
Cambridge University Press
978-1-107-16407-9 — Abstract Algebra with Applications
Audrey Terras 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

“C01” — 2018/10/6 — 10:38 — page 1 — #1

Part I

Groups

www.cambridge.org/9781107164079
www.cambridge.org


Cambridge University Press
978-1-107-16407-9 — Abstract Algebra with Applications
Audrey Terras 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

“C01” — 2018/10/6 — 10:38 — page 3 — #3

1
Preliminaries

1.1 Introduction

Notation. From now on, we will often use the abbreviations:

=⇒ implies

⇐= is implied by

iff (or ⇐⇒) if and only if

∀ for every

∃ there exists

Z,Q,R,C the integers, rationals, reals, complex numbers, respectively

We will not review the basics of proofs here. Hopefully you have figured out the basics,

either from a high school plane geometry class or a college class introducing the subject

of mathematical proof. See K. H. Rosen [93] for an introduction to proof. We will discuss

proof by mathematical induction soon. There is an interesting book [60] by Steven Krantz

on the subject of proof. Edna E. Kramer’s history book [59] gives more perspective on the

subject of proof. Another place to find a discussion of mathematical proof is Wikipedia. A

cautionary tale concerns K. Gödel’s incompleteness theorems from 1931, the first of which

says that for any consistent formal system for the positive integers Z+, there is a statement

about Z+ that is unprovable within this system.

There are those who argue against proofs. I have heard this at conferences with physicists.

Nature will tell us the truth of a statement they argue. Ramanujan felt the goddess would

inspire him to write true formulas. However, I have no such help myself and really need

to see a proof to know what is true and what is false. This makes me very bad at real life,

where there is rarely a proof of any statement. Thus I have grown to be happier writing an

algebra book than a book on politics.

If you need more convincing about the need for proofs, look at the following two exer-

cises, once you know what a prime is — an integer p> 1 such that p= ab, with positive

integers a, b implies either a or b= 1. These exercises are silly if you can use your computer

and Mathematica or some other similar program.

Exercise 1.1.1 Show that x2 − x+ 41 is prime for all integers x such that 0≤ x≤ 40, but is

not a prime when x= 41. Feel free to use a computer.

Number theory has multitudes of statements like that in Exercise 1.1.1 that have been

checked for a huge number of cases, but yet fail to be true in all cases. Of course, now

www.cambridge.org/9781107164079
www.cambridge.org


Cambridge University Press
978-1-107-16407-9 — Abstract Algebra with Applications
Audrey Terras 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

“C01” — 2018/10/6 — 10:38 — page 4 — #4

4 Part I Groups

computers can do much more than the puny 41 cases in the preceding exercise. For exam-

ple, Mersenne primes are primes of the form Mp= 2p− 1, where p is a prime. Mersenne

compiled a list of Mersenne primes in the 1600s, but there were some mistakes after p= 31.

Much computer time has been devoted to the search for these primes. Always bigger ones

are found. In January, 2017 the biggest known prime was found to be M77 232 917. It is

conjectured that there are infinitely many Mersenne primes, but the proof has eluded

mathematicians. See Wikipedia or Shanks [103] for more information on this subject and

other unsolved problems in number theory. Wikipedia notes that these large primes have

a cult following – moreover they have applications to random number generators and

cryptography.

In the 1800s – before any computers existed – there was a conjecture by E. C. Catalan

that MMp
is prime, assuming that Mp is a Mersenne prime. Years passed before Catalan’s

conjecture was shown to be false. In 1953 the ILLIAC computer (after 100 hours of com-

puting) showed that MMp
is not prime when p= 11. MMp

is prime for p= 2, 3, 5, 7. It was

subsequently found that the conjecture is false for p= 17, 19, 31 as well. The next case is

too large to test at the moment. Wikipedia conjectures that the four known MMp
that are

prime are the only ones. Anyway, hopefully, you get the point that you can find a large

number of cases of some proposition that are true without the general proposition being

valid. Stark gives many more examples in the introduction to [110].

Exercise 1.1.2 (Mersenne Primes). Show that 2p− 1 is prime for p= 2, 3, 5, 7, 13, but not

for p= 11.

Hint. The Mathematica command below will do the problem for the first 10 primes.

