INDEX

abundance, of species, 38–39
accelerator mass spectrometry (AMS)
radiocarbon dating, 332, 339–340
Acheulean stone tool industry, 30
African carnivore guild, 45–47
H. erectus and, 46
development of, 104
for early hominins, 94–95
Acila site, 225
Acinonyx jubatus (cheetah), 132
daDNA studies. See ancient DNA studies
Africa. See also malarial infections; Out of Africa
1; Out of Africa 2
carnivore guilds in, 45–47
domesticated animals and plants in, dispersal of, 282–286
in central regions, 285
in South Africa, 285–286
in sub-Saharan region, 284–285
in western regions, 285
global diseases and leprosy, 502–505
malaria, 498–499
origins of, 498–505
TB, 499–502
hominin dispersal from, 47–50, 53
Neolithic sites in, 282–284
pre-Oldowan
carnivore guilds, 34–40
ecological guilds in, 35
ecological measures in, 38–39
genera present in, between 7 and 5 Ma, 36
during key time periods, 37
by region, 35–40
agriculture, development of. See also domesticated animals; domesticated plants
archaeobotany
of barley, 317
data accumulation for, 312
in Australia, 166–168, 169–173
in British Isles, 317–318
of cereals, 310, 322–323
in China, 319
climatic conditions as influence on, 319–322
comparative approach to, 305–306
crop package persistence and, 316
culinary influences on, 322–324
cultivation in defined, 306
of niches, 307–309
of rice, 308–309
trophic levels, 307–308
domestication of, 306–309
Broad Spectrum Revolution in, 307
defined, 306
in East Asia
of millet, 311
of rice, 310–311
through human-mediated species introductions, 311–313
introduction of new crops, 321–322
long-term effects of, 304–305, 324–325
in Mediterranean basin, 310
of millet, 310, 311
abandonment of, 318–319
in Neolithic landscapes, 317–319
in New Guinea, 173–176
niches in construction of, 307
cultivation of, 307–309
Eurasian, 310–311
evolution of, 306–309
agriculture, development of. (cont.)
types of, 310
non-ecological adaptations in, 322–324
in Norway, 317
of oats, 311–322
post-domestication enhancements in, 319–322
of rice, 310
 cultivation of, 308–309
in East Asia, 310–311
 japonica varieties, 319–320
 types of preparations, 322–323
of rye, 321–322
 secondary crops, 319–322
 weeds and, 312–313
of wheat and barley, 313, 316, 320–321
archaeobotany of, 317
Acilis bucephalus (bartebeest), 129–132
AMS radiocarbon dating. See accelerator
 mass spectrometry radiocarbon
dating
Anatolia region
domesticated animals and plants in,
dispersal of, 268–272
Konya Basin, 270
Mesolithic sites in, 271–272
migration trajectories across, 243–244
Neolithic sites in, 271–272
ancient DNA (aDNA) studies
during Bronze Age, 244
 defined, 237–238
 degradation issues, 241
 development of, 5–6
 of eliminated species, 6
 on maize, 336, 344
 of Mesolithic sites, 254–255
 migration trajectories, 253–255
 across Anatolia region, 243–244
 for Arctic fox, into Iceland, 248–252
 during Bronze Age, 244
 development of, 217–238
 of domesticated pigs, 241–244
 for Falkland Islands wolf, 252–253
 of farmers, into Europe, 239–243
 through genetic typing, 246–247
 for humans, into Pacific, 244–248
 in ISEA, 245–248
 during Little Ice Age, 251–252
 Neolithic sites, 241
 Pacific Clade and, 245–248
 phyllogeographic patterns, 239
to Polynesia, 244–245
of wild boar, 239–243
of smallpox, 508–509
of TB, 499–500
Anderson, Edgar, 441
animal distribution maps, of green
 Sahara, 125
animal translocations
 in Australia, 179–180
 through biological exchange
 from 500 BC to 500 AD, 369–370,
 374–375, 376–377
 during Medieval period, 384–385
 during Bronze Age, 355–363
 from green Sahara, 128, 137–138
 in ISEA, 179–180
 in New Guinea, 179–180
Anthropocene
 cultural niche construction in, 17–20
 dating of, 19, 92
 fire use during, 102–103
 anthropochore species, 441
 anthropogenic species dispersal, 14–17
 for dogs, 14
 failed, 17
 of rats, 14
 successful, 16–17
 transported landscapes, 15
 anthropophyte species, 441, 446
 antibiotic-resistant bacterial pathogens,
 465–467
ants
 dispersal strategies of, 414–417
 clausal foundation strategy, 415–416
 unicoloniality, 417
 invasions by, 417–423
 Argentine ant, 421–422
 distinguishing foes from friends, 419–420
 facilitating factors for, 417–420
 invasive garden ant, 422–423
 monocloniality and, 421–422
 multicoloniality and, 421
 population of colony as factor in, 418–419
 pre-adaptation behaviors, 421–423
 by species, 417–418
 unicoloniality and, 421–422
Anonyx capensis (clawless otter), 52
 apophyte species, 441, 446
Arabian Peninsula
 archaeological sites in, 223–224
 Acila site, 223
 Jebel Faya site, 221, 228

