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Summary. From 1931 until late in his life (at least 1970) Godel called for the
pursuit of new axioms for mathematics to settle both undecided number-theoretical
propositions (of the form obtained in his incompleteness results) and undecided set-
theoretical propositions (in particular CH). As to the nature of these, Gédel made a
variety of suggestions, but most frequently he emphasized the route of introducing
ever higher axioms of infinity. In particular, he speculated (in his 1946 Princeton
remarks) that there might be a uniform (though non-decidable) rationale for the
choice of the latter. Despite the intense exploration of the “higher infinite” in the
last 30-odd years, no single rationale of that character has emerged. Moreover, CH
still remains undecided by such axioms, though they have been demonstrated to
have many other interesting set-theoretical consequences.

In this paper, I present a new very general notion of the “unfolding” closure of
schematically axiomatized formal systems S which provides a uniform systematic
means of expanding in an essential way both the language and axioms (and hence
theorems) of such systems S. Reporting joint work with T. Strahm, a characteriza-
tion is given in more familiar terms in the case that S is a basic system of non-finitist
arithmetic. When reflective closure is applied to suitable systems of set theory, one
is able to derive large cardinal axioms as theorems. It is an open question how these
may be characterized in terms of current notions in that subject.

1. Why new axioms?

Godel’s published statements over the years (from 1931 to 1972) pointing
to the need for new axioms to settle both undecided number-theoretic and
set-theoretic propositions are rather well known. They are most easily cited
by reference to the first two volumes of the edition of his Collected Works.! A
number of less familiar statements of a similar character from his unpublished
essays and lectures are now available in the third volume of that edition.?

* Invited opening lecture, Godel 96 conference, Brno, 25-29 August 1996. This
paper was prepared while the author was a fellow at the Center for Advanced
Study in the Behavioral Sciences, Stanford, CA, whose facilities and support
are greatly appreciated.

1 Cf. in Godel [1986] the items dated: 1931(p.181, ftn.48a), 1934(p.367),
1986(p.397), and in Gédel [1990] those dated: 1940(p.97, ftn.20[added 1965]),
1946(p.151), 1947(pp.181-183), 1964(pp.260-261 and 268-270), and 1972a, Note
2 (pp-305-306).

2 Cf. in Godel [1995] the items dated: *19319(p.35), *19930 (p.48), *1951(pp.306-
307), *1961/%(p.385) and *1970a,b,c(pp.420-425).
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Given the ready accessibility of these sources, there is n o need for extensive
quotation, though several representative passages are singled out below for
special attention.

With one possible exception (to be noted in the next section), the single
constant that recurs throughout these statements is that the new axioms to
be considered are in all cases of a set-theoretic nature. More specifically, to
begin with, axioms of higher types, extended into the transfinite, are said
to be needed even to settle undecided arithmetical propositions.> The first
and most succinct statement of this is to be found in the singular footnote
48a of the 1931 incompleteness paper, in which Gédel states that “...the true
reason for the incompleteness inherent in all formal systems of mathematics
is that the formation of ever higher types can be continued into the transfi-
nite...[since] the undecidable propositions constructed here become decidable
whenever appropriate higher types are added”. In an unpublished lecture
from that same period Godel says that analysis is higher in this sense than
number theory and set theory is higher than analysis: “...there are number-
theoretic problems that cannot be solved with number-theoretic, but only
with analytic or, respectively, set-theoretic methods” (Gédel [1995], p.35). A
couple of years later, in his (unpublished) 1933 lecture at a meeting of the
Mathematical Association of America in Cambridge, Massachusetts, Godel
said that for the systems S to which his incompleteness theorems apply “...ex-
actly the next higher type not contained in S is necessary to prove this arith-
metical proposition...Jand moreover] there are arithmetic propositions which
cannot be proved even by analysis but only by methods involving extremely
large infinite cardinals and similar things” (Godel [1995], p.48). This asser-
tion of the necessity of axioms of higher type — a.k.a. axioms of infinity in
higher set theory — to settle undecided arithmetic (I79) propositions, is re-
peated all the way to the final of the references cited here in footnotes 1 and
2 (namely to 1972).

