CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1

Directory of Plates

<table>
<thead>
<tr>
<th>Selection, Processing and Presentation of the Spectra</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Selection of Spectra</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Recording and Resolution of the Spectra</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Processing of the Spectra</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Calibration of the Wavelength</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Display of the Intensity Scale and Normalization of the Profiles</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Identification and Labeling of the Spectral Lines</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Presentation</td>
<td>9</td>
</tr>
<tr>
<td>2.8 Object Coordinates</td>
<td>9</td>
</tr>
<tr>
<td>2.9 Distances</td>
<td>9</td>
</tr>
</tbody>
</table>

3

Terms, Definitions and Abbreviations

Designation and Parameters of the Stars	10
Galactic Nebulae and Star Clusters	10
Extragalactic Objects	10
Labeling of the H-Balmer series	10
Labeling of Elements and Ions	10
Abbreviations, Symbols and Common Units	10

4

Overview and Characteristics of Stellar Spectral Classes

Preliminary Remarks	13
The Fraunhofer Lines	13
Further Development Steps: The Five Secchi Classes	14
"Early" and "Late" Spectral Types	15
Temperature Sequence of the Harvard Classification System	15
Rough Determination of the One-Dimensional Spectral Class	15
Flowcharts for Estimation of the Spectral Class	16
Further Criteria for Estimation of the Spectral Class	16
The Two-Dimensional MK (Morgan–Keenan) or Yerkes Classification System	18
Effect of the Luminosity Class on the Line Width	18
Suffixes, Prefixes and Special Classes	19
Statistical Distribution of Spectral Types to the Main Sequence Stars	20

5

Spectral Class O

Overview	23
Parameters of the Late to Early O-Class Stars	24
Spectral Characteristics of the O Class	24
General Remarks on the Classification of O Stars	24
Comments on Observed Spectra	24

6

Spectral Class B

Overview	30
Parameters of the Late to Early B-Class Stars	30
Spectral Characteristics of the B Class	30
Comments on Observed Spectra	31

7

Spectral Class A

Overview	36
Parameters of the Late to Early A-Class Stars	36
Spectral Characteristics of the A Class	36
Comments on Observed Spectra	37
Table of Contents

8
Spectral Class F
- 8.1 Overview
- 8.2 Parameters of the Late to Early F-Class Stars
- 8.3 Spectral Characteristics of the F Class
- 8.4 Comments on Observed Spectra

9
Spectral Class G
- 9.1 Overview
- 9.2 Parameters of the Late to Early G-Class Stars
- 9.3 Spectral Characteristics of the G Class
- 9.4 Comments on Observed Spectra

10
Spectral Class K
- 10.1 Overview
- 10.2 Parameters of the Late to Early K-Class Stars
- 10.3 Spectral Characteristics of the K Class
- 10.4 Comments on Observed Spectra

11
Spectral Class M
- 11.1 Overview
- 11.2 Parameters of the Late to Early M-Class Stars
- 11.3 Spectral Characteristics of the M Class
- 11.4 Comments on Observed Spectra

12
Spectral Sequence on the AGB
- 12.1 Evolution of Stars in the Post-Main Sequence Stage
- 12.2 The Spectral Sequence of the Mira Variables on the AGB

13
M(e) Stars on the AGB
- 13.1 Overview
- 13.2 Spectral Characteristics of the M(e) Stars on the AGB
- 13.3 Comments on Observed Spectra

14
Spectral Class S on the AGB
- 14.1 Overview and Spectral Characteristics
- 14.2 The Boeshaar–Keenan S-Classification System
- 14.3 “Intrinsic” and “Extrinsic” or “Symbiotic” S Stars
- 14.4 Hints for the Observation of S-Class Stars
- 14.5 Comments on Observed Spectra