© in this web service Cambridge University Press
www.cambridge.org
Index

Jebel Qara site, 223–224
Jebel Qattar site, 225, 228–229
Manayzah site, 224
Neolithic, 222–223, 224, 225–227
obsidian at, 226
al-Rabyah site, 223–224, 228
Ubaid pottery evidence, 226
Wadi Surdud site, 227–228
colonisation in, 227–230
in Fertile Crescent, 222–223
during Holocene period, 222–227, 228–229
of hominins, 220–221
increase of cultural interactions, 226–227
in Levant, 222
during Middle Palaeolithic period, 220–222, 227–228
during Palaeolithic period, 220–222
societal transformations as result of, 227
domesticated animals in, dispersal of, 224, 229
geographic diversity in, 219–220
stone tool industry in, 221–222
Arctic fox. See Vulpes lagopus
Argentine ant, invasions by, 421–422
Aterian site, 130
Australia
agricultural development in, 166–168, 169–173
ever fire use in, 103
human colonisation of
agricultural development, 166–168, 169–173
dating of, 168
fire use and, 165
during Holocene period, 166–179
hunter-gatherer communities, 166–168, 176–177
through inter-island movement, 179–183
during Pleistocene period, 165–166
stone tools and, 165–166
species dispersal throughout
through animal translocations, 179–180
archaeobotany of wet tropics, 171
through domestication of animals, 180–181
through inter-island movement, 179–183
isolationist approach to, 164
plant domestication, 171, 177
trough plant translocations, 181–183
during Pleistocene period, 165–166
regional approach to, alternatives to, 183–185
Australopithecus afarensis, 31–32
Austronesian languages, 167
in New Guinea, 173
Austronesian expansion, 151
bacterial pathogens
air travel and, reverse trajectories of, 523–527
antibiotic-resistant, 465–467
dispersals of, 470–471
geological time scales for, 453
human migration patterns
H. pylori influenced by, 456–459
mobility and, modern trends for, 521–523
S. enterica serovar Agona influenced by, 466–470
Y. pestis influenced by, 459–465
Y. pseudotuberculosis influenced by, 462
molecular clock rates for, 454–455
Balkan Peninsula, domesticated animals in, 275
barley. See wheat and barley, agricultural development of
bioarchaeology, 497, 499, 503, 513
biogeographers, 4
biogeographical approach, to hominin dispersal, 64–66
biological exchange. See also animal translocations; globalisation; plant translocations; proto-globalisation; translocated species
from 500 BC to 500 AD, 364–378
through animal translocations, 369–370, 374–375, 376–377
of diseases, 378
through plant translocations, 365–369
mechanisms of, 351–353, 386–390
during Medieval period, 379–386
through animal translocations, 384–385
with China, 379–380
during Columbian Exchange, 385–386
of diseases, 385
Islamic Green Revolution, 380
through plant translocations, 380–384
by Sasanians, 379
© in this web service Cambridge University Press www.cambridge.org
biological exchange. (cont.)
throughout Continental Europe, 374–375, 376–377
translocated species and, 352–353
Bismarck Archipelago, 168, 197
farming in, 172–173
Blackwell Companion to Globalization, 351
boats, origin and evolution of, 153–154
Borneo, 195
bottle gourds, cultivation of, 340
breads, production of, 322
British Isles
agricultural development in, 317–318
domesticated animals in, dispersal of, 281
plant translocations to, 3, 377–378
domesticated plants, dispersal of, 281
Broad Spectrum Revolution, 307
Bronze Age
aDNA studies during, 244
proto-globalisation during, 354–363
animal translocations as result of, 355–363
Gulf-South Asian trade routes, 363–364
plant translocations as result of, 355–363
Buddhism, globalisation of, 365
cane rat. See Thryonomys swinderianus
Canis aureus (golden jackal), 52
carnivore guilds
Acheulean stone tool industry and, 45–47
H. erectus, 46
in Eurasia, 50
hominins and, 51–52
pre-Oldowan Africa, 34–40
ecological guilds in, 35
ecological measures in, 38–39
genera present in, between 7 and 5
Ma, 36
during key time periods, 37
by region, 35–40
sympatric species, 50–51
carnivores
chimpanzees, 40–41
extinction factors, 52–53
grouping behaviours of, 41–42
hominins as, 40–43, 52
expensive tissue hypothesis and, 42
human and, historical relationship between, 29–34
hypercarnivores, 30–31
hypocarnivores, 30–31
kleptoparasitism and, 41
mesocarnivores, 31–32
Oldowan stone tool industry and, 43–45
taxonomy of, 33–34
cattle, domestication of
in Africa, 282–286
in central regions, 285
in South Africa, 285–286
in sub-Sahara region, 284–285
in western regions, 285
in Anatolia region, 268–272
in Arabian Peninsula, 224, 229
in Balkan Peninsula, 275
in British Isles, 281
in Continental Europe, dispersal of, 277–281
in Fertile Crescent, 286–290
on Iberian Peninsula, 276–277
in Mediterranean Basin, 272–277
cereals, production of, 310, 322–323
Channel Islands, ecosystems on, 155
Chasmoaporthetes, 47
cheetah. See Acinonyx jubatus
chensopods, cultivation of, 340
chickens. See Gallus gallus
chimpanzees
as carnivores, 40–41
grouping behaviours of, 41–42
China. See also East Asia; Eurasia
agricultural development in, 319
biological exchange during Medieval period, 379–380
chronology, prehistoric
chronometric hygiene, 204
of East Polynesia, 207–210
for human settlement, 205–206
long chronology, 203–204, 206
of New Zealand, 202–207, 208
orthodox chronology, 203
of Polynesia, 207–210
short chronology, 203, 206
chronometric hygiene, 204
clausal foundation strategy, 415–416
clawless otter. See Aonyx capensis
climate change
expansion of species due to, for
humans, 10
in green Sahara, anthropic animal
dispersal as result of, 138–139
green Sahara from, 10
human-influenced, 90–91
coastal ecosystems. See also maritime
technology
Index

