Index

0D defects, 56
13C isotope, 93
2D band, graphene, 80, 90
2D density of states, 400
2D material defects, 359
2D peak, graphene, 228
2D quantum spin Hall effect, 458
2D van der Waals heterostructures, 332
2DEG, plasmons, 44, 108–109
2DEGs, 45, 122
3×3 silicene phase, 460
3-band tight binding model, 282
3D resistivity, 225
3D van der Waals heterojunctions, 331
4×4 matrices, graphene, 15
α-BNyne, 480
α-graphynes, 480
π band, 474
π* band, 474
π-bond, 472
π-states, graphene, 12, 16
σ-states, graphene, 12
A and B excitons, 329, 331
AA stacking, graphene, 8
AB Bernal stacking, graphene growth, 245
AB bilayer graphene, 47, 78–79
ab-initio phonon calculations, 473
ab-initio phonon frequency calculations, 478
absorbance, 42
absorbance universal value, graphene, 40
absorbance, graphene, 39, 180
absorption, 30, 39, 41, 44–45, 135, 180, 192
absorption cross-section, graphene, 120, 122
absorption of phonons, 26
absorption resonance, graphene, 131
absorption/reflection spectroscopy, graphene, 38
access resistance, 163
acoustic (A) phonon, 34, 71
acoustic deformation potential, 34
acoustic modes, 10
acoustic phonon scattering, 34, 117, 121, 183, 225
acoustic phonon, graphene, 34, 77, 92, 96
acoustic phonons, dispersion, graphene, 96
admittance, 106–107
AFM topography analysis, 34, 274
all-dry deterministic transfer method, 448
ambipolar operation, 305
Ampère’s law, 105
amplifier, graphene, 164
amplitude attenuation length, plasmons, 115
amplitude lifetime, plasmons, 115
angular momentum conservation, 43
angular-dependent polarization-resolved Raman measurement, 422
anomalous quantum Hall effect, 207
anti-bonding states, 388
antimonene, 480
antimonene asymmetric washboard structure (aW-Sb), 480
antimonene buckled honeycomb (B-Sb), 480
anti-Stokes scattering, 78
anti-Stokes scattering, Raman spectroscopy, 78
archetype silicene phase, 460
armchair direction, 57, 59
armchair edges, graphene, 81
ARPES, 48, 118
ARPES, 46
asymmetric metal contacts, 186–187
atomic force microscopy (AFM), 53, 167
atomic hydrogen, 32
atomic layer deposition (ALD), 451
atomic orbital magnetic moment, 285
atomic vacancy, graphene, 32, 56
atomically sharp defects, 21
atomic-scale inhomogeneities, 15
back gated electric field, 36
back-gated BP transistor, 418
back-gating graphene, 145
background permittivity, 109
ballistic graphene devices, 148
ballistic limit, 299
ballistic spin propagation, 202
ballistic transport, 226–227, 297
ballistic transport, epitaxial graphene nanoribbons, 238
band counting algorithm, 410
band gap, 12, 47, 160, 168, 175, 230–231, 234
band gap engineering, graphene, 160, 171
band gap opening, 167
band gap opening, bilayer graphene, 170, 187
band gap, bilayer graphene, 19, 47–48, 164, 167
bandgap opening, graphene, 231
bandstructure, graphene, 180
basal plane, graphene, 55
basic transport properties, graphene, 25, 145
Becke three parameters Lee–Yang–Par (B3LYP), 382
bending stress, graphene, 61
benzyl viologen, 170–171
Bernal AB stacking, graphene, 7, 170
Bernal stacked, bilayer graphene, 94
Bernal stacking, bilayer graphene, 17
Bernal stacking, graphene, 8, 46
Bernal structure, 219
Berry curvature, 286–287
Berry phase effect, 207, 286
Bethe–Salpeter equations, 398
beyond RPA, 114
Bi$_2$Sr$_2$Co$_2$O$_y$ layer, 172
bilayer, 18, 20, 48, 74, 84, 125, 134
bilayer and multilayer graphene, 46
bilayer graphene, 46–47, 47, 74–75, 77–78, 91, 93–94, 126, 159, 170, 172, 175, 185
bilayer graphene bolometer, 185
bilayer graphene devices, 170
bilayer graphene transistors, 169
bilayer graphene, FET, 170
bilayer optical transitions, 38
birefringence, 110
birefringent dielectric, 111
birefringent dielectric, h-BN, 110
birefringent material h-BN, 110
bismuth selenide, 214
bismuth-flux method, 415
black arsenic–phosphorus band gap, 436
