Notation Index

Introduction

\{ \cdots \} set of elements 3
\{ \cdots \mid \cdots \} set defined by property 3
\in is an element of 3
\not\in is not an element of 3
\subseteq is a subset of 3
\not\subseteq is not a subset of 3
\subset is a proper subset of 3
\not\subset is not a proper subset of 3
\cup union 3
\cap intersection 3
\setminus difference 3
\Delta symmetric difference 3
\max(A) maximum of A 3
\min(A) minimum of A 3
\times cartesian product 3
\langle \cdots \rangle tuple 3
A^k kth power of A 3
A^{\omega_1} set of finite sequences from A 3
x^k coordinate of x 3
S^{(k)} kth column of S 3
\emptyset empty set 3
N set of natural numbers 3
\oplus direct sum 3
\left| A \right| cardinality of A 3
\aleph_0, \aleph_1 cardinal numbers 3
2^{\aleph_0} cardinality of continuum 3
\varphi : A \rightarrow B function notation 3
\downarrow converges 3
\uparrow diverges 3
x \mapsto \varphi(x) x is mapped to \varphi(x) 3
\text{dom}(\varphi) domain of \varphi 3
\text{rng}(\varphi) range of \varphi 3
\chi_S characteristic function of S 3
\upharpoonright restriction 3
\text{lim}_{n \to \infty} limit 4
\text{lim sup}_{n \to \infty} limit supremum 4
\text{lim inf}_{n \to \infty} limit infimum 4
\lambda f(x, y) lambda notation 4
\leq extension for functions 4
2^S power set of S 4
[\cdots] interval notation 4
(\cdots) interval notation 4
[\cdots) interval notation 4
\[\ldots \] interval notation 4
\[(a, \infty) \] interval notation 4
\[(-\infty, a] \] interval notation 4
\& and 4
\lor or 4
\neg, \neg \neg not 4
\rightarrow, \Rightarrow implies 4
\leftrightarrow, \Leftrightarrow if and only if 4
\exists existential quantifier 4
\forall universal quantifier 4
\bigwedge_{i=0}^{\sigma_1} finite conjunction 4
\bigvee_{i=0}^{\sigma_1} finite disjunction 4

Chapter I

\[\mu \] least number operator 7
\[\mathcal{R} \] class of recursive functions 7
\[\mathcal{P} \] class of partial recursive functions 9
\[\mathcal{S} \] space of strings 10
\[\mathcal{S}_f \] space of \(f \)-valued strings 10
\[\mathcal{S}_c \] space of strings with values \(\leq c \) 10
\[\mathcal{S}_b \] space of binary strings 10
\[\leq \] extension for strings 10
\[\text{len}(\sigma) \] length of string 10
\[\sigma \star \tau \] concatenation of strings 10
\[\mathcal{R}_f \] functions recursive in \(f \) 11
\[\leq_{T} \] Turing reducibility 11
\[\chi_{\mathcal{R}} \] characteristic function of relation 11
\[\varphi \] enumeration function 12
\[\phi^{(n)}_{\sigma}, \phi_{\sigma}, \phi^{(n)}_{\sigma} \] enumeration functionals 13

Chapter II

\[f, A \] degree of \(f, A \) 15
\[\equiv_{T} \] Turing equivalence 15
\[D \] degrees of unsolvability 15
\[\leq \] partial ordering on \(D \) 15
\[\join \] join operation on \(D \) 15
\[\mathcal{D} \] poset of degrees 15
\[\mathcal{D}^{\leq} \] usl of degrees 15
\[\emptyset \] degree of recursive functions 15
\[\mathcal{U}(\mathcal{A}) \] lub of finite set of degrees 15
\[\mathcal{R}(\mathcal{A}) \] glb of finite set of degrees 15
\[\mathcal{A} \mathcal{B} \] incomparability for degrees 17
\[p \prec q \] \(p \) refines \(q \) 19
\[p \perp q \] incompatibility for forcing conditions 19
\[|= \] satisfies 21
\[\models \] forces 21
\[\varepsilon_{\mathcal{A}} \] embedding 23
\[\cong \] isomorphism 23
\[\theta^{(n)} \] union of columns of \(\theta \) 24
\[\theta^{(n)} \] union of all but one column of \(\theta \) 24
Notation Index

