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§0. Introduction
This paper is concerned with the following question. Assume —C H; does there
exist a compact set K C R” such that K has exactly 8; path-components? For
R3, the answer is yes. For R?, the answer is no, assuming a weak large cardinal
axiom (which may or may not be necessary).

The proof of both results is descriptive set theoretic. Indeed, the motivation
for asking the question is descriptive set theoretic. The same question for com-
ponents, rather than path-components, would be a silly question; it is obvious
(at least to descriptive set theorists) that the answer is no. It is also obvious
that it is not possible that 2¥¢ > R3 and that there is a compact K C R" with
N2 path-components. But the question as posed above does not seem to be a
silly question. One of the purposes of this paper is to present the descriptive set
theoretic point of view, and hopefully convince the reader that these “obvious”
facts really are obvious. Two references for descriptive set theory are Kechris
{13] and Moschovakis [17], and we follow their notation and terminology.

In both the R® and R? cases, we have results that are stronger than those
stated above. In both cases, the size of the continuum is irrelevant and the
theorem — properly stated — is nontrivial even if CH is true. These theorems
will be given in §2. For R3, there is a more general theorem, a precise version of
the following: Any ¥} equivalence relation can be coded up as the equivalence
relation of being in the same path-component of K, for some compact K C R3,
From this it easily follows that there is a & C R® with ®; path-components. That
general theorem has other applications as well, one of which answers a question
of Kunen-Starbird {14]. This paper is largely an explanation of the statement of
these stronger theorems, and of the larger mathematical theory of which they
are a part, that is, the descriptive set theory of equivalence relations. In the R3
case we say virtually nothing about the proof. In the R? case we give an outline
of the proof (§§6,7), containing several gaps, and using a stronger large cardinal
axiom than required.

The author plans to some day write a long paper about path-connectedness,
simple connectedness and descriptive set theory (Becker [3]). The results an-
nounced here will appear there with complete proofs. Most of Becker [3] will
be concerned with calculating the complexity, with respect to the projective
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hierarchy, of the following pointsets in the space K(R™) of compact subsets of
R™:

PC, = {K € K(R") : K is path-connected},

SC, = {K € K(R") : K is simply connected}.

Several theorems of this sort were announced in Becker [2, Example 16 ff.], and
proofs of some of them have appeared in Kechris [13, Theorems 33.17 and 37.11].
(Remark. There has been one new result since these publications appeared. Darji
[7] and Just [10], independently, proved that PC is not $1.) This topic is related
to the results in this paper. The proof that there is a K € K(R3) with X; path-
components has much in common with the proof that PC5 is not II} The proof
that, assuming large cardinals and ~C'H, there is no such K in K(IR?), has much
in common with the proof that SCs is IT;.

We work in ZFC. When anything more is used in a theorem it will be
explicitly stated in the hypothesis.

§1. Path-components

Our basic reference for topological matters is Kuratowski [15]. Our terminol-
ogy is standard, and mostly consistent with that reference.

Set theorists have a habit of calling practically anything “the reals”. But here,
topology actually matters, so the reals always means the reals. It is denoted by
R. The letter K will always denote a compact subset of R™ for some n. While
our main interest is in such a space K, we give the definitions in more generality.

Definition1. Definition Let X be a topological space and let p, q be points in
X. A path from p to q in X is a continuous function v : [0,1] — X such that
v¥(0) = p,¥(1) = q. An arc is a one-to-one path.

We sometimes abuse the language and refer to the pointset Im(y) as “the
path 47 or “the arc 4”. '
For any topological space X, let asx denote the following equivalence relation
on X:
P ~x q < there exists a path from p to q in X.

The msx-equivalence classes are called the path-components of X. X is path-
connected if it has only one path-component.