Table[{Prime[n],FactorInteger[(2^Prime[n])-1]},{n,1,10}]

We assume that you can write down the converse of the statement “proposition A implies

proposition B.” Yes, it is “proposition B implies proposition A.” Recall that A =⇒ B is not

equivalent to B =⇒ A. However A =⇒ B is equivalent to its contrapositive: (not B) =⇒
(not A).

We will sometimes use proof by contradiction. There are those who would object. In proof

by contradiction of A =⇒ B we assume A and (not B) and deduce a contradiction of the

form R and (not R). Those who would object to this and to any sort of “non-constructive”

proof have a point, and so we will try to give constructive proofs when possible. See Krantz

[60] for a bit of the history of constructive proofs in mathematics.

It is also possible that you can prove something that may at first be unbelievable. See the

exercise below, which really belongs to an analysis course covering the geometric series –

the formula for which follows from Exercise 1.4.7 below. If you accept the axioms of the

system of real numbers, then you have to believe the formula.

Exercise 1.1.3 Show that 0.999 999 . . . = 1.

Hint. See Exercise 1.4.7. The … conceals an infinite series.

A controversial method of proof is proof by computer. First you have to believe that

the computer has been programmed correctly. This has not always been the case; e.g., the

problem with the Pentium chip. Here I will choose to believe what my computer tells me
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Preliminaries 5

when I use Mathematica to say whether an integer is a prime, or when used to compute

eigenvalues of matrices, or graphs of functions, or to multiply elements of finite fields. There

are more elaborate computer proofs that are hard to verify without even faster computers

than the cheap laptop (vintage 2011) that I am using – for example, the proof of the four

color problem in the 1970s or the recent proof of the Kepler conjecture on the densest

packing of spheres in 3-space. See Krantz [60] for more information.

We are also going to assume that you view the following types of numbers as old friends:

the integers Z= {0,±1,±2,±3, . . .},
the rationals Q=

{

m
n

∣

∣m, n∈Z, n ̸= 0
}

,

the reals R= {all decimals},
the complex numbers C= {x+ iy | x, y∈R}, for i=

√
−1.

We will list the axioms for Z in Chapter 1 and will construct Q from Z in Chapter 6. Of

course, the construction of Q from Z just involves the algebra of fractions and could be

done in Chapter 1 – minus the verbiage about fields and integral domains. We should define

the real numbers as limits of Cauchy sequences of rationals rather then to say real numbers

are represented by all possible decimals, but that would be calculus and we won’t go there.

Such a construction can be found for example in the book by Leon Cohen and Gertrude

Ehrlich [17]. A serious student should really prove that Z, Q, R, and C exist by constructing

them from scratch, sort of like a serious chef makes a pie, but we will not do that here.

In contemplating the lower rows of our table of number systems, philosophers have

found their hair standing on end. Around 500 BC the Pythagoreans were horribly shocked

to find that irrational numbers like
√
2 existed. You will be asked to prove that

√
2 /∈Q in

Section 1.6. What was the problem for the Pythagoreans? You can read about it in Shanks

[103, Chapter III]. What would they have thought about transcendental numbers like π?

Later the complex numbers were so controversial that people called numbers like i=
√
−1

“imaginary.” Non-Euclidean geometry was so upsetting that Gauss did not publish his work

on the subject.

Warning. This course is like a language course. It is extremely important to memorize the

vocabulary – the definitions. If you neglect to do this, after a week or so, the lectures – or

the reading – will become meaningless. One confusing aspect of the vocabulary is the use of

everyday words in a very different but precise way. Then one needs the axioms, the rules of

constructing proofs. Those are our rules of grammar for the mathematical language. These

too must be memorized. We should perhaps add that it is folly to argue with the definitions

or axioms – unless you have found the equivalent of non-Euclidean geometry. To some our

subject appears arcane. But they should remember that it is just a language – there is no

mystery once you know the vocabulary and grammar rules.

Practice doing proofs. This means practice speaking or writing the language. One can

begin by imitating the proofs in the text or other texts or those given by your professor. It

is important to practice writing proofs daily. In particular, one must do as many exercises

as possible. If your calculus class did not include proofs, this may be something of a shock.