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_{a_i}</td>
<td>classes of formulas of bounded complexity</td>
</tr>
<tr>
<td>$\text{Th}(\mathcal{A})$</td>
<td>elementary theory of \mathcal{A}</td>
</tr>
<tr>
<td>\subseteq</td>
<td>substructure</td>
</tr>
</tbody>
</table>

Chapter III

- $\Sigma^e_1, \Pi^e_1, \Delta^e_1$ levels of arithmetical hierarchy
- f' completion of f
- f^* jump of f
- f^{rec} set recursively isomorphic to f'
- f^{th} nth completion of f
- f^{th} nth jump of f
- $D[a,b]$ interval notation for D
- $\mathcal{A}[a,b]$ interval notation for \mathcal{A}
- $J[0,0']$ range of jump operator on $D[0,0']$
- \mathcal{A}^th poset of degrees with jump
- a^* inverse of a
- \mathcal{L}_n, H_n, I_n levels of high/low hierarchy

Chapter IV

- high, low, a-high, a-low, classification in high/low hierarchy
- $\mathcal{L}_n(a), H_n(a), I_n(a)$ levels of relativized high/low hierarchy
- $\mathcal{G}_n, \mathcal{G}_n(a), \mathcal{G}_n(a)$ levels of generalized high/low hierarchy
- Tot index set of total recursive functions
- $\text{Tot}(f)$ index set of total functions computable from f

Chapter V–XII

- σ, τ incompatibility for strings
- Id identity tree
- Ext extension subtree
- Sp splitting subtree
- Tot e-total subtree
- Nar narrow subtree
- Pt pointed subtree
- $\mathcal{D}_{\text{arith}}$ arithmetical degrees
- \equiv elementary equivalence
- \equiv_j congruence for n-tuples
- \equiv_u uniform subtree
- $\sigma^{(i)}$ ith coordinate of string of tuples
- $\text{tr}(\sigma \rightarrow \tau; \rho)$ transfer strings
- Diff differentiating subtree
- Tr transfer tree
- Exp expansion tree
- $L_\mathcal{A}, L_\mathcal{A}_1, L_\mathcal{A}_2$ languages
- \mathcal{N} second order arithmetic
- D^+_2 integers in model of second order arithmetic
- φ^{th} iterate of jump operation
- PE partial extension tree
Notation Index

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDiff</td>
<td>partial differentiating tree</td>
<td>184, 204</td>
</tr>
<tr>
<td>PSp</td>
<td>partial splitting tree</td>
<td>185, 204, 213</td>
</tr>
<tr>
<td>PTot</td>
<td>partial e-total tree</td>
<td>185</td>
</tr>
<tr>
<td>$E(x)$</td>
<td>e-state function</td>
<td>215</td>
</tr>
<tr>
<td>0_*</td>
<td>string of e consecutive zeroes</td>
<td>219</td>
</tr>
<tr>
<td>$I_{e, *}$</td>
<td>interval notation</td>
<td>222</td>
</tr>
<tr>
<td>$ht(T)$</td>
<td>height of T</td>
<td>223</td>
</tr>
<tr>
<td>$a(\xi), p(\xi)$</td>
<td>successor, predecessor of ξ</td>
<td>229</td>
</tr>
<tr>
<td>Init</td>
<td>initial tree</td>
<td>229</td>
</tr>
</tbody>
</table>