It is only with his famous 1947 article on Cantor’s continuum problem
that Godel also pointed to the need for new set-theoretic axioms to settle
specifically set-theoretic problems, in particular that of the Continuum Hy-
pothesis CH. Of course at that time one only knew through his own work
the (relative) consistency of AC and CH with ZF, though Gédel conjectured
the falsity of CH and hence its independence from ZFC. Moreover, it was
the question of determining the truth value of CH that was to preoccupy
him almost exclusively among all set-theoretic problems — except for those
which might be ancillary to its solution — for the rest of his life. And rightly
so: the continuum problem — to locate 2%¢ in the scale of the alephs whose
existence is forced on us by the well-ordering theorem — is the very first chal-

3 The kind of proposition in question is sometimes referred to by Godel as being of
“Goldbach type” i.e. in II{ form, and sometimes as one concerning solutions of
Diophantine equations, of the form (P)D = 0, where P is a quantifier expression
with variables ranging over the natural numbers; cf. more specifically, the lecture
notes *193% in Godel [1995].
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lenging problem of Cantorian set theory, and settling it might be considered
to bolster its conceptual coherence. In his 1947 paper, for the decision of CH
by new axioms, Godel mentioned first of all, axioms of infinity:

The simplest of these ... assert the existence of inaccessible numbers
{(and of numbers inaccessible in the stronger sense) > Ro. The latter
axiom, roughly speaking, means nothing else but that the totality of
sets obtainable by exclusive use of the processes of formation of sets
expressed in the other axioms forms again a set (and, therefore, a
new basis for a further application of these processes). Other axioms
of infinity have been formulated by P. Mahlo. [Very little is known
about this section of set theory; but at any rate]* these axioms show
clearly, not only that the axiomatic system of set theory as known
today is incomplete, but also that it can be supplemented without
arbitrariness by new axioms which are only the natural continuation
of those set up so far. (Godel [1990], p.182)

However, Gidel goes on to say, quite presciently, that “[a]s for the continuum
problem, there is little hope of solving it by means of those axioms of infinity
which can be set up on the basis of principles known today...”, because his
proof of the consistency of CH via the constructible sets model goes through
without change when such statements are adjoined as new axioms (indeed
there is no hope in this direction if one expects to prove CH false):

But probably [in the face of this) there exist other [axioms) based on
hitherto unknown principles ... which a more profound understanding
of the concepts underlying logic and mathematics would enable us
to recognize as implied by these concepts. (ibid.)

Possible candidates for these were forthcoming through the work of Scott
{1961] in which it was shown that the existence of measurable cardinals (MC)
implies the negation of the axiom of constructibility, and the later work of
Hanf [1964] and of Keisler and Tarski [1964] which showed that measurable
cardinals and even weakly compact cardinals must be very much larger than
anything obtained by closure conditions on cardinals of the sort leading to
hierarchies of inaccessibles. But as we now know through the extensive subse-
quent work on large cardinals as well as other strong set-theoretic principles
such as forms of determinacy, none of those considered at all plausible to date
settles CH one way or the other (cf. Martin [1976], Kanamori [1994]). Godel
himself offered only one candidate besides these, in his unpublished 1970
notes containing his “square axioms” concerning so-called scales of functions
on the X, ’s. The first of these notes (*1970a in Godel [1995]) purports to
prove that the cardinality of the continuum is Ry while the second (*1970b,
op.cit.) purports to prove that it is X;. However, there are essential gaps in

4 The section enclosed in brackets was deleted from the 1964 reprinting of the
1947 article (cf. Gddel [1990], p. 260).
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both proofs and in any case the axioms considered are far from evident (cf.
the introductory note by R.M. Solovay to *1970a,b,c in Gédel [1995], pp.
405-420).

Godel’s final fall-back position in his 1947 article is to look for axioms
which are “so abundant in their verifiable consequences...that quite irrespec-
tive of their intrinsic necessity they would have to be assumed in the same
sense as any well-established physical theory” (Godel [1990], p.183). It would
take us too far afield to look into the question whether there are any plausible
candidates for these. Moreover, there is no space here to consider the argu-
ments given by others in pursuit of the program for new axioms; especially
worthy of attention are Maddy [1988, 1988a], Kanamori {1994] and Jensen
[1995] among others.