crops, dispersal of. See agriculture, development of.
crowd diseases, 505–512. See also plague; smallpox.
cuisine, agricultural development influenced by, 322–324
cultivation, in agricultural development defined, 306
of niches, 307–309
of rice, 308–309
trophic levels, 307–308
cultural niche construction in agricultural development, 307–309
during Anthropocene period, 17–20
cursorial animals, 30

Delivering Alien Invasive Species Inventories for Europe (DAISIE) project, 432–435
Denisovans, 6
dispersal during Pleistocene period, 63
Desmoulins, Charles, 437
diet, for early hominins, 94–95
of aquatic plants and animals, 149
diseases. See also bacterial pathogens;
malarial infections
biological exchange of from 500 BC to 500 AD, 378
during Medieval period, 385
globalisation of, 494–498. See also Africa; malarial infections; smallpox
African origins in, 498–505
through air travel, reverse trajectories for, 523–527
bioarchaeology for, 497, 499, 503, 513
chronology of, 498–505
through continental connectivity, 527–529
contingency factors, 497
crowd diseases, 505–512
through dispersal of pathogens, 521–522, 532
trough domestic mobility, 529–530
through global shipping, reverse trajectories for, 523–527
historical method for, 501, 507, 509, 512–513
HIV/AIDS, 495, 527–529
migration flows for, 527–529
narratives for, 497–498, 512–513
phylogenetics and, 497, 501, 511
plague, 511–512
population increases and, 531