Appendices

- \leq_s admissible extension 282
- $=_0$ agree on coordinate 0 283
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable</td>
<td>140</td>
</tr>
<tr>
<td>accessible</td>
<td>265</td>
</tr>
<tr>
<td>active</td>
<td>203, 245</td>
</tr>
<tr>
<td>admissible extension</td>
<td>282</td>
</tr>
<tr>
<td>Admissibility Preservation Lemma</td>
<td>285</td>
</tr>
<tr>
<td>agree on coordinate i</td>
<td>273</td>
</tr>
<tr>
<td>algorithm</td>
<td>7, 9</td>
</tr>
<tr>
<td>Amalgamation Lemma</td>
<td>284</td>
</tr>
<tr>
<td>antiasymmetry</td>
<td>15</td>
</tr>
<tr>
<td>antichain</td>
<td>27, 28, 33, 93, 107</td>
</tr>
<tr>
<td>maximal</td>
<td>27, 28, 29, 52, 53, 107</td>
</tr>
<tr>
<td>trivial</td>
<td>27</td>
</tr>
<tr>
<td>arithmetic, model of</td>
<td>271</td>
</tr>
<tr>
<td>second order</td>
<td>168, 271</td>
</tr>
<tr>
<td>standard model</td>
<td>168, 271, 272</td>
</tr>
<tr>
<td>theory of</td>
<td>271</td>
</tr>
<tr>
<td>arithmetical degrees</td>
<td>113</td>
</tr>
<tr>
<td>hierarchy</td>
<td>35, 36</td>
</tr>
<tr>
<td>set</td>
<td>114</td>
</tr>
<tr>
<td>atom</td>
<td>268, 274</td>
</tr>
<tr>
<td>automorphism</td>
<td>94, 165, 177</td>
</tr>
<tr>
<td>base</td>
<td>93, 94, 146, 147</td>
</tr>
<tr>
<td>identity</td>
<td>94</td>
</tr>
<tr>
<td>inverse</td>
<td>94</td>
</tr>
<tr>
<td>poset</td>
<td>94</td>
</tr>
<tr>
<td>usl</td>
<td>94</td>
</tr>
<tr>
<td>Axiom of Determinateness</td>
<td>115</td>
</tr>
<tr>
<td>binary strings</td>
<td>10, 101</td>
</tr>
<tr>
<td>tree</td>
<td>57, 102</td>
</tr>
<tr>
<td>Birkhoff [1940]</td>
<td>274</td>
</tr>
<tr>
<td>boolean algebra</td>
<td>274</td>
</tr>
<tr>
<td>Borel set</td>
<td>115</td>
</tr>
<tr>
<td>Bounding Principle</td>
<td>41</td>
</tr>
<tr>
<td>for Forcing and Coding</td>
<td>45</td>
</tr>
<tr>
<td>branch of tree</td>
<td>102</td>
</tr>
<tr>
<td>cartesian product</td>
<td>3</td>
</tr>
<tr>
<td>cardinality</td>
<td>3</td>
</tr>
<tr>
<td>chain</td>
<td>27</td>
</tr>
<tr>
<td>maximal</td>
<td>27, 59, 60, 87</td>
</tr>
<tr>
<td>characteristic function</td>
<td>3, 11</td>
</tr>
<tr>
<td>Church's Theses</td>
<td>9, 11</td>
</tr>
<tr>
<td>closed under jump</td>
<td>170</td>
</tr>
<tr>
<td>codes</td>
<td>170</td>
</tr>
<tr>
<td>codes model of arithmetic</td>
<td>168, 169, 271, 272</td>
</tr>
<tr>
<td>Cohen [1963]</td>
<td>22</td>
</tr>
<tr>
<td>comparable</td>
<td>27</td>
</tr>
<tr>
<td>compatible</td>
<td>19, 102, 199, 218</td>
</tr>
<tr>
<td>Complementation Theorem</td>
<td>57</td>
</tr>
<tr>
<td>completely e-partial tree</td>
<td>108</td>
</tr>
<tr>
<td>completion</td>
<td>39</td>
</tr>
<tr>
<td>nth</td>
<td>40</td>
</tr>
<tr>
<td>computable from 1, 11</td>
<td></td>
</tr>
<tr>
<td>computation function</td>
<td>53</td>
</tr>
<tr>
<td>Lemma</td>
<td>105, 129, 151, 184, 214, 225</td>
</tr>
<tr>
<td>concatenation of strings</td>
<td>10</td>
</tr>
<tr>
<td>condition, forcing</td>
<td>19</td>
</tr>
<tr>
<td>cone</td>
<td>114</td>
</tr>
<tr>
<td>of minimal covers</td>
<td>115</td>
</tr>
<tr>
<td>congruence mod i</td>
<td>122, 124</td>
</tr>
<tr>
<td>Congruence Modification Lemma</td>
<td>285</td>
</tr>
<tr>
<td>consistent</td>
<td>141</td>
</tr>
<tr>
<td>converges</td>
<td>3</td>
</tr>
<tr>
<td>Cooper Jump Inversion Theorem</td>
<td>207</td>
</tr>
<tr>
<td>[1973]</td>
<td>49, 196, 206, 211, 215, 259</td>
</tr>
<tr>