15
Carbon Stars on the AGB
- 15.1 Overview and Spectral Characteristics
- 15.2 Competing Classification Systems
- 15.3 The Morgan–Keenan (MK) C-System
- 15.4 The Revised Keenan 1993 System
- 15.5 Connection of the Subclasses to the Evolution of Carbon Stars
- 15.6 Merrill–Sanford Bands (MS)
- 15.7 Comments on Observed Spectra

16
Post-AGB Stars and White Dwarfs
- 16.1 Position of Post-AGB Stars in Stellar Evolution
- 16.2 Post-AGB Stars
- 16.3 Spectral Features of Post-AGB Stars
- 16.4 White Dwarfs
- 16.5 Spectral Characteristics and Special Features of White Dwarfs
- 16.6 Classification System by McCook and Sion
- 16.7 Comments on Observed Spectra

17
Wolf–Rayet Stars
- 17.1 Overview
- 17.2 Spectral Characteristics and Classification
- 17.3 Classification System for WR Stars in the Optical Spectral Range
- 17.4 The WR Phase in Stellar Evolution
- 17.5 Analogies and Differences to the Central Stars of Planetary Nebulae
- 17.6 Comments on Observed Spectra of the WR Classes WN, WC and WO
Table of Contents

18

LBV Stars 96
18.1 Overview 96
18.2 Spectral Characteristics of LBV Stars 96
18.3 Comments on Observed Spectra 97

19

Be Stars 100
19.1 Overview 100
19.2 Spectral Characteristics of Be Stars 100
19.3 A Textbook Example: δ Scorpii 101
19.4 Classification System for Be Stars 101
19.5 Comments on Observed Spectra 101

20

Be Shell Stars 105
20.1 Overview 105
20.2 Spectral Characteristics of Be-Shell Stars 105
20.3 Comments on Observed Spectra 105

21

Pre-Main Sequence Protostars 108
21.1 Overview 108
21.2 Herbig Ae/Be and T Tauri Stars 108
21.3 Spectral Characteristics of PMS Stars 109
21.4 The FU Orionis Phenomenon 109
21.5 Comments on Observed Spectra 109

22

Chemically Peculiar (CP) Stars 115
22.1 Overview 115
22.2 Classification of the CP Stars 115
22.3 λ Bootis Class 115
22.4 Am–Fm Class 116
22.5 Ap–Be Class 116
22.6 Mercury–Manganese Class 116
22.7 Helium-weak Stars 117
22.8 Helium-rich Stars 117
22.9 Subdwarf Luminosity Class VI 117
22.10 Comments on Observed Spectra 117

23

Spectroscopic Binaries 123
23.1 Short Introduction and Overview 123
23.2 Impact on the Spectral Features 123
23.3 SB1 and SB2 Systems 125
23.4 Comments on Observed Spectra 125

24

Novae 132
24.1 The Phenomenon of Nova Outbursts 132
24.2 Classical and Recurrent Novae 133
24.3 Dwarf Novae 133
24.4 Symbiotic Stars 133
24.5 Nova-like Outbursts in LBV Stars 134
24.6 Evolution of the Outbursts with Classical Novae 134
24.7 Spectral Characteristics after Maximum Light 134
24.8 Evolution from the Permitted to the Nebular Phase 134
24.9 The Spectroscopic Tololo Classification System 135
24.10 Comments on Observed Spectra 135

25

Supernovae 142
25.1 The Phenomenon of Supernova Explosions 142
25.2 Designation of Supernovae 142
25.3 Classification of SN Types 142
25.4 SN Type I 143
25.5 SN Type II 143
25.6 Explosion Scenario: Core Collapse 143
25.7 Explosion Scenario: Thermonuclear Carbon Fusion 144
25.8 SN Type Ia: An Important Cosmological Standard Candle 144
25.9 Diagram for the Spectral Determination of the SN Type 144
25.10 SN Type Ia: Spectral Features in the Optical Range 145
25.11 SN Type II: Spectral Features in the Optical Range 146
25.12 SN Type Ib and Ic: Spectral Features in the Optical Range 146
26
Extragalactic Objects