black phosphorene, 72, 480
black phosphorus, 74, 78
BLG, 230
Bloch electron Berry phase effect, 285
Bloch electron magnetic moment, 285
Bloch electrons, 286
Bloch function, 286
Bloch functions rotational symmetry, 283
Bloch wave functions, 280
Bloch–Grüneisen temperature, 300
block copolymer lithography, 168
blue phosphorene, 72, 74, 480
blue phosphorene in-plane deformation, 405
BN encapsulated graphene, 231
bolometers, 185
bolometric effect, 135, 183, 187
Boltzmann equation, 26
Boltzmann transport theory, 25, 27
Born approximation, 26, 29
Born–Oppenheimer (BO) surface, 473
Bose–Einstein distribution, phonons, 77
bound excitons, 331
BP ab-initio methods, 436
BP absorption spectra, 394
BP ambipolar field effect, 448
BP angle-dependent electrical conductivity, 381
BP angle-dependent electronic mobility, 404
BP angle-dependent thermal conductivity, 381
BP angular dependence drain current, 418
BP anisotropic carrier effective masses, 391
BP anisotropic lattice vibration, 426
BP anisotropic medium, 389
BP anisotropic optical conductivity, 425
BP anisotropic optical properties, 438
BP anisotropic photoluminescence, 440
BP anisotropic Poisson’s ratio, 381
BP anisotropic properties, 381, 414
BP anisotropic sound velocity, 399
BP anisotropic thermal expansion, 424
BP anisotropic thermal transport behavior, 425
BP anisotropy absorption, 439
BP anisotropy ratio, 404
BP armchair, 381, 399, 416
BP armchair mobility, 417
BP armchair phonon mode, 400
BP armchair tensile strains, 381
BP asymmetric lattice structure, 440
BP asymmetric phonon dispersion, 423
BP atomic orbital wave functions, 383
BP ballistic transport limit, 401
BP band structure calculation, 417
BP bending stiffness, 407
BP binding energies, 398
BP bolometric effect, 446
BP Brillouin zone, 399
BP bulk band structures, 382
BP bulk optical bandgap, 409
BP carrier effective mass, 417
BP carrier mobility, 175, 391
BP catalysis, 381
BP catalyst developed synthesis, 415
BP charge doping, 393
BP chemical stability, 451
BP compressive strains, 426
BP compressive zigzag strain, 428
BP contact resistance transfer length method (TLM), 421
BP coupled hinge-like bonding configurations, 414
BP crystal structure, 381, 414
BP crystalline orientation, 438
BP direct optical transition, 394
BP doped phototransistors, 443
BP Drude model, 391
BP effective Hamiltonian, 383
BP effective mass, 386, 417
BP effective mass for conduction band state, 386
BP effective mass for valence band state, 386
BP elastic acoustic phonon-carrier scattering, 391
BP electrical properties, 429
BP electrical transport, 391
BP electroluminescence, 442, 451
BP electron mobility, 391
BP electron transport, 402
BP electron–hole Coulomb interaction, 394
BP electronic anisotropic behavior, 417
BP electronic bandgap, 387
BP electronic hybridization, 388
BP electronic properties, 389
BP electronic transport, 423
BP electrostatically gate, 448
BP energy dispersion, 439
BP enhanced Hall mobility, 420
BP exciton eigenfunctions, 397
BP exciton eigenstates, 397
BP exciton spectrum, 397
BP excitonic polarization, 381
BP excitons, 394
BP external quantum efficiencies (EQE), 450
BP extinction ratio, 441
BP few layer band structures, 382
BP few layer bandgap, 387
BP few layer electronic band structure, 382
BP few layer electronic bandgap, 388
BP few layer optical absorption spectra, 393
BP fiber optic telecommunications, 438
BP field-effect mobility, 418
BP field-effect transistors, 416–417, 480
BP flake mobility, 421
BP fracture strain, 407
BP G-point phonon mode, 400
BP ground state exciton energy, 397
BP GW approximation, 436
BP Hall mobility, 418
BP Hamiltonian matrix, 383
BP high hydrostatic pressure synthesis, 414
BP high-speed photodetectors, 445
BP hole concentration, 404