My concern in the rest of this paper is to concentrate on the consideration
of axioms which are supposed to be “exactly as evident” as those already
accepted. On the face of it this excludes, among others, axioms for “very
large” cardinals (compact, measurable, etc.}, axioms of determinacy, axioms
of randomness, and axioms whose only grounds for accepting them lies in
their “fruitfulness” or in their simply having properties analogous to those
of Rg. Even with this restriction, as we shall see, there is much room for
reconsideration of Gédel’s program.

2. Where should one look for new axioms?

While the passage to higher types in successive stages, in one form or another,
is sufficient to overcome incompleteness with respect to number-theoretic
propositions because of the increase in consistency strength at each such
stage, it by no means follows that this is the only way of adding new axioms
in a principled way for that purpose. Indeed, here a quotation from Gédel’s
remarks in 1946 before the Princeton Bicentennial Conference is very apropos:

Let us consider, e.g., the concept of demonstrability. It is well known
that, in whichever way you make it precise by means of a formalism,
the contemplation of this very formalism gives rise to new axioms
which are exactly as evident and justified as those with which you
started, and this process of extension can be iterated into the trans-
finite. So there cannot exist any formalism which would embrace all
these steps; but this does not exclude that all these steps (or at least
all of them which give something new for the domain of propositions
in which you are interested) could be described and collected together
in some non-constructive way. (Godel [1990}, p.151)

It is this passage that I had in mind above as the one possible exception
to Gdodel’s reiterated call for new set-theoretic axioms to settle undecided
number-theoretic propositions. It is true that he goes on immediately to say
that “[iln set theory, e.g., the successive extensions can most conveniently be
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represented by stronger and stronger axioms of infinity”. But note that here
he is referring to set theory as an ezample of a formalism to which the general
idea of expansion by “new axioms exactly as evident and justified as those
with which you started” may be applied as a special case. That idea, in the
case of formal systems S in the language of arithmetic comes down instead to
one form or another of (proof-theoretic) reflection principle, that is a formal
scheme to the effect that whatever is provable in S is correct. In its weakest
form (assuming the syntax of S effectively and explicitly given), this is the
collection of statements

(Rfng) Provg(#(4)) = A

for A a closed formula in the language of S, called the local reflection
principle. This is readily generalized to arbitrary formulas A uniformly in
the free variables of A as parameters, in which case it is called the uniform
reflection principle RFNg. The axioms Rfng, and more generally, RFNs may
indeed be considered “exactly as evident and justified” as those with which
one started. Moreover, as shown by Turing [1939], extension by such axioms
may be effectively iterated into the transfinite, in the sense that one can as-
sociate with each constructive ordinal notation a € O a formal system S,
such that the step from any one such system to its successor is described by
adjunction of the reflection principle in question, and where all previous ad-
junctions are simply accumulated at limit s by the formation of their union.
These kinds of systematic extensions of a given formal system were called or-
dinal logics by Turing; when I took them up later in 1962, I rechristened them
(transfinite) recursive progressions of aziomatic theories (cf. Feferman [1962,
1988]). While Turing obtained a completeness result for II? statements via
the transfinite iteration in this sense of the local reflection principle, and I ob-
tained one for all true arithmetic statements via the iteration of the uniform
reflection principle, both completeness results were problematic because they
depended crucially on the judicious choice of notations in O, the selection of
which was no more “evident and justified” in advance than the statements
to be proved.

What was missing in this first attempt to spell out the general idea ex-
pressed by Godel in the above quotation was an explanation of which ordi-
nals — in the constructive sense — ought to be accepted in the iteration
procedure. The first modification made to that end (Kreisel [1958], Feferman
[1964]) was to restrict to autonomous progressions of theories, where one ad-
vances to a notation a € O only if it has been proved in a system S;, for some
b which precedes a, that the ordering specifying a is indeed a well-ordering.
It was with this kind of procedure in mind that Kreisel called in his paper
[1970] for the study of all principles of proof and ordinals which are implicit
in given concepts. However, one may question whether it is appropriate at