26.1 Introduction 149
26.2 Morphological Classification of Galaxies 149
26.3 Spectroscopic Classification of Galaxies 150
26.4 Rough Scheme for Spectroscopic Classification of Galaxies 150
26.5 Absorption Line Galaxies 150
26.6 LINER Galaxies 150
26.7 Starburst Galaxies 152
26.8 The Phenomenon of Active Galactic Nuclei (AGN) 153
26.9 Seyfert Galaxies 153
26.10 The Quasar Phenomenon 154
26.11 Blazars and BL Lacertae Objects (BL Lacs) 156

27
Star Clusters

27.1 Short Introduction and Overview 165
27.2 Open Clusters (OCL) 165
27.3 Globular Clusters (GCL) 165
27.4 Spectroscopic Analysis of Star Clusters 166
27.5 Spectroscopic Age Estimation of Star Clusters by Amateurs 166
27.6 The Pleiades (M45): Analysis by Individual Spectra 167
27.7 Age Estimation of M45 168
27.8 Globular Clusters: Analysis by Integrated Spectra 168
27.9 Age Estimation of M3, M5 and M13 169

28
Emission Nebulae

28.1 Overview and Short Introduction 173
28.2 H II Regions 173
28.3 Planetary Nebulae 173
28.4 Protoplanetary Nebulae 174
28.5 Supernova Remnants 174
28.6 Wolf–Rayet Nebulae 175
28.7 Common Spectral Characteristics of Emission Nebulae 175
28.8 Plasma Diagnostics and Excitation Class E 176
28.9 Practical Aspects of the Determination of the E Class 176
28.10 Practical Aspects of the Recording of Planetary Nebula 177
28.11 The Excitation Class as an Indicator for Plasma Diagnostics 177
28.12 Emission Lines Identified in the Spectra of Nebulae 178
28.13 Comments on Observed Spectra 178
28.14 Distinguishing Characteristics in the Spectra of Emission Nebulae 183

29
Reflectance Spectra of Solar System Bodies

29.1 Overview 197
29.2 Comments on Observed Spectra 197
29.3 Reflectance Spectrum of a Total Lunar Eclipse 198

30
Telluric Molecular Absorption

30.1 The Most Significant Molecular Absorptions by the Earth’s Atmosphere 204
30.2 Telluric H₂O Absorptions around the Hα line 204
30.3 Telluric O₂ Absorptions within Fraunhofer A and B Bands 205

31
The Night Sky Spectrum

31.1 Introduction 209
31.2 Effects on the Spectrum 209

32
The Mesospheric Sodium Layer

32.1 Overview 211
32.2 Spectroscopic Detection of the Sodium Layer 211

33
Terrestrial and Calibration Light Sources

33.1 Spectra of Common Gas Discharge Lamps 213
33.2 Spectra of Glow Starters Modified as Calibration Light Sources 214
33.3 Calibration and Processing of an Entire Echelle Spectrum 215
33.4 Spectra of Hydrocarbon Flames 215
33.5 Terrestrial Lightning Discharges 215
Table of Contents

Appendix A: Spectral Classes and $v \sin i$ Values of Bright Stars 243
Appendix B: The 88 IAU Constellations 247
Appendix C: Spectral Classes and B–V Color Index 249
Appendix D: Spectral Classes and Effective Temperatures 251
Appendix E: Excitation Classes of Bright Planetary Nebulae 253
Appendix F: Ionization Energies of Important Elements 255
Appendix G: Spectroscopic Measures and Units 257
Appendix H: Distant AGN and Quasars Brighter than $m_v \approx 16$ 259
Appendix J: Excerpts from Historical Spectral Atlases 262
Appendix K: Instruments 265
Appendix L: Bibliography 266
Appendix M: Subject Index 275
Appendix N: Stellar Index 278
Appendix O: Object Index: Deep Sky and Solar System 279