BP hole effective masses, 391
BP impurity scattering, 391
BP infrared photodetection, 445
BP in-plane anisotropy, 435
BP in-plane transport, 402
BP inter-band transition matrix, 438
BP interfacial Coulomb scattering, 391
BP Landauer formalism, 400
BP large-area synthesis, 415, 451
BP laser exfoliation technique, 416
BP light polarization, 393
BP linear dichroism, 438–439
BP linearly polarized photoluminescence, 440
BP local-orbital method, 417
BP longitudinal acoustic phonon dispersion, 399
BP low-energy acoustic modes, 400
BP mechanical anisotropic behavior, 426
BP monolayer GGA functionals, 382
BP monolayer GW methods, 382
BP monolayer k-p approximation, 383
BP monolayer meta-GGA functionals, 382
BP monolayer optical bandgap, 381
BP nanoribbons, 426
BP near-infrared phototransistor, 443
BP non-hydrogenic Rydberg series, 397
BP non-toxic catalyst developed process, 415
BP non-toxic reaction method, 415
BP on SiO2/Si substrates, 442
BP optical absorption, 392, 439
BP optical phonon modes symmetries, 422
BP optical properties, 414, 435
BP orthotropic plate model, 406
BP oscillator strength, 398
BP oscillator strength ground exciton state, 398
BP oscillator strength second excited exciton state, 398
BP Pauli blocking, 394
BP phase transition process, 414
BP phonon backscattering, 400
BP phonon dispersion, 399–400
BP phonon energies, 399
BP phonon mean-free-path, 401
BP phonon relaxation time, 400
BP phonon transport, 399
BP phonon transport properties, 400
BP phonon–phonon scattering, 426
BP photocurrent generation, 443
BP photocurrent generation mechanisms, 442
BP photodetection, 439
BP photodetection efficiency, 447
BP photodetection quantum efficiency, 447
BP photodetector, 442, 447
BP photodetector dark current, 446
BP photodetector devices, 442
BP photodetector response speed, 446
BP photoluminescence, 394
BP photosresponse speed, 447
BP photo-responsivity, 446
BP photothermoelectric effect, 443
BP phototransistor, 442, 444
BP phototransistors display ambipolar transport, 442
BP photovoltaic effect, 443, 449
BP plasmons dispersion, 390
BP p–n junctions, 448
BP polarizability, 389
BP polarized light absorption, 393
BP P—P bond elongation, 407
BP p-type doping, 449
BP P–P bond length, 407
BP quantum confinement, 435, 439
BP quantum confinement effect, 436
BP quantum Hall effects, 420
BP Raman modes, 428
BP recombination rate, 447
BP Schottky-barrier transistors, 420
BP Schrödinger equation, 383
BP sheet resistance, 421
BP self-consistent pseudopotential method, 417
BP shear modulus, 406
BP Shubnikov–de Haas oscillations, 420
BP solar cell device, 449
BP solar cells, 448
BP strain-induced frequency shift, 428
BP surface roughness scattering, 402
BP synthesis, 414
BP tensile strain, 428
BP thermal anisotropic behavior, 421
BP thermal conductivity, 423
BP thermal properties, 399
BP thermal transport, 399, 422
BP thermoelectric conversion, 399
BP thermoelectric Landauer approach, 402
BP thermoelectric performance, 402
BP thermoelectricity, 402
BP thickness dependent band gap, 435–436
BP tight-bonding method, 417
BP transformation from white/red phosphorus, 415
BP transistor contact resistance, 420
BP transport distribution, 400
BP ultra-fast laser direct writing, 416
BP Umklapp phonon–phonon scattering, 402
BP uniaxial tensile, 426
BP van der Waals heterostructures, 449
BP vertical configuration photodetector, 447
BP Young’s modulus, 405
BP zigzag, 381, 399, 416
BP zigzag mobility, 417
BP zigzag phonon mode, 400
BP zigzag tensile strains, 405
BP zigzag-polarized laser excitation, 422
BP/Ph-BN interface, 420
BP/MoS₂ p–n junction, 449
BP/Silicon photonic waveguide, 446
BP/A armchair-polarized laser excitation, 422
BP/GaAs p–n junction, 449
BP/MoS₂ rectifying behavior, 449
BP Bravais lattice, 11