Path-connectedness and path-components should not be confused with a dif-
ferent notion: connectedness and components. |(Connected means no nontriv-
ial clopen sets, and a component is a maximal connected subset.) While path-
connectedness implies connectedness, the converse is false, even for compact
subsets of R% The standard counterexample is K* = A; U As, where

Ay ={(z,y) : -1 <z < 0and y = sin(1/x)},
Az ={(z,y):z=0and —1<y<1}

(see Figure 1). K* is connected. But K* is not path-connected; it has exactly
two path-components, A; and A,.
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Figure 1

Theorem 1.1 Let p,q € R™ and let « : [0,1] — R" be a path from p to q. If
P # q then there is an arc 4’ from p to q such that Im(y') C Im(vy).
Proof. See Kuratowski [15, §50, I, Theorem 2 and II, Theorem 1]. O

By 1.1, for any X C R", path-components are the same thing as arc-
components and path-connectedness the same as arc-connectedness. (In fact,
for any Hausdorff space, the two concepts coincide.)

§2. Statement of theorems

We have two theorems, 2.1 and 2.2, below, which answer the question posed
at the beginning of this paper.
Theorem 2.1 There is a compact set X C R3 with the following properties.

(a) K has exactly R; path-components.
(b) There does not exist a nonempty perfect set P C K such that any two
distinct points of P are in different path-components of K.

The above theorem is proved in ZFC. The next theorem is not quite proved in
ZFC, but rather in ZFC + ¢. (A precise description of € is given below.)
Theorem 2.2 Assume €. For any compact set K C R? one of the following
holds:

(i) K has only countably many path-components;
(ii) There is a nonempty perfect set P C K such that any two distinct points of
P are in different path-components of K. (Hence K has 9% path-components.)

The axiom ¢ is the following statement:

Every uncountable E% set of reals contains a nonempty perfect subset.
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By a theorem of Solovay (see Kanamori [11, Theorem 14.10]) ¢ is equivalent to:

For all a C w, Nf[a] < Ry

The axiom ¢ is equiconsistent with the existence of an inaccessible cardinal (see
Kanamori [11, Theorem 11.6]), and thus it is a “large cardinal axiom” by virtue
of its consistency strength, although it does not, of course, imply the actual
existence of large cardinals. Serious large cardinal axioms, e.g., the existence of
a measurable cardinal, imply that € is true (as opposed to merely consistent).
Hence these large cardinal axioms imply that the conclusion of 2.2 is true. For
more information on large cardinal axioms, see Kanamori [11].

This axiom has been around for a long time, and has been explicitly con-
sidered as a hypothesis of theorems, but does not seem to have ever been given
a name. To rectify that oversight, I have decided to call it ¢. Compared to the
large cardinal axioms commonly used in set theory these days, this axiom is a
very weak assumption — the name ¢ is entirely appropriate.

Theorem 2.2 leads to an interesting open question in reverse mathematics: Is
2.2 provable in weak subsystems of ZFC + ¢, such as ZF(C? 1t is possible that it
is provable in ZFC'. But I would conjecture that it is not, and that, in fact, the
following is provable in ZFC': There exists a compact K C R? and a bijection
between the path-components of K and N{‘ . If this is the case, then in all models
where RF = R; < 2% the answer to the question posed at the beginning of this
paper would be yes, even for R?; hence a large cardinal axiom really would be
necessary to get a no answer.

§3. Descriptive set theory and equivalence relations, I:
Theorems of Silver and Burgess

If E is an equivalence relation on X and Y C X, Y is called E-invariant if
for all y, ¢/ € X:

yEY and yEy =y €Y.

Definition2. Definition Let X be a Polish space, let E be an equivalence re-
lation on X, and let Y C X be E-invariant. We say that Y has perfectly many
E-equivalence classes if there is a nonempty perfect set P C Y such that no two
distinct points of P are E-equivalent.