5 Note that the consistency statement for S is an immediate consequence of the
local reflection principle for S.
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all to speak of the concept of ordinal, in whatever way restricted, as being
implicit in the concepts of, say, arithmetic. I thus began to pursue a modifica-
tion of that program in Feferman [1979], where I pr oposed a characterization
of that part of mathematical thought which is implicit in our conception of
the natural numbers, without any prima-facie use of the notions of ordinal or
well-ordering. This turned out to yield a system proof-theoretically equivalent
to that proposed as a characterization of predicativity in Feferman [1964] and
Schiitte [1965]. Then in my paper [1991], I proposed more generally, a notion
of reflective closure of arbitrary schematically axiomatized theories, which
gave the same result (proof-theoretically) as the preceding when applied to
Peano Arithmetic as initial system. That made use of a partial self-applicative
notion of truth, treated axiomatically. The purpose of the present article is
to report a new general notion of reflective closure of a quite different form,
which I believe is more convincing as an explanation of everything that one
ought to accept if one has accepted given concepts and principles. In order not
to confuse it with the earlier proposal, I shall call this notion that of the un-
folding of any given schematically formalized system. This will be illustrated
here in the case of non-finitist arithmetic as well as the case of set theory.
Exact characterizations in more familiar terms have been obtained for the
case of non-finitist arithmetic in collaboration with Thomas Strahm; these
will be described in Section 4 below. However, there is no space here to give
any proofs.

3. How is the unfolding of a system defined?

As we shall see, it is of the essence of the notion of unfolding that we are
dealing with schematically presented formal systems. In the usual concep-
tion, formal schemata for axioms and rules of inference employ free predicate
variables P,Q, ... of various numbers of arguments n > 0. An appropriate
substitution for P(zi,...,%,) in such a scheme is a formula A(zi,...z,...)
which may have additional free variables. (Thus if P is 0-ary, any formula may
be substituted for it.) Familiar examples of aziom schemata in the proposi-
tional and predicate calculi are

P53 (P—>Q) and (Y2)P(z) > P(t) .

Further, in non-finitist arithmetic, we have the Induction Aziom Scheme

(I1A) P(0) A (Vz)[P(z) =+ P(a')] = (Y2)P(z) ,
while in set theory we have the Separation and Replacement Schemes
(Sep) () (Vz){z € b+ z € a A P(z)], and

(Repl) (Vz € a)(3ly)P(z,y) = A)(Vy)lyebe Az e a)P(z,y)] .
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Familiar examples of schematic rules of inference are, first of all, in the propo-
sitional and predicate calculi,
PP-Q@=@Q and [P—Q()]=[P— (V2)Q(z)] (for z not free in P),

while the scheme for the Induction Rule in finitist arithmetic is given by

(IR) P(0), P(z) = P(z') = P(z) .
It is less usual to think of schemata for axioms and rules given by free function
variables f,g,... But actually, it is more natural to formulate the Replace-

ment Axiom Scheme in functional form as follows:
(Repl)’  (Vr € a)(Ty)[f(z) =y] = @O)VY)yebo Bz ea)f(z) =1y .

Note that here, and for added compelling reasons below, our function vari-
ables are treated as ranging over partial functions.

The informal philosophy behind the use of schemata here is their open-
endedness. That is, they are not conceived of as applying to a specific language
whose stock of basic symbols is fixed in advance, but rather as applicable to
any language which one comes to recognize as embodying meaningful basic
notions. Put in other terms, implicit in the acceptance of given schemata
is the acceptance of any meaningful substitution instances. But which these
instances are need not be determined in advance. Thus, for example, if one
accepts the axioms and rules of inference of the classical propositional calculus
given in schematic form, one will accept all substitution instances of these
schemata in any language which one comes to employ. The same holds for
the schemata of the sort given above for arithmetic and set theory. In this
spirit, we do not conceive of the function, resp. predicate variables as having
a fixed intended range and it is for this reason that th ey are treated as free
variables. Of course, if one takes it to be meaningful to talk about the totality
of partial functions, resp. predicates,-of a given domain of objects, then it
would be reasonable to bind them too by quantification. In the examples of
unfolding given here, it is only in set theory that the issue of whether and to
what extent to allow quantification over function variables is unsettled.