<td>[1974]</td>
<td>78, 215</td>
</tr>
<tr>
<td>coordinate</td>
<td>3, 122</td>
</tr>
<tr>
<td>cover, φ</td>
<td>138</td>
</tr>
<tr>
<td>minimal</td>
<td>112, 114</td>
</tr>
<tr>
<td>strong</td>
<td>116</td>
</tr>
<tr>
<td>Cutland [1980]</td>
<td>7, 12</td>
</tr>
<tr>
<td>decidable</td>
<td>25, 42, 157</td>
</tr>
<tr>
<td>degree</td>
<td>16</td>
</tr>
<tr>
<td>arithmetical</td>
<td>113</td>
</tr>
<tr>
<td>game</td>
<td>115</td>
</tr>
<tr>
<td>generic</td>
<td>79, 80, 86</td>
</tr>
<tr>
<td>high</td>
<td>75</td>
</tr>
<tr>
<td>generalized</td>
<td>77</td>
</tr>
<tr>
<td>intermediate</td>
<td>75</td>
</tr>
<tr>
<td>generalized</td>
<td>77</td>
</tr>
<tr>
<td>invariant game</td>
<td>115</td>
</tr>
<tr>
<td>low</td>
<td>75</td>
</tr>
<tr>
<td>generalized</td>
<td>77</td>
</tr>
<tr>
<td>minimal</td>
<td>29, 104, 106, 111, 186, 188, 193, 204, 211, 216</td>
</tr>
<tr>
<td>degrees, elementary theory</td>
<td>25, 42, 57, 61, 80, 83, 84, 88, 136, 138, 157, 159, 169, 267</td>
</tr>
<tr>
<td>incomparable</td>
<td>17, 27, 59</td>
</tr>
</tbody>
</table>
degrees, independent set of 23, 33, 42, 44, 61, 80, 88
 – Turing 1, 15, 16
 – of unsolvability 1, 15, 16
dense 20
Density Lemma 14
desirable 205
determinate game 115
Determinateness, Axiom of 115
diagonalization requirement 120
diagram 157
difference 3
 – symmetric 3
differentiating tree 127, 151, 184, 224, 231
direct sum 3
disjoint above 283
Disjointness Modification Lemma 286
distributive lattice 136, 273
divergent tree 224
diverges 3
domain 3
dominate 53
Dominination Lemma, Upward 53
 – for H_{ω} 85
element of 3
elementary equivalence 116, 172, 174
 – theory 25, 42, 51, 64, 80, 83, 84, 88, 136, 157, 159, 171, 267
everification 23
 – poset 23
 – val 23
empty set 3
enumeration 8
Enumeration Theorem 12
Epstein [1975] 135, 215, 220
 – [1981] 261
Ershov and Taitslin [1963] 137
e-splittings 54, 105
 – extendible 153, 235
e-state 215
exact pair 29, 61, 84, 93
Exact Pair Theorem 29, 42, 43, 72
Existence Theorem for ψ-generic sets 20
 – for ψ-splitting trees 165
expansion 282
 – tree 165
extendible ψ-splitting 153, 235
Extendibility Interpolation Lemma 154, 235
extends 4, 281
extension, admissible 282
 – tree 102, 126, 150, 184, 230
Extension Lemma 153
Feferman [1965] 22, 63
Feiner [1970] 167
finite homogeneous lattice table 273
fixed point 14
 – of automorphism 167, 177
Fixed Point Theorem 13
focal length 222
 – point 222
follower 62, 206
forces its jump 43, 44, 61, 79
forcing condition 19
 – notion of 19, 103
 – pointed 22
formula, negative 264
 – positive 264
Friedberg Jump Inversion Theorem 45
 – [1957] 50
 – [1957a] 69
 – [1957b] 214
full 223
 – approximation 212
function, characteristic 3, 11
 – computation 53
 – indicator 193
 – modulus 57
 – pairing 34
 – partial 3
 – recursive 9
 – predictor 193
 – primitive recursive 10
 – projection 8
 – recursive 7
 – successor 7
 – target 199
 – total 3
 – zero 7
functional 3
f-valued strings 10
Gale-Stewart game 114
game, degree invariant 115
 – Gale Stewart 114
generates 95, 145
generic 20
 – set 79, 80
 – degree 79, 80, 86
GLB Interpolation Lemma 130, 151, 234
Gödel number 9
good 204
graph 266
greatest lower bound preservation property 130
Groszek and Slaman [1983] 26, 29
Harrington and Kechris [1975] 117
height of tree 223
hierarchy, arithmetical 35
 – high/low 62, 75
Subject Index