BP breathing mode, bilayer graphene, 75
BP Brillouin zone, 80, 94, 142, 198, 209, 229
BP Brillouin zone, graphene, 12, 71, 94
BP Brillouin zone, phonon, 72–73, 81
BP Brillouin zone, superlattice, 229
BP broadband light absorption, 238
BP bulk semiconductor flexible membranes, 340
BP Burgers vector, 364
BP carrier scattering, 231
BP carrier scattering, graphene, 25, 30, 32
BP carrier mobility, 25, 30, 32
BP carrier mobility degradation, 170
BP carrier mobility, graphene, 25, 30, 32–35, 131, 146, 159, 225, 238
BP carrier mobility, nanoribbons, 159
BP carrier mobility, graphene, 25, 30, 32–35, 131, 146, 159, 225, 238
BP chemical vapor deposition, 39, 42, 65, 344–345, 359
BP chemical vapor deposition process, graphene, 239
BP chirality, 133
BP chirality, (helical) states, graphene, 16
BP chiral components, few-layer graphene, 46
BP chiral currents, 215
BP chiral nature, electrons, 12
BP chiral properties, 18
BP chiral edge channels, 214
BP circular dichroism, graphene, 44
BP circular-toothed antenna, 187
BP classical forbidden region, 144
BP coherence length LC, phonons, 79
Index

coherence length, La, graphene, 83
coherent phonon spectroscopy, graphene, 75
collective excitations (plasmons), 180
combination $D+D$ mode, graphene, 80–81
complementary inverter, 170
composites, thermal conductivity, 99
compression factor, plasmons, 128
computer CPU temperature, 100
coulomb interaction, 155
conduction band, 12
coupled harmonic oscillators, 124
coupled oscillator model, 76
coupled plasmon–phonon dispersion, 122
coupled two harmonic oscillators, 125
coupling parameter, coupled oscillators, 125
covalent bonds, 7
Cr adhesion layer, 224
cracks, graphene, 52
crystal structure of bilayer graphene, 17
crystallite size La, graphene, 79, 82
Cu and Ni ratio in alloy catalyst, graphene growth, 241
current saturation, 164
current saturation velocity, 160
cut-off frequency, 161, 163
cut-off frequency, fT, 160
CVD, 45, 67–68, 90, 93, 133, 163, 193–194
$cyclotron$, 38
cyclotron frequency, 43, 133
cyclotron mass, graphene, 132
D and G band ratio, graphene, 82
D band scattering, graphene, 81–82
D band, graphene, 80–82
dark current, 184
dark modes, 120
dc conductivity, 41
dephasing, spin, 209–210
diamond, 7–9, 54, 78
diamond-like carbon (DLC), 161, 164
dielectric, 105, 108, 116, 129, 162
dielectric breakdown, graphene, 131
dielectric constant, 30
dielectric constant, 105, 108, 116, 129, 162
dielectric breakdown, graphene, 131
dielectric constant, 30
dielectric dispersion, 108
dielectric environment, 30–31, 110, 112, 301
dielectric environment, plasmons, 104, 106, 110,
dielectric response function, plasmons, 104, 106, 110,
diffusion-limited growth, graphene

directorial, thermal emitters, 192
dislocation edge type, 363
dislocation pile-up, 363
dislocations in h-BN, 363
Dislocation screw type, 363
Dislocations, topological defects, 363
disorder amount, graphene, 80, 82–83, 244
disorder induced bands, graphene, 81
disorder induced–Raman, 79
disorder scattering, graphene, 25–36, 92
disorder, graphene, 116, 141, 145, 210
dispersion, 10, 40, 96, 108, 111, 116–117, 123, 128,
dispersion law, 108
dispersion ZA phonons, 95
dispersion, graphene, 180
dispersion, graphene plasmons, 106, 115
displacement field, 48, 170–171
dopant diffusion, 361
doped graphene absorption, 180
doping levels, graphene, 30, 45
double-resonance mechanism, Raman spectroscopy, 80
double-resonance, Raman scattering, 73, 75
driven oscillator, 125
Drude conductivity, graphene, 42, 116
Drude formula, 116
Drude model, graphene, 41–42, 104, 108, 189
Drude scattering, graphene, 42
Drude transport time, 117
Drude weight, 42, 43, 105, 108, 131, 180
dwell time, 207
Dyakonov–Perel mechanism, 204, 206, 212
Dyakonov–Shur mechanism, 187