ecology of, 151–153
during Holocene period, 155–156
human impact on, 154–158
on Channel Islands, 155
for shellfish populations, 155, 156
Kelp Highway, 152
Mangrove Highway, 153
maritime dispersals, 151–153
after Pleistocene period, 147–149
during Pleistocene period, 155–156
sea levels, 148–149
shorelines, 148–149
in South Africa, 154
coastlines
aquatic habitats, 149–151
Austronesian expansion and, 151
ecology of, 151–153
hominin encephalization on, 149–151
of H. erectus, 150
of H. habilis, 149–150
of H. sapiens, 150–151
of Neandertals, 150
maritime dispersals along, 151–153
sea levels of, 148–149
shorelines and, 148–149
coop-distribution, of anthropic animal dispersal, 128, 135–137
colonisation. See also Australia; Island Southeast Asia; New Guinea in Fertile Crescent, 222–223
through maritime technology, 12
of Near Oceania, 195–197
of New Zealand, 209–210
during Out of Africa 1, 76–78
of Pacific Islands, 195, 210–212
of Polynesia, 197
chronology of, 207–210
downwind sailing and, 209
Columbian Exchange, 12–13, 385–386
Commander Islands, 249
commensalism, 128
common genet. See Genetta genetta
competitive exclusion, 35
confrontational scavenging, 41
Continental Europe. See Europe
Cook Islands, 208–209
cooperation. See within-group cooperation
corn. See maize
Corsica, 276
Cosmographiae Introductio (Wealdseemueller), 439
crop package persistence, 316
diseases. (cont.)
through trade, 505–512
through urbanization, 505–512
human-mediated species dispersal of, 13–14
diversity, of species, 38
dogs, anthropogenic species dispersal for, 14
domesticated animals, dispersal of. See also cattle; Fertile Crescent; goats; sheep;
Sus scrofa
in Africa, 282–286
in central regions, 285
in South Africa, 285–286
in sub-Saharan region, 284–285
in western regions, 285
in Anatolia region, 268–272
in Arabian Peninsula, 224, 229
in Balkan Peninsula, 275
in British Isles, 281
in Continental Europe, dispersal of, 277–281
through controlled hunting, 268
development of, 261–263
documentation of, 263–265
during early Holocene period, 263
in Fertile Crescent, 286–290
human-mediated, 13–14
human-mitigated factors for, 267–268
on Iberian Peninsula, 276–277
isotopic analysis, 264
location of, 266–267
in Mediterranean Basin, 272–277
morphological markers for, 263–264
origins of, 265–267
timing of, 266–267
wild boar, 239–243
domesticated plants, dispersal of. See also agriculture, development of; maize; plant translocations
in Africa, 282–286
in central regions, 285
in South Africa, 285–286
in sub-Saharan region, 284–285
in western regions, 285
in Anatolia region, 268–272
in British Isles, 281
in Continental Europe, dispersal of, 277–281
development of, 261–263
documentation of, 263–265
during early Holocene period, 263
in Fertile Crescent, dispersal of, 261–263
human-mediated species dispersal of, 13–14
human-mitigated factors for, 267–268
isotopic analysis, 264
location of, 266–267
during Medieval period, 380–384
in Mediterranean Basin, dispersal of, 272–277
morphological markers for, 263–264
origins of, 265–267
of rice, 168–169
cultivation of, 308–309
timing of, 266–267
domesticated rice. See Oryza sativa
downwind sailing, 209
dry environments, human expansion in, 12
Dusicyon australis (Falkland Islands wolf), 252–253
E. coli. See S. enterica serovar Agona
East Asia, agricultural development in of millet, 311
of rice, 310–311
East Polynesia, chronology of, 207–210
Easter Island, 208–209
ecological guilds, 35
competitive exclusion and, 35
ecological measures
carnivore guilds and, 38–39
for paleontologists, 38–39
ecosystems. See also coastal ecosystems;
landscape and habitats
island
on Channel Islands, 155
during Holocene period, 155–156
human impact on, 154–158
during Pleistocene period, 155–156
modern humans’ influence on, 90–91, 107
in Europe, 99–102
in Iberia, 100–101
through controlled hunting, 100
through subsistence practices, 100–101
during Upper Palaeolithic period, 99–100
elephants
early hominins, hunting of, 95–96
threat evaluations by, 139
Elton, Charles, 444–445
Emory, Kenneth, 200–201
epidemics. See smallpox
epidemiological transition, of malarial infections, 488–490
Eren, Metin, 431
Eurasia
carnivore guilds in, 50
fauna in, 71–72
H. erectus and, 71–72, 75–76
hominin dispersal and, 71–72, 75–76
naive, 72–76, 80–81
Out of Africa 1, 75–76
predator-savvy, 72–76
hominins in, 49. See also Out of Africa 1
early subsistence for, 67–69
founding population of, 69–70
hunting by, 68–69
Europe, Continental
biological exchange throughout, 374–375, 376–377
domesticated animals in, dispersal of, 277–281
domesticated plants in, dispersal of, 277–281
LBK culture, 279–280
Neolithic sites, 279–281
TRB culture in, 280–281
eusocial insects. See ants; insect societies
evenness, of species, 38–39
exotic species, 438–441
expensive tissue hypothesis, 42
Fairchild, David, 440–441
Falkland Islands wolf. See Dusicyon australis
fauna
ecological consequences of predator removal, 72–73, 75
in Eurasia
H. erectus and, 71–72, 75–76
hominin dispersal and, 71–72, 75–76
naive, 72–76, 80–81
Out of Africa 1, 75–76
predator-savvy, 72–76
loss of vigilance of, 76–78
Fertile Crescent
colonisation in, 222–223
domesticated animals in, dispersal of, 286–290. See also domesticated animals
through controlled hunting, 268
development of, 261–263
documentation of, 263–265
during early Holocene period, 263
human-mitigated factors for, 267–268
isotopic analysis, 264
location of, 266–267
morphological markers for, 263–264
origins of, 265–267
timing of, 266–267
domesticated plants in, dispersal of, 286–290. See also domesticated plants
development of, 261–263
documentation of, 263–265
during early Holocene period, 263
human-mitigated factors for, 267–268
isotopic analysis, 264
location of, 266–267
morphological markers for, 263–264
origins of, 265–267
timing of, 266–267
Fiji, 197
fire, use of, 102–103
in Australia, 103
food theft. See kleptoparasitism
functional richness, of species, 38–39
Funnel Beaker (TRB) culture, 280–281
Gallus gallus (chickens), 169–170
garden ant. See Lasius neglectus
GBY site. See Gesher Benot Yaaqov site
Genetta genetta (common genet), 135
global health, 499
globalisation, 349–350. See also diseases, globalisation of; proto-globalisation
; trade routes
of Buddhism, 365
definitions of, 351
early types of, 350
of Hinduism, 365
goats, domestication of
in Africa, 282–286