hierarchy, arithmetical, generalized 77
high/low hierarchy 62, 75
 – generalized 77
high δ degree 75
 – generalized 77
Hinman [1969] 63
homogeneity problems 165, 174, 175, 177, 178
 – strong 165, 166
homogeneous table 133, 149, 221, 273, 288
homomorphism 123
Homomorphism Lemma 123
Hugill [1969] 129, 137
ideal 29, 135
 – jump 170
identity tree 102, 126, 150, 199, 229
image 5
immune set 80
incomparable degrees 17, 27, 59
independent set 23, 33, 42, 44, 56, 58, 61, 80, 88
indicator function 193
initial segment 116, 135, 156, 164, 255
 – tree 229
injury 62
isomorphism 23
 – jump preserving 165
intermediate degree 75
 – generalized 77
intersection 3
interval notation 4, 41
invariant game 115

Jockusch 50, 51, 69, 83, 147, 167, 198
 – [1974] 50
 – [1977] 93, 196
 – [1981] 96, 97, 146
 – and Shore [1983] 50, 69
 – and Simpson [1976] 173
 – and Solovay [1977] 164, 167
join irreducible 268, 274
Join Theorem for GH_1 93
 – for H_1 90, 92
 – for $0'$ 55
Joint Embedding Lemma 283
Jonsson [1953] 277, 281
jump 40
 – closed under 170
 – ideal 170
 – inversion 45, 47, 58
 – nth 40
 – preserving isomorphism 165
 – α 117, 172
Kechris, Harrington and, [1975] 117
Kleene [1943] 12
 – [1952] 12, 14
 – and Post [1954] 1, 12, 17, 22, 26, 33, 45
Lachlan 104
 – [1965] 69, 78
 – [1971] 146
 – and Lebeuf [1976] 164, 281, 292
Lacombe [1954] 107
lambda notation 4
lattice 31, 118
 – distributive 136, 273
 – second order 168
 – table 130, 133, 149, 162, 221, 278, 288
least number operator 7, 8
Lebeuf, Lachlan and, [1976] 164, 281, 292
length of string 10, 101
Lerman 159, 256
 – [1969] 137
 – [1971] 150, 156, 159, 281
 – [1977] 97
level of tree 222
lexicographical ordering 4, 70
limit 4
 – infimum 4
 – supremum 4
Limit Lemma 37, 38
logical notation 4
low, degree 75
 – generalized 77
Manaster [1971] 147
markers 63
Martin 83, 179
 – [1966] 69, 78
 – [1966a] 88
 – [1968] 117
 – [1975] 115, 117
Miller and, [1968] 57, 111, 129
 – and Solovay [1970] 21
Martin's Axiom 21
maximal antichain 27, 28, 29, 52, 53, 107
 – chain 27, 59, 60, 87
 – property 89
 – independent set 56, 58
maximum 3
Meet Theorem 57
Miller and Martin [1968] 57, 111, 129
minimal cover 112, 114
 – strong 116
 – degree 29, 104, 106, 109, 111, 186, 188, 193,
 204, 211, 216
 – upper bound 112, 113
minimum 3
modulus function 57
model of arithmetic 168
mu operator 7, 8
Machnik [1956] 69