Mathematics seemed to be just calculations in those sad proof-less classes. And we will

have a few calculations too. But the main goal is to be able to derive “everything” from

a few basic definitions and axioms – thus to understand the subject. One can do this for

calculus too. That is advanced calculus. If you do not practice conversations in a language,

you are extremely unlikely to become fluent. The same goes with mathematics.

www.cambridge.org/9781107164079
www.cambridge.org


Cambridge University Press
978-1-107-16407-9 — Abstract Algebra with Applications
Audrey Terras 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

“C01” — 2018/10/6 — 10:38 — page 6 — #6

6 Part I Groups

You should also be warned that sometimes when reading a proof you may doubt a state-

ment and then be tempted to stop reading. Sadly, often the next sentence explains why that

unbelievable statement is true. So always keep reading. This happens to “real” mathemati-

cians all the time so do not feel bad. I have heard a story about a thesis advisor who told

a student he did not understand the proof of a lemma in the student’s thesis. The student

almost had a heart attack worrying about that important lemma. But it turned out that the

advisor had not turned the page to find the rest of the proof.

Our second goal is to apply the algebra we derive so carefully. We will not be able to

go too deeply into any one application, but hopefully we will give the reader a taste of

each one.

1.2 Sets

We first review a bit of set theory. Georg Cantor (1845–1918) developed the theory of infinite

sets. It was controversial. There are paradoxes for those who throw caution to the winds

and consider sets whose elements are sets. For example, consider Russell’s paradox. It was

stated by B. Russell (1872–1970). We use the notation: x∈ S to mean that x is an element

of the set S; x /∈ S means x is not an element of the set S. The notation {x|x has property P}
is read as the set of x such that x has property P. Consider the set X defined by

X= {sets S | S /∈ S}.

Then X∈X implies X /∈X and X /∈X implies X∈X. This is a paradox. The set X can neither

be a member of itself nor not a member of itself. There are similar paradoxes that sound

less abstract. Consider the barber who must shave every man in town who does not shave

himself. Does the barber shave himself? A mystery was written inspired by the paradox: The

Library Paradox by Catharine Shaw. There is also a comic book about Russell, Logicomix

by A. Doxiadis and C. Papadimitriou (see [26]). A nice reference for set theory illustrated

by pictures and stories is the book by Vilenkin [122].

We will hopefully avoid paradoxes by restricting consideration to sets of numbers, vec-

tors, and functions. This would not be enough for “constructionists” such as Errett Bishop

who was on the faculty at the University of California San Diego. until his premature death.

I am still haunted by his probing questions of colloquium speakers. Anyway, for applied

mathematics, one can hope that paradoxical sets and barbers do not appear. Thus we will

be using proof by contradiction, as we have already promised.

Most books on calculus do a little set theory. We assume you are familiar with the notation

which we are about to review. We will draw pictures in the plane. We write A⊂B (or B⊃A)

if A is a subset of B: that is, x∈A implies x∈B. We might also say B contains A. If A⊂B,

the complement of A in B is B− A= {x∈B |x /∈A}.1 The empty set is denoted ∅. It has no
elements. The intersection of sets A and B is

A ∩ B= {x | x∈A and x∈B}.

The union of sets A and B is

A ∪ B= {x | x∈A or x∈B}.

1 We will not use the other common notation B/A for set complement since it conflicts with our later

notation for quotient groups.
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Preliminaries 7

Here – as is usual in mathematics – “or” means either or both. See Figure 1.1. Sets A and

B are said to be disjoint iff A ∩ B= ∅.

A

B

A

B

Intersection of A and B

is pink

Union of A and B

is purple

Figure 1.1 Intersection and union of square A and

heart B

The easiest way to do the following exercises on the equality of various sets is to show

first that the set on the left is contained in the set on the right and second that the set on

the right is contained in the set on the left.

Exercise 1.2.1

(a) Prove that

A− (B ∪ C)= (A− B) ∩ (A− C).

(b) Prove that

A− (B ∩ C)= (A− B) ∪ (A− C).

Exercise 1.2.2 Prove that A ∪ (B ∪ C)= (A ∪ B) ∪ C. Then prove the analogous equation

with ∪ replaced by ∩.