Dyakonov–Shur mechanism, THz generation, 183
dynamical dielectric function, phonon, 123
dynamical dielectric function, plasmons, 113, 116
E2g phonon, 71
effective hopping integral, 282
effective k\textit{p}\ Hamiltonian matrix, 198, 384
effective magnetic field, 199, 208
eigenfunctions, graphene, 16
elastic constants, 59
elastic energy density, graphene, 57
elastic instability, mechanical properties, 63
elastic response, non-linear, graphene, 57
elastic stiffness, graphene, 55
elastic strain energy density, mechanical properties, 57–58, 60
elastic strain, graphene, 56–57
elastic structural instability, 64
eLasto\textit{mer} stamp, 221
electric field, 25, 104–105, 127, 129, 160, 187
electric gating, 20
electrical doping, graphene, 40
electrical gating, 48
electrical gating, graphene, 38
electrical transport in graphene, 25
edge modes, 121
edge states, 146–147
edges/grain boundaries, 79
edges/grain boundaries, graphene, 81
edges/grain boundaries, 79
effective Hamiltonian matrix, 198, 384
EELS, 118, 223
effective k\textit{p}\ Hamiltonian matrix, 384
effective magnetic field, 199, 208
eigenfunctions, graphene, 16
elastic constants, 59
elastic energy density, graphene, 57
elastic instability, mechanical properties, 63
elastic response, non-linear, graphene, 57
elastic stiffness, graphene, 55
elastic strain energy density, mechanical properties, 57–58, 60
elastic strain, graphene, 56–57
elastic structural instability, 64
 Battalion stamp, 221
electric field, 25, 104–105, 127, 129, 160, 187
electric gating, 20
electrical doping, graphene, 40
electrical gating, 48
electrical gating, graphene, 38
electrical transport in graphene, 25
edge modes, 121
electric field, 25, 104–105, 127, 129, 160, 187
electric gating, 20
electrical doping, graphene, 40
index
exciting plasmons, 126
exciton condensation, 273
exciton funnel, 372
exciton Hamiltonian, 396
exciton wave function, 396
fermion, 468, 474
germanene non-trivial topological properties, 467
germanene phonon dispersion curves, 474

Index

© in this web service Cambridge University Press

www.cambridge.org
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>grating patterning, 191</td>
<td>187</td>
</tr>
<tr>
<td>Green–Lagrange strain, mechanical properties, 58, 60</td>
<td>230</td>
</tr>
<tr>
<td>group III–V, 472, 478</td>
<td>230</td>
</tr>
<tr>
<td>group II–VI, 472, 478</td>
<td>230</td>
</tr>
<tr>
<td>group IV, 472</td>
<td>230</td>
</tr>
<tr>
<td>group IV honeycomb monolayer materials, 458</td>
<td>230</td>
</tr>
<tr>
<td>group V, 472</td>
<td>230</td>
</tr>
<tr>
<td>group velocity, 149</td>
<td>230</td>
</tr>
<tr>
<td>growth, bilayer graphene, 241</td>
<td>230</td>
</tr>
<tr>
<td>gyromagnetic ratio, 202</td>
<td>230</td>
</tr>
<tr>
<td>half-integer quantum Hall effect, 43</td>
<td>230</td>
</tr>
<tr>
<td>Hall resistance, graphene, 229–230</td>
<td>230</td>
</tr>
<tr>
<td>Hall resistivity, 213</td>
<td>230</td>
</tr>
<tr>
<td>Hamiltonian, 13, 15–19, 26, 114, 142–143, 199</td>
<td>230</td>
</tr>
<tr>
<td>Hanle spin precession, 202</td>
<td>230</td>
</tr>
<tr>
<td>hard disk drives, 197</td>
<td>230</td>
</tr>
<tr>
<td>harmonic approximation, 10</td>
<td>230</td>
</tr>
<tr>
<td>harmonic oscillator, phonon, 12</td>
<td>230</td>
</tr>
<tr>
<td>harmonic oscillator, phonons, 77, 135</td>
<td>230</td>
</tr>
<tr>
<td>Hartree potential, 112</td>
<td>230</td>
</tr>
<tr>
<td>h-BN, 9, 30, 111, 117, 128, 130, 203, 210–211, 221, 230, 230, 232</td>
<td>230</td>
</tr>
<tr>
<td>h-BN, 219</td>
<td>230</td>
</tr>
<tr>
<td>h-BN, 221</td>
<td>230</td>
</tr>
<tr>
<td>h-BN/graphene/h-BN, 222</td>
<td>230</td>
</tr>
<tr>
<td>h-BN/graphene/h-BN devices, 220</td>
<td>230</td>
</tr>
<tr>
<td>h-BN/graphene/h-BN heterostructure, 221</td>
<td>230</td>
</tr>
<tr>