narrow subtrees 110
natural numbers 3
Nerode 97
— and Shore [1979] 173, 271, 272
— — [1980] 74, 173, 174
newly designated 246
notion of forcing 19
negative formula 264

on a tree 102
oracle 11
ordering, lexicographical 4, 70
Owings [1973] 12

pairing function 34
Paris [1972] 117
partial function 3, 11
— recursive function 9
— tree 183
partially ordered set 15
permanence property 13
permitting 212
plateau 222, 223
pointed forcing 22
— subtree 111, 151
poset 15
— embedding 23
positive formula 264
Posner 96, 196
— [1977] 83, 93
— [1980] 259
— [1981] 57
— Epstein and, [1978] 107, 220
— Jockusch and, [1978] 78, 88
— — [1981] 96, 97, 146
— and Robinson [1981] 57, 58, 59, 78, 88
Posner’s Lemma 107, 192, 220
Post [1943] 12
— [1944] 1, 38
— [1948] 12
— Kleene and, [1954] 1, 12, 17, 22, 26, 33, 45
Post’s Theorem 40
potential focal point 222
power set 2
predictor function 193
prefer 229
presentation 262
— degree of 262
primitive recursive functions 10
priority 47, 59, 63, 70, 185, 243
product, cartesian 3
projection function 8
Pullback Lemma, First 287

Pullback Lemma, Second 288
quantifier 4
quasinormal form 226

Rabin 271
range 3
receive 236
recursive in 11, 12, 36, 37
— function 7, 8
— tree 102
— recursively enumerable 36
recreation 8
— relative 11, 12
Recursion Theorem 13
reductions, Turing 11
refines 19
reflexivity 15
relative recursiveness 11, 12
relativization 22
respect 203, 204
restraint 62
restriction 3, 282
Restriction Lemma 283
Richter [1979] 164, 167, 263
right e-splitting tree 143
Robinson, Posner and, [1981] 57, 58, 59, 78, 88
Rogers [1967] 1, 12, 63, 165, 167, 173, 175
Rosenblueth [1963] 137
Sacks [1961] 185, 188, 191
— [1961a] 26, 29, 33
— [1963] 113, 137
— [1963a] 49, 69
— [1967] 69
— [1971] 103, 107
Sasso [1974] 111
satisfaction 14
Saturation Lemma 14
Schmerl 139, 159, 271
Scott 271
segment, initial 116, 135, 156, 164, 255
Selman [1972] 50
sequence 3
sequential table 139, 149, 162, 221, 277, 278, 288
set, generic 79, 80
— immune 80
Shoenfield 137
— Jump Inversion Theorem 47, 58
— [1959] 38, 50, 51, 57
— [1960] 33
— [1966] 57, 103, 129, 191
— [1971] 1, 9, 191
— [1971a] 21
Shore 61, 68, 147, 192
— [1977] 97
Subject Index