Exercise 1.2.3 Prove that A ∩ (B ∪ C)= (A ∩ B) ∪ (A ∩ C).

Definition 1.2.1 If A and B are sets, the Cartesian product of A and B is the set of

ordered pairs (a, b) with a∈A and b∈B: that is,

A× B= {(a, b) | a∈A, b∈B}.

It is understood that we have equality of two ordered pairs (a, b) = (c, d) iff a= c and

b= d.
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8 Part I Groups

Example 1. Suppose A and B are both equal to the set of all real numbers; A=B=R. Then

A× B=R× R=R2. That is, the Cartesian product of the real line with itself is the set of

points in the plane. ▲

Example 2. Suppose C is the interval [0, 1] and D is the set consisting of the point {2}.
Then C× D is the line segment of length 1 at height 2 in the plane. See Figure 1.2

below. ▲

C ×D

C D

21

2

Figure 1.2 Cartesian product [0, 1]× {2}

Of course you can also define the Cartesian product of any number of sets – even an

infinite number of sets. We mostly restrict ourselves to a finite number of sets here. Given

n sets Si, i∈{1, 2, . . . , n}, define the Cartesian product S1 × S2 × · · · × Sn to be the set of

ordered n-tuples (s1, s2, . . . , sn) with si ∈ Si, for all i= 1, 2, . . . , n.

Example 3. [0, 1]× [0, 1]× [0, 1] = [0, 1]3 is the unit cube in 3-space. See Figure 1.3. ▲

Figure 1.3 [0, 1]3

Example 4. [0, 1]× [0, 1]× [0, 1]× [0, 1] = [0, 1]4 is the four-dimensional cube or tesseract.

Draw it by “pulling out” the three-dimensional cube. See T. Banchoff [6]. Figure 1.4 below

shows the edges and vertices of the four-dimensional cube or tesseract (actually more of
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Preliminaries 9

a 4-rectangular solid) as drawn by Mathematica. Of course both Figures 1.3 and 1.4 are

really projections of the cube and hypercube onto the plane. ▲

Figure 1.4 Graph representing the hypercube

[0, 1]4

Exercise 1.2.4 Show that A× (B ∩ C)= (A× B) ∩ (A× C). Does the same equality hold

when you replace ∩ with ∪?

Exercise 1.2.5 State whether the following set-theoretic equalities are true or false and give

reasons for your answers.

(a) {2, 5, 7}= {5, 2, 7}.
(b) {(2, 1), (2, 3)}= {(1, 2), (3, 2)}.
(c) ∅= {0}.

Exercise 1.2.6 Prove the following set-theoretic identities:

(a) (A− C) ∩ (B− C)= (A ∩ B)− C;

(b) A× (B− C)= (A× B)− (A× C).

1.3 The Integers

Notation.

Z+ {1, 2, 3, 4, . . .} the positive integers

Z {0,±1,±2,±3, . . .} the integers

We assume that you have been familiar with the basic facts about the integers since child-

hood. Despite that familiarity, we must list the 10 basic axioms for Z in order to be able

to prove anything about Z. By an axiom, we mean a basic unproved assumption. We must

deduce everything we say about Z from our 10 axioms – forgetting what we know from

elementary school. In Section 5.3 we will find that much of what we do here – especially in

the pure algebra part (R1 to R6) – works for any integral domain and not just Z. Sometimes

Z+ or Z+ ∪ {0} is referred to as the “natural numbers.” This seems somewhat prejudicial

to the other types of numbers one may use and so we will try to avoid that terminology.
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10 Part I Groups

Algebra Axioms for Z

For every n,m∈Z there is a unique integer m+ n and a unique integer n ·m such that

the following laws are valid for all m, n, k∈Z. This says the set of integers is closed under

addition and multiplication.

R1 Commutative laws: m+ n= n+m and m · n= n ·m.

R2 Associative laws: k+ (m+ n)= (k+m) + n and k · (m · n)= (k ·m) · n.
R3 Identities: There are two special elements of Z, namely

0 (identity for addition) and 1 (identity for multiplication) in Z

such that 0+ n= n, 1 · n= n, for all n∈Z, and 0 ̸= 1.

R4 Inverse for addition: For every m∈Z there exists an element

x∈Z such that m+ x= 0. Write x=−m, once you know x is unique.