<td>h-BN alpha-B phase, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN asymmetric grain boundary, 364</td>
<td>230</td>
</tr>
<tr>
<td>h-BN asymmetry doping, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN B vacancies defects, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN B vacancy formation energy, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN B-centered point defects, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN birefringent dielectric, 110</td>
<td>230</td>
</tr>
<tr>
<td>h-BN disorder-free gate dielectric, 448</td>
<td>230</td>
</tr>
<tr>
<td>h-BN encapsulated graphene, 200, 227</td>
<td>230</td>
</tr>
<tr>
<td>h-BN encapsulation, 110, 227</td>
<td>230</td>
</tr>
<tr>
<td>h-BN gate dielectric, 150</td>
<td>230</td>
</tr>
<tr>
<td>h-BN heteroelemental composition, 364</td>
<td>230</td>
</tr>
<tr>
<td>h-BN migration mechanisms, 370</td>
<td>230</td>
</tr>
<tr>
<td>h-BN optical phonon scattering, 117</td>
<td>230</td>
</tr>
<tr>
<td>h-BN strain energy, 364</td>
<td>230</td>
</tr>
<tr>
<td>h-BN substrate, graphene, 25, 146–147</td>
<td>230</td>
</tr>
<tr>
<td>h-BN surface optical phonons, 219</td>
<td>230</td>
</tr>
<tr>
<td>h-BN symmetric grain boundary, 364</td>
<td>230</td>
</tr>
<tr>
<td>h-BN tunneling barrier, 149</td>
<td>230</td>
</tr>
<tr>
<td>h-BN zigzag-type edges, 362</td>
<td>230</td>
</tr>
<tr>
<td>h-BN–few-layer BP–hBN heterostructure, 420</td>
<td>230</td>
</tr>
<tr>
<td>H—C bond, graphene, 32</td>
<td>230</td>
</tr>
<tr>
<td>heat conduction, graphene, 90, 92–93, 96–99, 101</td>
<td>230</td>
</tr>
<tr>
<td>heat dissipation, 192</td>
<td>230</td>
</tr>
<tr>
<td>heating or sputtering methods, 352</td>
<td>230</td>
</tr>
<tr>
<td>heteroepitaxial growth, graphene, 243–244</td>
<td>230</td>
</tr>
<tr>
<td>Heyd–Scuseria–Ernzerhof (HSE06), 382</td>
<td>230</td>
</tr>
<tr>
<td>HfO2 top gate dielectric, 295</td>
<td>230</td>
</tr>
<tr>
<td>high-performance graphene, 225</td>
<td>230</td>
</tr>
<tr>
<td>high-electron-mobility transistor (HEMT), 187</td>
<td>230</td>
</tr>
<tr>
<td>Hofstadter butterfly spectrum, 230</td>
<td>230</td>
</tr>
<tr>
<td>honeycomb lattice, 11, 113</td>
<td>230</td>
</tr>
<tr>
<td>Hooke’s Law, mechanical properties, 58</td>
<td>230</td>
</tr>
<tr>
<td>hopping parameter, 17, 20</td>
<td>230</td>
</tr>
<tr>
<td>hot band luminescence, graphene, 181</td>
<td>230</td>
</tr>
<tr>
<td>hot carrier dynamics, graphene, 190</td>
<td>230</td>
</tr>
<tr>
<td>hot carriers, 183</td>
<td>230</td>
</tr>
<tr>
<td>hot electron–hole plasma, 191</td>
<td>230</td>
</tr>
<tr>
<td>hot electrons, 204</td>
<td>230</td>
</tr>
<tr>
<td>hot-carrier electroluminescence, 330</td>
<td>230</td>
</tr>
<tr>
<td>HREELS, 118</td>
<td>230</td>
</tr>
<tr>
<td>HSE06 hybrid functional, 474</td>
<td>230</td>
</tr>
<tr>
<td>hybrid photodetectors, 339</td>
<td>230</td>
</tr>
<tr>
<td>hybrid phototransistor, 339</td>
<td>230</td>
</tr>
<tr>
<td>hybridization, light-plasmon, 109</td>
<td>230</td>
</tr>
<tr>
<td>hybridization, plasmons, 123, 127</td>
<td>230</td>
</tr>
<tr>
<td>hybridized sp states, graphene, 7</td>
<td>230</td>
</tr>
<tr>
<td>hydrogen impurities, 33, 207</td>
<td>230</td>
</tr>
<tr>
<td>hydrogenation, 33</td>
<td>230</td>
</tr>
<tr>
<td>hydrogenated graphene, 33, 214</td>
<td>230</td>
</tr>
<tr>
<td>hydrogenation, 33</td>
<td>230</td>
</tr>
<tr>
<td>hydrogen-silsesquioxane (HSQ) resist, 223</td>
<td>230</td>
</tr>
<tr>
<td>hyperbolic bands, graphene, 46</td>
<td>230</td>
</tr>
<tr>
<td>hyperbolic materials, 111</td>
<td>230</td>
</tr>
<tr>
<td>hyperbolic polaritons, 129</td>
<td>230</td>
</tr>
<tr>
<td>hyperfine coupling, 198</td>
<td>230</td>
</tr>
<tr>
<td>h-ZrO structure, 478</td>
<td>230</td>
</tr>
<tr>
<td>Hf-silica, 477</td>
<td>230</td>
</tr>
<tr>
<td>Hf-silica, 477</td>