in central regions, 285
in South Africa, 285–286
in sub-Saharan region, 284–285
in western regions, 285
in Anatolia region, 268–272
in Arabian Peninsula, 224, 229
in Balkan Peninsula, 275
in British Isles, 281
in Continental Europe, dispersal of, 277–281
in Fertile Crescent, 286–290
on Iberian Peninsula, 276–277
in Mediterranean Basin, 272–277
golden jackals. See Canis aureus
Great Britain. See British Isles
greater mouse-tailed bat. See Rhinopoma microphyllan
green Sahara, 10
human dispersal out of, 120–121
codistribution of, 128
through commensalism, 128
facilitation of, 127–128
through mutualism, 128
palaeogeography of, 119–121
animal distribution maps, 125
archaeological studies, 119–120
fossil studies, 120–121
genetic studies, 119–120
through molecular phylogeny of
species, 121
multidisciplinary approach to,
124–127
grouping behaviours, of carnivores, 41–42
H. heidelbergensis, 65
H. pylori, 13
human migration patterns and, 456–459
phylogeographic analysis of, 457–459
origins of, 498
hartebeest. See Alcelaphus buselaphus
Hawai‘i, 208–210
Heyerdahl, Thor, 211
Hinduism, globalisation of, 365
HIV/AIDS, globalisation of, 495,
527–529
Holocene period
anthropic animal dispersal during, from
green Sahara, 133
Arabian Peninsula during, 222–227,
228–229
coastal ecosystems during, 155–156
human expansion during, 18
animal extinctions as result of, 92
plant extinctions as result of, 92
island ecosystems during, 155–156
hominins
in Arabian Peninsula, 220–221
carnivore guilds and, 51–52
as carnivores, 40–43, 52
expensive tissue hypothesis and, 42
grouping behaviours of, 41–42
on coastlines, encephalization of,
149–151
diet for, 94–95
of aquatic plants and animals, 149
everly, 93–96
Acheulean stone tool industry for,
94–95
dietary changes for, 94–95
at GBY site, 95–96
geographic distribution of, 93–94
hunting of elephants by, 95–96
in Levant, 95–96
Oldowan stone tool industry for, 94
in Eurasia, 49. See also Out of Africa 1
core subsistence for, 67–69
founding population of, 69–70
hunting by, 68–69
Lomekwi stone tool industry and,
31–32
Neandertals, 96–99
diet of, 96–97
encephalization on coastlines, 150
hunting by, 96
megafaunal extinctions as result of,
97–98
Middle Stone Age toolkit for, 97
Oldowan stone tool industry and, 43–45
population expansion of, 108
range expansion of, 109
species dispersal
from Africa, 47–50, 53
into Eurasia, 49
from green Sahara, 120–121
Homo erectus, 9
Acheulean stone tool industry and, 46
on coastlines, encephalization of, 150
Eurasian fauna and, 71–72, 75–76
expansion factors for, 10
during Pleistocene period, 64, 65
species dispersal outside of Africa, 47–50
network dispersals, 78–80
social complexity as influence on,
78–80
Homo habilis, 149–150
Homo sapiens. See also agriculture,
development of, domesticated
animals, dispersal of; domesticated
plants, dispersal of: hominins
boats and, origin and evolution of,
153–154
on coastlines, encephalization of,
150–151
expansion and dispersal of, 8–11
climate change as factor in, 10
expanded range for, 78–80
from green Sahara, 120–121
during Middle Palaeolithic period,
50–51
networked dispersals, 78–80
Out of Africa, 2, 62–63
during Pleistocene period, 9
pull factors for, 9
social complexity as influence on, 78–80
during Upper Palaeolithic period, 50–51
as omnivores, 40
during Pleistocene period, 65
human-mediated species dispersal, 12–14
Columbian Exchange, 12–13
of diseases, 13
of domesticated animals, 13–14
of domesticated plants, 13–14
of wild plants, 13
humans, modern. See also Homo sapiens;
mobility, of humans; societies
 carnivores and, historical relationship
between, 29–34
climate change influenced by, 90–91
coastal ecosystems impacted by, 154–158
on Channel Islands, 155
for shellfish populations, 155, 156
ecosystems influenced by, 90–91
in Europe, 99–102
in Iberia, 100–101
through mammoth hunting, 100
through subsistence practices, 100–101
during Upper Palaeolithic period, 99–100
evolution of, 110
expansion of species. See also green Sahara
animal extinctions as result of, 92
climate change as factor for, 10
in dry landscapes, 12
from green Sahara, 120–121
during Holocene period, 18, 92
long-term biological impact of, 19
through maritime technology, 11–12
during Palaeolithic period, 17–18
plant extinctions as result of, 92
during Pleistocene period, 9, 17–18
population pressures as factor in, 10
social developments as influence on,
11–12
technological developments as
influence on, 11–12
topographical barriers as factor in,
10–11
global environments shaped by, 90–91
migration trajectories of, through aDNA
studies, 244–248
mobility for, modern trends in, 521–523
in New Zealand, 205–206
in Pacific Islands, 195
during Ice Age, 195–197
hunting
in Fertile Crescent, 268
by hominins
of elephants, 95–96
in Eurasia, 68–69
of Mammoths, 100
by modern human, 100
hypercarnivores, 30–31
hypocarnivores, 30–31
IAS. See invasive alien species
Iberian Peninsula
domesticated animals in, dispersal of,
276–277
ecosystems in, 100–101
Ice Age. Pacific Islands settlements during,
195–197
Iceland
Arctic fox migration into, 248–252
genetic isolation in, 249
during Little Ice Age, 251–252
insect societies, 412, 413. See also ants
human societies compared to, 424–425
invasive alien species (IAS), 448
invasive species, 444–447
explosion ecology and, 445
management of, 447–449
Ireland. See British Isles
Irwin, Geoff, 201–202
ISEA. See Island Southeast Asia
Islamic Green Revolution, 380
island ecosystems. See also Pacific Islands
on Channel Islands, 155
during Holocene period, 155–156
human impact on, 154–158
for shellfish populations, 155, 156
during Pleistocene period, 155–156
Island Southeast Asia (ISEA)
Bismarck Archipelago, 168, 172, 197
farming in, 172–173
human colonisation of
dating of, 168
fire use and, 165
during Holocene period, 166–179
through inter-island movement,
179–183
during Pleistocene period, 165–166
stone tools and, 165–166
isolationist approach to, 164
Island Southeast Asia (ISEA) (cont.)
Lapita culture, 167, 168
migration trajectories in, aDNA studies for, 245–248
Out-of-Taiwan hypothesis, 167
through plant translocations, 181–183
species dispersal throughout
through animal translocations, 179–180
archaeobotany of wet tropics, 171
through domestication of animals, 180–181
through inter-island movement, 179–183
regional approach to, alternatives to, 183–185