Now our question is this: given ¢ schematic system S, which operations
and predicates — and which principles concerning them — ought to be ac-
cepted if one has accepted S? The answer for operations is straightforward:
any operation from and to individuals is accepted in the unfolding of S which
is determined (in successive steps) explicitly or implicitly from the basic op-
erations of S. Moreover, the principles which are added concerning these
operations are just those which are derived from the way they are introduced.
Onrdinarily, we would confine ourselves to the total operations obtained in this
way, i.e. those which have been proved to be defined for all values of their
arguments, but it should not be excluded that their introduction might de-
pend in an essential way on prior partial operations, e.g. those introduced by
recursive definitions of a general form.
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We reformulate the question concerning predicates in operational terms
as well, i.e.: which operations on and to predicates — and which principles
concerning them — ought to be accepted if one has accepted S? For this, it is
necessary to tell at the outset which logical operations on predicates are taken
for granted in S. For example, in the case of non-finitist classical arithmetic
these would be (say) the operations —, A and V, while in the case of finitist
arithmetic, we would use just — and A. It proves simplest to treat predicates as
propositional functions; thus — and A are operations on propositions, while V
is an operation on functions from individuals to propositions. Now we can add
to the operations from individuals to individuals in the unfolding of S also all
those operations from individuals and/or propositions to propositions which
are determined explicitly or implicitly (in successive steps) fro m the basic
logical operations of S. Once more, the principles concerning these operations
which are included in the expansive closure of S are just those which are
derived from the way they are introduced. Finally, we include in the expansive
closure of S all the predicates which are generated from the basic predicates
of S by these operations; the principles which are taken concerning them are
just those that fall out from the principles for the operations just indicated.

This notion of unfolding of a system is spelled out in completely precise
terms in the next section for the case of non-finitist arithmetic. But the
following two points ought to be noted concerning the general conception
described here. First of all, one should not think of the unfolding of a system
S as delimiting the range of applicability of the schemata embodied in S. For
example, the principle of induction is applicable in every context in which
the basic structure of the natural numbers is recognized to be present, even if
that context involves concepts and principles not implicit in our basic system
for that structure. In particular, it is applicable to impredicative reasoning
with sets, even though (as will be shown in the next section) the unfolding
closure of arithmetic is limited to predicative reasoning. Secondly, we may
expect the language and theorems of the unfolding of (an effectively given
system) S to be effectively enumerable, but we should not expect to be a ble
to decide which operations introduced by implicit (e.g. recursive fixed-point)
definitions are well defined for all arguments, even though it may be just
those with which we wish to be concerned in the end. This echoes Gédel’s
picture of the process of obtaining new axioms which are “just as evident
and justified” as those with which we started (quoted in Section 2 above),
for which we cannot say in advance exactly what those will be, though we
can describe fully the means by which they are to be obtained.

4. The expansive closure of non-finitist arithmetic:
what’s obtained

Here the starting schematic system NFA (Non-Finitist Arithmetic) has lan-
guage given by the constant 0, individual variables z,y, z, .. ., the operations
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Sc and Pd for successor and predecessor, a free unary predicate variable P
and the logical operations —, A and V.

Assuming classical logic, A,— and 3 are defined as usual.® We write ¢’
for Sc(t) in the following. The axioms of NFA are:

Ax 1. ' #0
Ax 2. Pd(z'y ==z
Ax 3. P(0) A (Vz)[P(z) = P(z')] = (V) P(x).

Ax 3 is of course our scheme (IA) of induction. Before defining the full unfold-
ing U(NFA) of this system, it is helpful to explain a subsystem Uy (NFA) which
might be called the operational unfolding of NFA, i.e. where we do not con-
sider which predicates are to be obtained. Basically, the idea is to introduce
new operations via a form of generalized recursion theory (g.r.t.) considered
axiomatically. The specific g.r.t. referred to is that developed in Moschovakis
[1989] and in a different-appearing but equivalent form in Feferman [1991a]
and [1996]; both feature ezplicit definition (ED) and least fized point recur-
sion (LFP) and are applicable to arbitrary structures with given functions
or functionals of type level < 2 over a given basic domain (or domains). The
basic structure to consider in the case of arithmetic is (N, Sc, Pd, 0), where
N is the set of natural numbers. To treat this axiomatically, we simply have
to enlarge our language to include the terms for the (in general) partial func-
tions and functionals generated by closure under the schemata for this g.r.t.,
and add their defining equations as axioms. So we have terms of three types
to consider: individual terms, partial function terms and partial functional
terms. The types of these are described as follows, where, to allow for later
extension to the case of U(NFA), we posit a set Typo of types of level 0; here
we will only need it to contain the type ¢ of individuals, but below it will be
expanded to include the type ¢ of propositions:

Typ 1. ¢+ € Typy, where ¢ is the type of individuals. In the following , v
range over Typy and 7, resp. K range over types of finite sequences of
individuals, resp. of objects of Typg.

Typ 2. 7,0 range over the types of partial functions of the form := v, and
7 ranges over the types of finite sequences of such.

Typ 3. (7,K = v) is used as types of partial functionals.

Note that objects of partial function type take only individuals as argu-
ments; this is to insure that propositional functions, to be considered below,
are just such functions. On the other hand, we may have partial functionals
of type described under Typ 3 in which the sequence 7 is empty, and these
reduce to partial functions of any objects of basic type in Typo.

6 All our notions and results carry over directly to NFA treated in intuitionistic
logic; the only difference in that case is that we take the full list of logical
operations, -, A, V,—,V, and 3 as basic.
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The terms r,s,t,u,... of the various types under Typ 1 — Typ 3 are
generated as follows, where we use 7 : p to indicate that the term r is of type

p.

Tm 1. For each kK € Typo, we have infinitely many variables z,y, z,... of
type k.

Tm 2. 0:¢.

Tm 3. Sc(t) : ¢ and Pd(t) : ¢t for t : ..

Tm 4. For each 7 we have infinitely many partial function variables f, g, h, . ..
of type .

Tm 5. Cond(s,t,u,v) : (T,K,t,t =5 v) for s, : (F,RSv) and u,v : ¢.

Tm 6. s(f,u):viors: (F,R=v), t: 7, G: k.

Tm 7. \f,&.t : (F,E3v)for f: 7,7 :RK,t:v.

Tm 8. LFP (A\f,Z.t): =S v) for f:T15v,Z:1, t:v.

We now specialize this system of types and terms to just what is needed
for Up(NFA), by taking Typo = {¢}. The formulas A, B,C, ... of Up(NFA)
are then generated as follows:

Fm 1. The atomic formulas are s = t,s |, and P(s) for s,t: ¢.
Fm 2. If A, B are formulas then so also are -4, A A B, and VzA.

As indicated above, formulas AV B,A — B, and 3z A are defined as usual
in classical logic. We write s ~ ¢ for [s | Vt |— s = t]. Below we write
t [f,7], resp. A [f, 7] for a term, resp. formula, with designated sequences
of free variables f,Z; it is not excluded that t, resp. A may contain other
free variables when using this notation. Since we are dealing with possibly
undefined (individual) terms ¢, the underlying system of logic to be used
is the logic of partial terms (LPT) introduced by Beeson [1985], pp. 97-99,
where ¢ | is read as: t is defined. Briefly, the changes to be made from usual
predicate logic are, first, that the axiom for V-instantiation is modified to

VzA(z) At {— A(t) .

In addition, it is assumed that Vz(z }), i.e. only compound terms may fail to
be defined (or put otherwise, non-existent individuals are not countenanced
in LPT). It is further assumed that if a compound term is defined then all its
subterms are defined (“strictness” axioms). Finally, one assumes that if s = ¢
holds then both s,t are defined and if P(s) holds then s is defined. Note that
(s ) © Jz(s = z), so definedness need not be taken as a basic symbol.

The axioms of Uy (NFA) follow the obvious intended meaning of the new
compound terms introduced by the clauses Tm 5-8:

Ax 4. (Cond(s,t,u,u) )(f, %) ~ s(f,2) Alu # v = (Cond(s, t,u,v) )(f, %) ~
t(f,2)] .

Ax 5. (\f,z.s[f,3))(f, @) =~ s[t,q) .

Ax 6. For ¢ = LFP(\f,Z.t[f, Z]), we have:
(i) o(Z) = t[p, 7]
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