<td>230</td>
</tr>
<tr>
<td>IaS/IS intensity ratio, 78</td>
<td>230</td>
</tr>
<tr>
<td>ice layers, 30</td>
<td>230</td>
</tr>
<tr>
<td>ID/IG ratio, 82</td>
<td>230</td>
</tr>
<tr>
<td>ideal graphene, 15</td>
<td>230</td>
</tr>
<tr>
<td>Is—Vs curves, BP, 448</td>
<td>230</td>
</tr>
<tr>
<td>III–IV semiconductors, 225</td>
<td>230</td>
</tr>
<tr>
<td>III–V coupled quantum wells, 317</td>
<td>230</td>
</tr>
<tr>
<td>iLO phonon, graphene, 80</td>
<td>230</td>
</tr>
<tr>
<td>imaging graphene plasmons, 46</td>
<td>230</td>
</tr>
<tr>
<td>impact excitation, 330</td>
<td>230</td>
</tr>
<tr>
<td>impedance, 106</td>
<td>230</td>
</tr>
<tr>
<td>impedance function, 116</td>
<td>230</td>
</tr>
<tr>
<td>impurities, 25, 28, 30–31, 33, 36, 48, 204, 207, 219</td>
<td>230</td>
</tr>
<tr>
<td>impurity scattering, 25–36, 403</td>
<td>230</td>
</tr>
<tr>
<td>in situ direct growth, 361</td>
<td>230</td>
</tr>
<tr>
<td>in-situ experiments, 30, 32, 35</td>
<td>230</td>
</tr>
<tr>
<td>indefinite materials, 111</td>
<td>230</td>
</tr>
<tr>
<td>indentation, graphene, 53, 66</td>
<td>230</td>
</tr>
<tr>
<td>indium tin oxide (ITO), 193</td>
<td>230</td>
</tr>
<tr>
<td>induced bandgap, 43</td>
<td>230</td>
</tr>
<tr>
<td>induced transparency phenomenon, graphene, 126</td>
<td>230</td>
</tr>
<tr>
<td>inductance, 105, 109, 161</td>
<td>230</td>
</tr>
<tr>
<td>inductive sheet conductivity, plasmons, 108</td>
<td>230</td>
</tr>
<tr>
<td>inelastic scattering, phonons, 26, 77</td>
<td>230</td>
</tr>
<tr>
<td>infrared, 39, 43, 124, 127, 135, 184, 187</td>
<td>230</td>
</tr>
<tr>
<td>infrared absorption, 46</td>
<td>230</td>
</tr>
</tbody>
</table>
infrared absorption spectroscopy, graphene, 47, 72
infrared absorption, graphene, 72, 135
infrared conductivity, 47
infrared light sources, 191
infrared nanoscopy, 46
infrared photons, 39
infrared spectra, 47, 135
infrared spectroscopy, graphene, 43
infrared transmission spectra, graphene, 43
inhomogeneous strain, 270
InP high-electron-mobility transistor (HEMT), 163
in-plane longitudinal optical (iLO) phonons, 71
in-plane stress, graphene, 61–62
in-plane transversal phonons, 71
intrinsic lifetime, plasmons, 114
interband, 39–40, 42–43, 127, 132, 181
interband excitations, 180
interband optical transition matrix, 283
interband transitions, 116
interband transitions control, graphene, 187–188
interband transitions, graphene, 39–40, 42–43, 180, 187, 189
interband, graphene, 39
intercellular orbital magnetic moment, 282
interference fringes, plasmons, 128–129, 132
interlayer exciton Berry curvature effects, 325
interlayer exciton light cones, 321
interlayer exciton long-range drift-diffusion, 324
interlayer exciton photoluminescence, 316
interlayer exciton recombination pathways, 322
interlayer exciton valley Hall effects, 324–325
interlayer vibrations, graphene, 75, 77
internal electric field, 181
intervalley resonance, 73
intervalley scattering, 15, 18, 21, 33, 80, 143, 212, 242
intraband absorption, graphene, 42–43
intraband graphene transitions, graphene, 39
intraband transitions, graphene, 39, 116, 189
intralayer exciton, 322
intralayer exciton transition dipoles, 323
intralayer electron–hole exchange interaction, 325
intralayer resonance, 73
intravalley, Raman scattering, 80
intrinsic bandwidth, graphene photodetector, 187
intrinsic cut-off frequency, 164
intrinsic doping, graphene, 131
intrinsic point defects, 306
intrinsic rippling, graphene, 34
intrinsic strength, graphene, 52–53, 56, 57, 61, 63, 67–68
inverse damping ratio, plasmons, 115, 117
inversion symmetry breaking, bilayer graphene, 48, 170
inversion symmetry, graphene, 32, 48
ion-bombarded graphene, 80
ion-implantation, 361
irradiation induced heating, 183
isotopes, thermal conductivity, 93
iTO phonon, graphene, 80