japonica rice varieties, 319–320
Java, 195
Jebel Faya site, 221
Jebel Qara site, 223–224
Jebel Qattar site, 225, 228–229
Kelp Highway, 152
Kenyanthropus platyops, 31–32
kleptoparasitism
carcass processing efficiency and, 42
carnivores and, 41
defined, 31
grouping behaviours as strategy against, 41–42
Kon Tiki expedition, 211
Konya Basin, Anatolia region, 270
Kuwait, 226
landscape and habitats, modifications of
through fire use, 102–103
in Australia, 103
through stone tool procurement and
quarrying, 103–106
during Middle Palaeolithic period, 104–106
Lanyu Island, 248
Lapita culture, 167, 168
geographical range of, 199
maritime technology, 198–199
pottery, 168, 197, 198–199
radiocarbon dating of, 198
Lasius neglectus (garden ant), 422–423
Last Glacial Maximum, 148
LBK. See Linear Pottery Culture
Leersen, Joep, 437

leprosy
African origins of, 502–505
genetic lineage of, 504–505
Lucio’s phenomenon, 503
Levant
colonisation in, 222
ey early hominins in, 95–96
Lever, Christopher, 442, 447–448
Linear Pottery Culture (LBK), 279–280
Linnaeus, Carl, 438–439
ions. See Panthera leo
Little Ice Age, 251–252
Lomekwian stone tool industry, 31–32
Loudon’s Hortus Britannicus, A Catalogue of all the plants indigenous, cultivated in, or introduced to Britain, 439–440
low ecological resistance, 9–10
Lucio’s phenomenon, 503
M. leprae, 504–505. See also leprosy
M. lepromatosis, 505. See also leprosy
maize (wild teosinte grass), diffusion throughout North America
daDNA studies on, 336, 344
AMS radiocarbon dating of, 332, 339–340
in farming economies, 343–344
historical development of, 332–333, 342–343
in Mexico
in Northeastern region, 335–336
in Southern region, 333–335
in Tehuacán Valley, 334–335
molecular clock approach to, 333–334
through solitary travel, 343
in United States
among ancient societies, 342
in culturally complex societies, 342
in Eastern regions, 338–342
in Southwestern region, 337–338
malarial infections
epidemiological transition of, 488–490
map of, 478
origins of, 477, 498–499
P. falciparum infections and, 485–486
through parasites, 477–482
disease as result of, 478–482
dispersal out of Africa, 486–487
dispersal within Africa, 487–488
genetic mutations, 478–482
global expansion of, 477–478
vivax infections and, 480, 482–483
mammoths, hunting of, 100
Index

