbf{\ddot{u}}$: Absolute acceleration vector
- v: Relative displacement (scalar)
- \mathbf{v}: Relative displacement vector
- V: Potential energy; also, magnitude of velocity
- V_{ph}: Phase velocity
- x, y, z: Cartesian spatial coordinates
- \mathbf{x}: Position vector
- Z: Dynamic stiffness or impedance (ratio of complex force to complex displacement)

Greek Symbols

- α: Angular acceleration
- $\mathbf{\alpha}$: Angular acceleration vector
- γ: Specific weight; direction cosines; participation factors
- $\delta(t)$: Dirac-delta function (singularity function)
- Δ: Determinant, or when used as a prefix, finite increment such as Δt
- ϵ: Accidental eccentricity
- λ: Lamé constant $\lambda = 2Gv/(1 - 2v)$; also wavelength $\lambda = V_{ph}/f$
- ϕ_j: ith component of jth mode of vibration
- ϕ_j: Generic, jth mode of vibration, with components $\phi_j = \{\phi_{ji}\}$
- ϕ: Rotational displacement or degree of freedom
- Φ: Modal matrix, $\Phi = \{\phi\} = \{\phi_j\}$
- θ: Azimuth; rotational displacement, or rotation angle
- ρ: Mass density
- ρ_w: Mass density of water
- ξ: Fraction of critical damping; occasionally dimensionless coordinate
- μ: Mass ratio
- τ: Time, usually as dummy variable of integration
- ν: Poisson’s ratio
Notation and Symbols

\(\omega \)
Driving (operational) frequency, in radians/second

\(\omega_d \)
Damped natural frequency

\(\omega_n \)
Natural frequency, in rad/s

\(\omega_j \)
Generic \(j \)th modal frequency, in rad/s, or generic Fourier frequency

\(\omega \)
Rotational velocity vector

\(\Omega \)
Spectral matrix (i.e., matrix of natural frequencies), \(\Omega = \{ \omega_j \} \)

Derivatives, Integrals, Operators, and Functions

Temporal derivatives

\[
\frac{\partial u}{\partial t} = \dot{u}, \quad \frac{\partial^2 u}{\partial t^2} = \ddot{u}
\]

Spatial derivatives

\[
\frac{\partial u}{\partial x} = u', \quad \frac{\partial^2 u}{\partial x^2} = u''
\]

Convolution

\[
f \ast g = f(t) \ast g(t) = \int_0^T f(\tau) g(t-\tau) d\tau = \int_0^T f(t-\tau) g(\tau) d\tau
\]

Real and imaginary parts: If \(z = x + iy \) then \(x = \Re(z) \), \(y = \Im(z) \).

(Observe that the imaginary part does not include the imaginary unit!)

Signum function

\[
\text{sgn}(x-a) = \begin{cases}
1 & x > a \\
0 & x = a \\
-1 & x < a
\end{cases}
\]

Step load function

\[
\mathcal{H}(t-t_0) = \begin{cases}
1 & t > t_0 \\
\frac{1}{2} & t = t_0 \\
0 & t < t_0
\end{cases}
\]

Dirac-delta function

\[
\delta(t-t_0) = \begin{cases}
0 & t > t_0 \\
\infty & t = t_0 \\
0 & t < t_0
\end{cases}, \quad \int_{t_0-\varepsilon}^{t_0+\varepsilon} \delta(t-t_0) dt = 1, \quad \varepsilon > 0
\]

Kronecker delta

\[
\delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

Split summation

\[
\sum_{j=m}^{n} a_j = \frac{1}{2} a_m + a_{m+1} + \cdots + a_{n-1} + \frac{1}{2} a_n \quad \text{(first and last element halved)}
\]
Unit Conversions

Fundamental Units

<table>
<thead>
<tr>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Mass</td>
</tr>
<tr>
<td>(m)</td>
<td>(kg)</td>
</tr>
<tr>
<td>Length</td>
<td>Force</td>
</tr>
<tr>
<td>(ft)</td>
<td>(lb)</td>
</tr>
</tbody>
</table>