R5 Distributive law: k · (m+ n)= k ·m+ k · n.
R6 No zero divisors: m · n= 0 implies either m or n is 0.

We sometimes write n ·m= n ∗m= nm. Thanks to the associative laws, we can leave out

parentheses in sums like k+m+ n or in products like kmn. Of course we still need those

parentheses in the distributive law.

As a result of axioms R1–R5, we say that Z is a “commutative ring with identity for

multiplication.” As a result of the additional axiom R6 we say that Z is an “integral domain.”

Rings will be the topic for the last half of this book – starting with Chapter 5.

Exercise 1.3.1

(a) Show that the identities 0 and 1 in R3 are unique.

(b) Show that the inverse x of the element m in R4 is unique once m is fixed.

Exercise 1.3.2 Show that a · 0= 0 for any a∈Z.

Exercise 1.3.3 In axiom R4, we can write 1+ u= 0 and then define u=−1. Show that

then, for any m∈Z, if x is the integer such that m+ x= 0, we have x=(−1) ·m. Thus

x=−m=(−1) ·m. Prove that −(−m)=m.

Exercise 1.3.4 (Cancellation Laws). Show that if a, b, c∈Z, then we have the following laws.

(a) If a+ b= a+ c, then b= c.

(b) If a ̸= 0 and ab= ac, then b= c.

Exercise 1.3.5 Prove the other distributive law: (m+ n) · k=m · k+ n · k.

Exercise 1.3.6 Prove that for any a, b∈Z we can solve the equation a+ x= b for x∈Z.

Additional axioms for Z involve the ordering < of Z which behaves well with respect

to addition and multiplication. The properties of inequalities can be derived from three

simple axioms for the set P=Z+ of positive integers.
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Order Axioms for Z

O1 Z=P ∪ {0} ∪ (−P), where −P= {−x|x∈P}. Moreover this is a disjoint union.

That is,

0 /∈P, 0 /∈−P, P ∩ (−P)= ∅.

O2 n,m∈P=⇒ n+m∈P.
O3 n,m∈P=⇒ n ·m∈P.

As a result of the nine axioms R1–R6 and O1–O3, we say that Z is an ordered integral

domain. There is still one more axiom needed to define Z, but we discuss this below – after

saying more about the order relation a< b.

Definition 1.3.1 If a, b∈Z we say that a< b (b is greater than a or a is less than b) iff

b− a∈P=Z+. One can also write b> a in this situation.

Examples. By this definition, the set P consists of integers that are greater than 0. We can

see that 0< 1 since otherwise, by O1, 0<−1. But then, according to axiom O3 it follows

that (−1)(−1)= 1∈P. This contradicts P ∩ (−P)= ∅.
It follows from our axioms that P=Z+ = {1, 2, 3, 4, . . .}, using O2 and the last axiom

(well-ordering) which we are about to state. This axiom will allow us to prove infinite lists

of statements by checking two items (mathematical induction). See Exercise 1.3.13. ▲

We can use our axioms to prove the following facts about order.

Facts about Order. ∀ x, y, z, c∈Z

(1) Transitivity. x< y and y< z implies x< z.

(2) Trichotomy. For any x, y, z∈Z exactly one of the following inequalities is true:

x< y, y< x, or x= y.

(3) Addition. x< y implies x+ z< y+ z for any z∈Z.

(4) Multiplication by a positive number. If 0< c and x< y, then cx< cy.

(5) Multiplication by a negative number. If c< 0 and x< y, then cy< cx.

Proof. We will leave most of these proofs to the reader as an exercise. But we will do (1)

and (3).

Fact (1): x< y means y− x∈P. y< z means z− y∈P. Then by O2 and the axioms for

arithmetic in R, we have y− x+ z− y= z− x∈P. This says x< z.

Fact (3): Since x< y we know that y− x∈P. Then (y+ z)− (x+ z)= y− x∈P which is

what we needed to show. ▲

More Definitions. Of course we will write a≤ b if either a= b or a< b. We may also write

b≥ a in this case.

Exercise 1.3.7 Prove the rest of the facts about order.

www.cambridge.org/9781107164079
www.cambridge.org