Clearly perfectly many equivalence classes implies 2¥° equivalence classes. In
fact, “perfectly many” is, in some sense, an effectivized version of “continuum
many”: Y has continuum many equivalence classes iff there is some (arbitrary)
function f from the Cantor set € into Y, such that for z,y € C, if z # y then
F(@)E f(y); Y has perfectly many equivalence classes iff there is a continuous
f as above. “Perfectly many”, unlike “continuum many”, is absolute whenever
E and Y are absolutely - A3 (which is the only situation we consider in this
paper). Therefore, the size of 2% is irrelevant to the question of whether there
are perfectly many equivalence classes.
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In this terminology, Theorem 2.1{(b) (respectively, Theorem 2.2(ii}) states
that K& does not have (respectively, does have) perfectly many path-components.
In the next two theorems, we consider this property in the case Y = X, when
E is I} (coanalytic) and when E is 3] (analytic), where E is regarded as a
pointset in the space X x X.
Theorem 3.1 (Silver). Let X be a Polish space and let E be a IT} equivalence
relation on X. One of the following two cases holds:

{i) X has countably many E-equivalence classes;
(ii) X has perfectly many E-equivalence classes.

This dichotomy theorem is not true for ¥} equivalence relations. The following
equivalence relation £* on C is a counterexample:

2By <= [(c ¢ WO and y ¢ WO) or [a] = [y,

where WO denotes the set of ordinal codes and |z| denotes the ordinal encoded
by z. Clearly there are exactly 8y E*-equivalence classes, and the Boundedness
Theorem implies that (even if C'H is true) there are not perfectly many classes.
Theorem 3.2 (Burgess). Let X be a Polish space and let E be a £} equivalence
relation on X. One of the following three cases holds:

{1} X has countably many E-equivalence classes;
(ii) X has ®; and not perfectly many E-equivalence classes;
(iii) X has perfectly many F-equivalence classes.

As shown above, case (ii) of 3.2 can occur. Thus ¥ i equivalence relations come
in three types. Assuming ~CH, the three types are just three cardinalities for
the set of equivalence classes: Ry, Ny, 2%¢. But if CH is true, we need a different
way of distinguishing case (ii) from case (iii), and that is where the concept
“perfectly many” comes in.

The original proof of Theorem 3.1 appeared in Silver {18]. A simpler proof,
essentially due to Harrington, can be found in Martin-Kechris [16]. The original
proof of Theorem 3.2 is in Burgess [5]. Shelah later discovered an extremely
general theorem, of which both 3.1 and 3.2 are special cases — this can be found
in Harrington-Shelah [9].

Although case (iii} is absolute, the distinction between cases (i) and (ii) of
Theorem 3.2 is not, in general, absolute. For it is provable in ZFC that there
is a 2% equivalence relation £** on C and a bijection between the equivalence
classes of E** and Rf. (Proof. Let Cy = {2 : 2 € Ly=} be the largest thin II{
set — see Kechris {12] for details. Then define

By <= [(t ¢ Cy and y ¢ C1) or z = y].

Since card(Cy) = card(RF), this works.) On the other hand, for some ¥} equiv-
alence relations, such as E*, case (ii) holds in every model.

Now consider those Polish spaces K which are compact subsets of R”, and
the equivalence relation &sx on K of being in the same path-component. Clearly
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g IS E}, since
(3-3) p Rk q <= (3y € (C[0,1))")F(p,q,7),

where F is the following closed subspace of the Polish space K x K x (C[0, 1])*:
F(p,q,7) <= [Im(y) C K and 7(0) = p and ¥(1) = q].

Therefore Burgess’s Theorem is applicable to &g, and so, as pointed out in the
introduction, it is not possible that 2¥¢ > X3 and K has N, path-components.

The equivalence relation of being in the same component of K is closed, hence
IT1, and therefore Silver’s Theorem is applicable. That is, for any K,

(3.4) K has either countably many or perfectly many components.

So, as was also pointed out in the introduction, assuming ~C H, K cannot have
R, components. These facts about components can be proved directly, without
going through Silver’s Theorem.

But is the ¥} equivalence relation asx also IT! ? Note that by Suslin’s
Theorem, it is IT iff it is Borel.