Length

Distance

- 1 m = 100 cm = 1000 mm
- 1 dm = 10 cm = 0.1 m

<table>
<thead>
<tr>
<th>1 ft</th>
<th>1 yd</th>
<th>1 mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 in.</td>
<td>3 = 0.9144 m</td>
<td>5280 ft = 1609.344 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 in.</th>
<th>1 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.54 cm</td>
<td>30.48 cm</td>
</tr>
</tbody>
</table>

Volume

- 1 dm³ = 1 [l]

Until 1964, the liter (or litre) was defined as the volume occupied by 1 kg of water at 4°C = 1.000028 dm³. Currently, it is defined as being exactly 1 dm³.

<table>
<thead>
<tr>
<th>1 gallon</th>
<th>1 pint</th>
<th>1 cu-ft</th>
<th>1 quart</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 3.785412 dm³</td>
<td>= 0.473176 dm³</td>
<td>= 28.31685 dm³</td>
<td>= 2 pints = 0.03342 ft³</td>
</tr>
</tbody>
</table>

1 quart = 2 pints = 0.03342 ft³

1 gallon = 3.785412 dm³

1 cu-ft = 28.31685 dm³

1 pint = 0.473176 dm³
Mass

1 (kg) = 1000 g
1 (t) = 1000 kg (metric ton)
1 Mg = 1 slug = 32.174 lb-mass
1 Mg = 14.594 kg

1 lb-mass	= 0.45359237 kg (exact!)
1 lb-mass	= 453.59237 g
1 kg	= 2.2046226 lb-mass

Time

Second (s), also (sec)

Derived Units

Acceleration of Gravity

\[G = 9.80665 \text{ m/s}^2 \text{ (exact normal value!)} \]
\[G = 980.665 \text{ cm/s}^2 \text{ (gals)} \]

Useful approximation:

\[g \text{ (in m/s}^2) = \pi^2 = 9.8696 \approx 10 \]

Density and Specific Weight

1 kg/dm³ = 1000 kg/m³ = 62.428 lb/ft³
= 8.345 lb/gal
= 1.043 lb/pint

1 ounce/ft³ = 1.0012 kg/m³ (an interesting near coincidence!)

Some specific weights and densities (approximate values):

<table>
<thead>
<tr>
<th>Spec. weight</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel = 490 lb/ft³ = 7850 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Concrete = 150 lb/ft³ = 2400 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Water = 62.4 lb/ft³ = 1000 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Air = 0.0765 lb/ft³ = 1.226 kg/m³</td>
<td></td>
</tr>
</tbody>
</table>
Unit Conversions

Force

1 N [Newton] = force required to accelerate 1 kg by 1 m/s²

- 9.81 N = 1 kg-force = 1 kN
 - ("kilopond"; widely used in Europe in the past, it is a metric, non-SSI unit!)
- 1 lb = 4.44822 N = 0.45359 kg-force

Pressure

- 1 Pa = 1 N/m²
- 1 kPa = 10¹ Pa
- 1 bar = 10² Pa
- 1 ksi = 6.89476 MPa

Normal atmospheric pressure = 1.01325 bar (15°C, sea level)

- 1 kPa = 101.325 kPa (exact!)
- 1 bar = 14.696 lb/in² = 0.014696 ksi
- 1 ksi = 6.89476 MPa = 2116.22 lb/ft²

Power

- 1 kW = 1000 W = 1 kN·m/s
- 1 HP = 550 lb·ft/s = 0.707 BTU/s = 0.7457 kW
- 1 BTU/s = 778.3 lb·ft/s = 1.055 kW
- 1 CV = 75 kp × m/s = 0.7355 kW “Cheval Vapeur”

Temperature

- \(T(°F) = 32 + \frac{9}{5} T(°C) \) (some exact values: -40°F = -40°C, 32°F = 0°C and 50°F = 10°C)