- [1978] 159
- [1979] 179
- [1981] 74, 93, 166, 173, 256, 257, 261
- [1981a] 173, 174
- [1982] 175, 179
- Harrington and, [1981] 173
- Jockusch and, [1983] 50, 69
- [1983a] 117, 173, 174, 177, 179
- Nerode and, [1979] 173, 271, 272
- [1980] 74, 173, 175

similar structures 23
Simpson 116, 165, 226
- [1977] 116, 173, 174
- Jockusch and, [1976] 173
- simultaneous e-splitting 142
Slaman, Groszek and [1983] 26, 29
s-m-n Theorem 13
Soare 50, 51
- [1974] 78
- [1978] 36
- [1984] 1, 12, 36
- Jockusch and, [1970] 116
Solovay, Jockusch and [1977] 164, 167
- Martin and [1970] 21
space 9
spasmotic table 288
special array 230
Spector [1956] 33, 45, 107, 129, 137
splitting 54, 105
- extendible 153, 235
- level 224
- mod i 129
- simultaneous 142
- tree 105, 184, 204, 214, 215
- for i 129, 134, 155, 224, 235
standard model of arithmetic 168
strategy 114
string 10, 101
- binary 10, 101
- f-valued 10, 148
- length of 10
- terminal 183
- transfer 127
strong homogeneity problem 165, 166
- minimal cover 116
strongly undecidable 159, 270
- uniform 140
structure 4
structures, similar 23
subposets 27
subset 3
substitution 8
subtree 102
- narrow 110
- uniform 126
successor function 7
symmetric difference 3

- homogeneous 133, 149, 221, 273, 288
- lattice 130, 273, 278, 288
- sequential 139, 149, 162, 277, 278, 288
- spasmotic 288
- uniform 162, 288
- usl 122, 277
- weakly homogeneous 149, 221, 278, 288
Tait,son, Ershov and, [1963] 137
target 54, 187, 188
- function 199
terminal 133
type of degrees 169
Thomason [1970] 124, 137
- [1970a] 277, 281
Titschewy [1962] 137
topology 104
total tree 108, 128, 151, 185
transfer string 127
- tree 140
transitivity 15
Transitivity Lemma 282
tree 51
- binary 51, 102
- branch of 102
- completely e-partial 108
- differentiating 127, 151, 184, 224, 231
- divergent 224
e-splitting 105, 184, 204, 214, 215
- for i 129, 134, 155, 224, 235
e-total 108, 128, 151, 185
- expansion 163
- extension 102, 126, 150, 184, 230
- f-branching 101, 148, 183
- height of 223
- identity 102, 126, 150, 199, 229
- initial 229
- level of 222
- \(\mathcal{F} \) 163
- narrow 110
- of trees 107
- partial 183
- p-branching 118
- plateau of 222, 223
- pointed 111, 151
- quasiuniform 226
- recursive 102
- right e-splitting 143
- strongly uniform 140
- transfer 140
- uniform 175
- weakly uniform 222, 224
- trigger 244
- triggering sequence 244
Turing [1937] 12
- [1939] 11, 12
- degree 1
Turing reducibility 11
Tychonoff’s Theorem 104
type of extension of lattice 283
 – of tree 227, 228
undecidable 81, 159, 270
 – enumeration property 13
 – strongly 140
 – subtree 126
 – table 162, 288
 – tree 125
uniformly of degree 41, 57
union 3
universal 281
universe 4
upper bound, minimal 112, 113
uppersemilattice 15
Upward Domination Lemma 53
use property 12
usl 15
 – embedding 23
 – table 122, 277
weak e-splitting tree for κ 224
weakly homogeneous table 149, 221, 278, 288
 – uniform tree 222, 224
Whitman [1946] 276
winning strategy 115
Yates Permitting Lemma 212
 – [1965] 214
 – [1966] 61
 – [1967] 58
 – [1970] 179
 – [1970a] 211, 214, 220
 – [1972] 167
 – [1976] 83
zero function 7