It has been known since the work of Kunen-Starbird [14] in 1982 that there
exists a compact K C R3 for which ¢ is not Borel (and that therefore Silver’s
Thorem is not, in general, applicable to the equivalence relation k). It is still
an open question whether or not for every compact K C R?, ~k is Borel. While
it is possible that for all K € K({R?), s is Borel, it is not the case that ~k is
Borel uniformly in K. For if it was, PCy would be a IIi set, which is not true
{see Becker {2, Theorem 2.2]).

This is the background which motivated the question posed at the beginning

of this paper. (That question was asked by the author in 1984 in several talks and
in the circulated notes Becker [1], but never asked in print.) To summarize: We
have a collection & = {~g: K € K{R™)} of 1, generally non-Borel, equivalence
relations; Theorem 3.2 classifies X1 equivalence relations into three types, all
of which can occur; the question is whether type (ii) {R;, not perfectly many)
can occur for equivalence relations in €. There are many interesting questions
{some solved, some open) of precisely this form: Given a proper subclass of
the class of all X1 equivalence relations, can type (i) occur in this subclass? For
example, Vaught’s Conjecture is such a question, since isomorphism for countable
structures — restricted to the Borel set of models of a first-order theory —is a
X! equivalence relation.
Remark. For the equivalence relation of isomorphism, the distinction between
cases (i) and (ii) of Theorem 3.2 is absolute. Thus if there is a counterexample to
Vaught’s Conjecture in L it remains a counterexample in V (even if RF < ).
See Becker-Kechris [4, §7.2). In this respect, there is a descriptive set theoretic
difference between Vaught’s Conjecture and the analogous conjecture for path-
components with which this paper is concerned.
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§4. Path-components in compact subsets of R?

The question, as posed in §3, was whether case (i1} of Theorem 3.2 — which
does occur among arbitrary X} equivalence relations — can occur for a special
sort of Z‘% equivalence relation, those of the form a/g. Of course, Theorem 2.1
says that it does. The way 2.1 is proved is to show that equivalence relations
of the form x g are really not all that special; any Z} equivalence relation can
be coded up as mvk for some K € K(R3). This is made precise in Theorem 4.1,
below.

Let C denote the Cantor middle third set in [0, 1].

Theorem 4.1 Let F be a X1 equivalence relation on C. There exists a compact
set Kg C R? satisfying the following three properties.

(a) For all z € R, (x,0,0) € Kg iff z € C.
(b} For all p € Kg there exists an & € C such that (z,0,0) Rk, p.
(c) Forall z,y € C, zEy iff (z,0,0) ~k, (y,0,0).

Both a proof of Theorem 4.1 and a magnificent 3-dimensional picture of Kg will
appear in Becker [3].

Note that if the word “compact” was removed from 4.1, the proof would
be quite easy. For each pair (z,y) such that zEy, we could pick a path (=¥
connecting ¢ and y, and since we are in 3-dimensional space, there is enough
room to pick these paths so that no two intersect except at the endpoints; then
let K'g be the union of all these paths. However a Kg constructed in this naive
manner will not even be a Borel set. The trick is to get it to be compact. The
construction of Kg is similar to the constructions in Kechris [13, Theorems 33.17
and 37.11].

Theorem 2.1 is a corollary of Theorem 4.1. To see this, just consider a Z'i
equivalence relation E on C with ®; and not perfect many equivalence classes,
and let Kg be as in Theorem 4.1, for this particular E. It is not hard to show
that Kg satisfies 2.1.

Kunen-Starbird [14] proved that there is a K € K (IR3) which has a non-Borel
path-component, and asked: Does there exist a K € K(R3) such that no path-
component of K is Borel?

Corollary 4.2 There is a compact set K C R3 such that no path-component of
K 1s Borel.