Manayzah site, 224
Mangrove Highway, 153
maritime technology
boats, origin and evolution of, 153–154
colonisation through, 12
development of, 151
downwind sailing, 209
human expansion through, 11–12
of Lapita culture, 198–199
in South Africa, 154
Marquesas, 200–201, 208–209
Marsh, George Perkins, 438, 440, 443
marsheder, cultivation of, 340
Medical Flora of the United States, 439–440
Medieval Climate Anomaly, 209
Mediterranean Basin
agricultural development in, 310
Balkan Peninsula, 275
Corsica, 276
domesticated animals in, dispersal of, 272–277
Iberian Peninsula, 276–277
Mesolithic sites in, 272–274
Neolithic sites in, 272, 274–277
Sardinia, 276
Tyrrhenian Islands, 276
Megantereon whitei, 48–49
Melanesia, 197, 244–245
mesocarnivores, 31–32
Mesolithic sites
aDNA studies of, 254–255
in Anatolia region, 271–272
in Mediterranean Basin, 272–274
mesopredators, 31–32
Mexico, maize diffusion throughout in Northeastern region, 333–335
in Southern region, 333–335
in Tehuacán Valley, 334–335
Micronesia, 197, 244–245
Middle Palaeolithic period
Arabian Peninsula during, colonisation in, 220–222, 227–228
landscape and habitat modification during, 104–106
species dispersal during, 50–51
Middle Stone Age tool industry, 97
migration patterns, for humans. See also ancient DNA studies, migration trajectories
H. pylori influenced by, 450–459
mobility and, modern trends for, 521–523
S. enterica serovar Agona influenced by, 465–470
Y. pestis influenced by, 459–465
Y. pseudotuberculosis influenced by, 462
millet, development of, 310, 311
abandonment of, 318–319
mobility, of humans
domestic, 529–530
dietary trends for, 521–523
modern humans. See humans, modern
molecular clock
for bacterial pathogens, 454–455
of maize diffusion throughout North America, 333–334
monocoloniality, 421–422
MTBC. See Mycobacterium tuberculosis
multicoloniality, 421
mutualism, 128
Mycobacterium tuberculosis (MTBC), 499–502
naive fauna, 72–76, 80–81
native species, 438–441
naturalized species, 442–443
definitions of, 443
Nazlet Khatre site, 105–106
Nazlet Safaha site, 105
Neandertals, 96–99
on coastlines, encephalization of, 150
diet of, 96–97
encephalization on coastlines, 150
hunting by, 96
megafaunal extinctions as result of, 97–98
Middle Stone Age toolkit for, 97
Near Oceania, 195–197. See also New Guinea
Neolithic sites
in Africa, 282–284
agricultural development, 317–319
agricultural development in, 317–319
in Anatolia region, 271–272
in Arabian Peninsula, 222–223, 224, 225–227
in Continental Europe, 270–281
in Mediterranean Basin, 272, 274–277
migration trajectories and, 241
neophyte species, 442–444
New Caledonia, 197
New Guinea
agricultural development in, 173–176
Austronesian languages in, 173
human colonisation of
agricultural development, 173–176
dating of, 168
New Guinea (cont.)
fire use and, 165
during Holocene period, 166–179
through inter-island movement,
179–183
during Pleistocene period, 165–166
stone tools and, 165–166
species dispersal throughout
through animal translocations,
179–180
archaeobotany of wet tropics, 171
domestication of animals,
180–181
through inter-island movement,
179–183
isolationist approach to, 164
plant domestication, 173–176
through plant translocations, 181–183
regional approach to, alternatives to,
183–185
New Zealand
colonisation of, 209–210
prehistoric chronology, 202–207, 208
chronometric hygiene, 204
for human settlement, 205–206
long, 203–204, 206
orthodox, 203
short, 203, 206
Niah, Great Cave of, 98
niches, agricultural
construction of, 307
cultivation of, 307–309
Eurasian, 310–311
evolution of, 306–309
types of, 310
niletic species, 125
nomimvasive species, 444–447
North America. See also Mexico; United States
maize diffusion throughout
aDNA studies on, 336, 344
AMS radiocarbon dating of, 332, 339–340
in farming economies, 343–344
historical development of, 332–333, 342–343
molecular clock approach to, 333–334
through solitary travel, 343
smallpox in, 509–510
Norway, agricultural development in, 317
oats, 321–322
obsidian, in Arabian Peninsula, 226
Old World. See Europe, Continental
Oldowan stone tool industry, 32
carnivores and, 43–45
development of, 104
hominins and, 43–45
carly, 94
omnivores, Homo sapiens as, 40
opportunistic scavenging, 41
origination, of species, 32
paleontologists’ interest in, 39
Oryza sativa (domesticated rice), 168–169
agricultural development of, 310
cultivation of, 308–309
in East Asia, 310–311
japonica varieties, 319–320
types of preparations, 322–323
cultivation of, 308–309
Out of Africa 1, hominin dispersal
climate-induced shifts, 76–78
carly subsistence, 67–69
into Eurasia, 66–72
Eurasian fauna and, 71–72, 75–76
of H. sapiens, 78–80
loss of vigilance and, of fauna, 76–78
low effective population size
implications, 70–71
naïve fauna and, 72–76, 80–81
networked, 78–81
during Pleistocene period, 62–63
population growth after, 67
predator-savvy fauna and, 72–76
recolonisation and, 76–78
social complexity as influence on, 78–81
Out of Africa 2, hominid dispersal and,
62–63
Out-of-Taiwan hypothesis, 167
Austronesian languages and, 167
Outram, Alan, 431
P. falciparum infections, 485–486
P. brachycorpa, 47, 48–49
Pacific Clade, 245–248
Pacific Islands. See also New Guinea;
Polynesia; specific islands
colonisation of, 195, 210–212
Lapita culture in
maritime technology, 198–199
pottery evidence, 197, 198–199
radiocarbon dating of, 198
Near Oceania, 195–197
radiocarbon dating in, 199–200
settlement of, 195
during Ice Age, 195–197
Index

Palaeoanthropocene, 109
palaeogeography, of green Sahara, 119–121
animal distribution maps, 125
arachnological studies, 119–120
fossil studies, 120–121
genetic studies, 119–120
through molecular phylogeny of species, 121
multidisciplinary approach to, 124–127

Palaeolithic period
Arabian Peninsula during, colonisation of, 220–222, 227–228

Middle period
Arabian Peninsula during, colonisation in, 220–222, 227–228
landscape and habitat modification during, 104–106
species dispersal during, 50–51

Upper period
modern humans during, ecosystems influenced by, 99–100
species dispersal during, 50–51
paleontologists
ecological measures used by, 38–39
on origination patterns, 39
Panthera gombaszegensis, 47
Panthera leo (lions), 132
parasites. See malarial infections
the Philippines, 248
phylogenetics, of global diseases, 497, 501, 511
pigs. See Sus scrofa
plague, 510–512. See also Y. pestis
aDNA studies for, 510–511
globalisation of, 511–512
plant translocations
through biological exchange from 500 BC to 500 AD, 365–369
during Medieval period, 380–384
to British Isles, 5, 281, 377–378
during Bronze Age, 355–363
dating problems with, 5
in New Guinea, 181–183
to South America, 211
throughout Australia, 181–183
throughout ISEA, 181–183
throughout New Guinea, 181–183

Plasmodium vivax, 13
Pleistocene period
archeology from, 5
coastal ecosystems after, 147–149
coastal ecosystems during, 155–156
ecosystems influenced during, by
humans, 90–91, 107
in Europe, 99–102
in Iberia, 100–101
through Mammoth hunting, 100
through subsistence practices, 100–101
during Upper Palaeolithic period, 99–100

hominin dispersal during. See also Out of Africa 1; Out of Africa 2
biogeographical approach to, 64–66
of Denisovans, 63
early population estimates, 70
of H. erectus, 64, 65
of H. heidelbergensis, 65
of H. sapiens, 65
during regional events, 63
to Savannahstan, 64

criteria for, 63–66
human expansion during, 9, 17–18
island ecosystems during, 155–156
Neandertals, 96–99
on coastlines, encephalization of, 150
diet of, 96–97
hunting by, 96
mesafauna extinctions as result of, 97–98
Middle Stone Age toolkit for, 97

Pliocene period, ecosystems influenced during, by humans, 90–91
in Europe, 99–102
in Iberia, 100–101
through Mammoth hunting, 100
through subsistence practices, 100–101
during Upper Palaeolithic period, 99–100

Polynesia
colonisation of, 107
chronology of, 207–210
downwind sailing and, 209
geographic size of, 199
homogeneity of, 197–198
maritime technology in, 201–202
Medieval Climate Anomaly and, 209
migration trajectories to, aDNA studies for, 244–245

Polynesian rat. See Rattus exulans

population, increases in
of ant colonies, invasions and, 418–419
globalisation of disease and, 531
of hominins, 108
Index

sympatric carnivore guilds, 50–51
defined, 32
ecological guilds and, 35

anthropogenic, 14–17
doctors, 14
failed, 17
of rats, 14
successful, 16–17
transported landscapes, 15

from green Sahara, anthropic factors for, 122–124, 138–139
from Aterian site, 130
climate change as factor for, 138–139
do-co-distribution, 128, 135–137
through commensalism, 128
demonstration of, 129–138
of rats, 14
distincting patterns of, 127–128
evaluation of, 139–140
facilitation of, 127–128, 129–134
during Holocene period, 133
through mutualism, 128
through translocation, 128, 137–138
of hominins. See also Out of Africa 1; Out of Africa 2
from Africa, 47–50, 53
into Eurasia, 49
human-mediated, 12–14
Columbian Exchange, 12–13
do-of-diseases, 13
of domesticated animals, 13–14
of domesticated plants, 13–14
of wild plants, 13
methods of, 4–6
during Middle Palaeolithic period, 50–51
in rivers, 10–11
social developments as factor in, 11–12
technological developments as factor in, 11–12
during Upper Palaeolithic period, 50–51
Species Plantarum (Linnaeus), 418–439
squash, cultivation of, 340
stone tool industry. See also Acheulean stone tool industry; Lomekwi stone tool industry; Oldowan stone tool industry
in Arabian Peninsula, 221–222
in Australia, 165–166
in ISEA, 165–166
landscape and habitat modification, 103–106
during Middle Palaeolithic period, 104–106
in New Guinea, 165–166
Suggs, Robert, 200–201
Sulawesi, 247
sunflowers, cultivation of, 340
Sus scrofa (pigs), 168–169
in Africa, 282–286
in central regions, 283
in South Africa, 285–286
in sub-Sahara region, 284–285
in western regions, 285
in Anatolia region, 268–272
in Arabian Peninsula, 224, 229
in Balkan Peninsula, 275
in British Isles, 281
in Continental Europe, dispersal of, 277–281
domestication of, 241–244
in Fertile Crescent, 286–290
on Iberian Peninsula, 276–277
in Mediterranean Basin, 272–277
sympatric species carnivore guilds, 50–51
defined, 32
ecological guilds and, 35
synanthrope species, 446
Tahiti, 200–201
tame species, 437–438
taphonomy, 32
Tasmania, 195
TB. See tuberculosis
Thryonomys swinderianus (cane rat), 135–136
Tonga, 197
trade routes
during Bronze Age, 363–364
consolidation of global power as influence on, 371
expansion of, 370, 371–376
globalisation of diseases through, 505–512
Gulf-South Asian, 363–364, 365
along Silk Road, 386
translocated species. See also animal translocations; plant translocations
biological exchange and, 352–353
transported landscapes, 15
Trapelis mutabilis, 125–127
TRB culture. See Funnel Beaker culture
tuberculosis (TB)
aDNA studies of, 499–500
African origins of, 499–502
MTBC, 499–502
pathogens for, evolution of, 502
Turner, Frederic Jackson, 436
turnover, of species, 39
Tyrrenhenian Islands, 276
UAE. See United Arab Emirates
Ubaid pottery, 226
unicoloniality, 417, 421–422
United Arab Emirates (UAE), 226
United States, maize diffusion throughout
among ancient societies, 342
in culturally complex societies, 342
in Eastern regions, 338–342
in Southwestern region, 337–318
Upper Palaeolithic period
modern humans during, ecosystems
influenced by, 99–100
species dispersal during, 50–51
Usher, James, 454
Vanuatu, 197
vivax infections, 480, 482–485
Vulpes lagopus (Arctic fox), 248–252
Wadi Surdud site, 227–228
Wallace, Alfred, 195
Wallacea, 195, 247
Wealdseemueller, Martin, 439
weeds, agricultural development and,
312–313
wheat and barley, agricultural development
of, 313, 316, 320–321
archaeobotany of, 317
wild boar, migration trajectories of,
239–243. See also *Sus scrofa*
wild plants. See also plant translocations
human-mediated species dispersal of,
13–14
wild species, 437–418
wild teosinte grass. See maize
within-group cooperation, in societies, 424
Y. pestis, 511–512
genealogy of, 462–465
human migration patterns and, 459–465
Zea mays. See maize