Proof. 1t is well known (but apparently unpublished) that there is a 2{ equiva-
lence relation E on € such that no E-equivalence class is Borel. (Proof. It will suf-
fice to find such a S% equivalence relation E’ on a standard Borel space. Let S be
a X} non-Borel subset of R, and let F(R) and F(S) be the free groups generated
by R and S, respectively. Let E’ be the equivalence relation on F(R) given by the
coset decomposition F(R)/F(S).) Let Kg be as in Theorem 4.1, for this partic-
ular E. By 4.1(c), if any path-component of K'g was Borel, the corresponding E-
equivalence class would be Borel.

Remark. In both 2.1 and 4.2, the K’s can be taken to be connected (that is, to
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be continua). This is so because the components of the original K are compact
and connected, so in 4.2, we can pass from K to any component, and in 2.1, to
any component which consists of ¥; path-components. Such a component must
exist, by 3.4.

There are some very complicated ¥} equivalence relations — complicated
in both the intuitive sense, and in the precise sense of definable cardinality, as
explained in Becker-Kechris {4, §8]. One example of a complicated ¥ i equivalence
relation is Turing-equivalence. By 4.1, all this complexity exists in the path-
component equivalence relation for compact subsets of R3,

All of the above results trivially transfer from R3 to R”, for n > 3. What
about n = 27 Of course, the analog of Theorem 2.1 is false for R? (assuming ¢).
The analog of Corollary 4.2 is also false for R? (in Z FC); that is, for any compact
K C R?, at least one path-component of K is a Borel set. These facts seem to
mean that it is not possible to code up arbitrary ¥ equivalence relations as the
path-component equivalence relation for some K € K(R?), under any conceivable
meaning of “code up”. This still leaves open the question of whether ag can
ever be “complicated” for K € K(R?), e.g., can it be as complicated as Turing-
equivalence? There are no known examples (from any axioms) of a K € K(R?)
such that vk is not smooth, i.e., such that &g is more complicated than the
equality relation on C (see Becker-Kechris [4, §3.4] for definitions and details).

§5. Descriptive set theory and equivalence relations, II:
Stern’s Theorem

In this section, we consider Borel equivalence relations, which are much better
behaved than arbitrary IT } equivalence relations. At first glance, Silver’s The-
orem (3.1) would seem to say that nothing could be better behaved than IT}
equivalence relations. The problem is that the Silver dichotomy for IT i equiva-
lence relations applies only to the entire Polish space X.If E is a Hi equivalence
relation on X, there may well be a simply definable — in fact, IT i — E-invariant
set Y C X such that E|(Y xY') does not have either countably many or perfectly
many equivalence classes. For example, let E*** be the following IT % equivalence
relation on C:

By <= {(x € WO and y € WO and |z| = |y|) or z = y].

Clearly WO is IT] and E***-invariant, and E***}(WO x WO) violates the di-
chotomy. For Borel equivalence relations, this situation does not occur.
Theorem 5.1 (Stern) Assume e. Let X be a Polish space, let E be a Borel
equivalence relation on X and let ¥ C X be an E-invariant ¥} set. One of the
following two cases holds:

(1) Y has countably many E-equivalence classes;
(i1) Y has perfectly many F-equivalence classes.

Proof. See Stern [19].0
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To put Stern’s Theorem in its proper context, the following two remarks may
be helpful. First, fix a Borel equivalence relation E on X with perfectly many
equivalence classes. Assuming the full axiom of determinacy (which contradicts
the axiom of choice), every E-invariant set Y C X has either countably many
or perfectly many E-equivalence classes. This follows from Stern’s Theorem to-
gether with a result of Harrington-Sami [8, Theorem 2]. Obviously, using the
axiom of choice, we can pick out a set of R; F-equivalence classes; and, in fact,
even if CH is true, using choice we can get an FE-invariant set Y C X with un-
countably many but not perfectly many equivalence classes. But such a Y will
not be definable. Thus E-invariant sets Y C X which violate the dichotomy are
like sets of real numbers which are not Lebesgue measurable: Such pathological
sets do exist, but one cannot explicitly define an example. That’s not provable
in ZFC, but all right-thinking people know it is true. Regarding provability, the
analogy between sets Y C X violating the dichotomy and nonmeasurable sets
of reals still holds: Stronger and stronger large cardinal axioms imply larger and
larger classes of sets are nonpathological. Stern’s Theorem is that the axiom ¢ is
sufficient to prove that 2% sets Y are nonpathological.

Second, consider the case where X is the reals and E is equality. For this
special case, the conclusion of Theorem 5.1 is that for any Z‘% set Y C R,
either Y is countable or Y has a perfect subset. That is, the conclusion of 5.1 is
literally the axiom e. So clearly this assumption is necessary. Stern’s Theorem
says that if equality has this property, then every Borel equivalence relation has
this property. And as shown by the examples E* and E***, above, “Borel” is
best possible.

§6. Theta-curves

Definition. A theta-curve (in R?) is a 5-tuple (u,v,v1,v2,73) such that
u,v € B2 each v; is an arc from u to v in R? and if i # j then %, Nv; = {u,v}.

We sometimes abuse the language and refer to the pointset Im(y; )UIm(y2)U
Im(vs) in R? as the “theta-curve”. Figure 2 is a picture of a theta-curve in this
latter sense.

We need a theorem about the topology of the plane — the theorem says that

the picture in Figure 2 is correct. It is actually a very deep theorem, and to
motivate it one should first consider the famous Jordan Curve Theorem. A cir-
cle always means a topological circle. The Jordan Curve Theorem states: If '
is any circle embedded in R?, then R?\C has exactly two components; and fur-
thermore, the boundary of each of the two components is C. There is a similar
theorem for theta-curves.
Theorem 6.1 Let (u,v,y1,72,73) be a theta-curve, and let % = Im(vy).
R\ (%3 UF2U73) has exactly three components. The boundary of one component
is 41 U#2. The boundary of another component is 42 U43. And the boundary of
the third component is 3 U 7 .
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1,

Figure 2

Proof. See Kuratowski {15, §61, II, Theorem 2]. O

Theorem 6.2 Let K be a compact subset of R? If there is no theta-curve lying
in K, then the equivalence relation /g is Borel.

Corollary 6.3 Assume ¢. Let K be a compact subset of RZ, If there is no theta-
curve lying in K, then for any ~g-invariant Eé set Y C K, one of the following
two cases holds:

(1) Y has countably many path-components;
(i1) Y has perfectly many path-components.

Proof. 'This follows from Theorems 5.1 and 6.2. Note that since Y is ~yk-
invariant, &y is &g |(Y X Y), i.e., every path-component of Y is also a path-
component of K. O In §7, we give a proof of Theorem 2.2 (from a stronger large
cardinal axiom than ¢). That proof uses both Theorem 6.1 and Corollary 6.3. We
remark that one could also consider theta-curves in R™, for any n, and that both
6.2 and 6.3 would still be valid in the n-dimensional case. But the 3-dimensional
analog of Theorem 6.1 is obviously false. Theorem 6.1 is the one and only place
in the proof of Theorem 2.2 where the hypothesis that K C R? is used.

The rest of §6 consists of a sketch of the proof of Theorem 6.2. This proof
involves effective descriptive set theory, that is, recursion theoretic methods.
Moschovakis [17] is the reference for this subject.

We work with recursively presented Polish spaces (as defined in Moschovakis
[17, Page 128]). The Polish spaces R% K(R?) and (C[0,1])? are all recursively
presented, hence so are all finite products of these spaces. We regard compact
subsets of R? as points in the space K(R?), and we regard paths in R? as points
in the space (C[0,1])%. For any recursively presented Polish spaces X and Y,
and any points ¢ € X and y € Y, z <, y means that z is hyperarithmetic-in-y,
or equivalently, that x is Al(y). This is defined in Moschovakis [17, Pages 151
and 157)].

@© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org/9781107167902
www.cambridge.org