joint density of states, graphene, 40
K, K’ points, 12
Kerr rotation measurements, 287, 291
Kerr-lensing, 189
kinematic momentum, 321
kinetic inductance, graphene, 104–106, 108
Kirchhoff’s law, 192
Klein paradox, graphene, 31, 146
Klein tunneling, graphene, 17, 21, 143, 146, 207
Kondo effect, graphene, 33
K-point states, graphene, 48
Kramers degeneracy, 199
Kramers–Kronig relations, 44
Kubo formalism, 42
LA phonon, 34
Lagrangian strain, 58
Landau bands, 230
Landau damping, plasmons, 114, 116, 120
Landau level (LL) structures, graphene, 43
Landau level energies, graphene, 43
Landau level transitions, graphene, 39, 43–44
Landau levels, 147
Landau quantization, 18
LanTraf simulation tool, 400
large-scale growth heterostructures, 344
large-scale growth single crystalline monolayers, 344
large-area single crystal growth, graphene, 242
large-scale growth graphene on solid Cu, 245
Larmor frequency Ω, 202
lateral metal–TMD–metal detector, 337
lateral WSe₂–MoS₂ monolayer heterostructures, 350
controlled growth, 350
lattice scattering, 116
lattice unharmonicity, 92
layer-by-layer growth mode, 233, 345
layered dependent spin splitting, 291
layered materials, 173–174
layered van der Waals materials, 232
layer-plus-island growth, 350
lead sulfide PbS quantum dots, 339
lifetime quality factor, plasmons, 115–116
lifetime, phonons, 77–78, 125, 185
lifetime, plasmons, 115–116
light absorption, 45, 92
light electric field, plasmon excitation, 120
light modulators, 187
light switching, 181
light to current conversion, 181
light-coupling of interlayer exciton, 319
light-matter interaction, graphene, 38, 122
line defects, graphene, 65
linear conductivity vs. carrier density, 32
linear dispersion, graphene, 10, 39, 40, 43, 108, 111, 119, 198
liquid phase exfoliation, graphene, 98, 239
LL transitions selection rule, 44
local density of optical states (LDOS), graphene, 128, 130
local electron–phonon coupling, 269
local exciton density, 318
local hot spots, 192
localized edge modes, graphene, 121
localized plasmon, 45, 119
localized plasmon modes, graphene ribbons, 129
localized plasmon resonance, graphene, 45, 192
localized plasmon, graphene ribbons, 122
localized plasmons, 45
localized plasmons, graphene, 45, 181
localized plasmons, graphene nanoribbons, 181
localized Wannier functions, 384
localized plasmon resonances, graphene, 45
logic electronics, 170
logic OR gate, 168
longitudinal acoustic (LA) phonons, graphene, 34, 36, 92–93
longitudinal resistance, 229
long-range coupling, 123
long-range defects, 81
long-range scatterers, 28–31, 117
long-range, defects, 29, 72, 81
Lorentz force, 227
Lorentzian profile, 121, 208
low-buckled structures, 463
Löwdin partition method, 384
lumped element, 106
magnetic field, 25–27, 33, 43, 47, 132–133, 157, 202, 204, 210, 213, 214, 230
magnetic field sensors, 197
magnetic field, graphene, 43, 142
magnetic field, transverse, 227
magnetic proximity effects, 213
magneto-electric effects, 281
magnetoelectric, 282
magnetoluminescence, 282
magnetoplasmons, graphene, 132
magnetoplasmons, graphene, 132
magnetoresistance, 197, 201
magnetoresistive random-access memory (MRAM), 197–198
magneto-transport, 33
massive Dirac fermion model, 287
massless Dirac fermions, 43
massless Dirac fermions, 20, 198
massless electrons, graphene, 42
maximum oscillation frequency fMAX, 162
maximum strength, graphene, 67
mean free path, graphene, 224, 226–227
mechanical, 69
mechanical assembly, 233
mechanical assembly of graphene–BN heterostructures, 220
mechanical assembly, 2D materials, 232
mechanical exfoliation, graphite, 55, 68
mechanical instabilities, 63
mechanical properties, graphene, 55, 65, 68
Mermin–Wagner theorem, 10
metal catalysts, graphene growth, 240
metal dichalcogenides (TMD), 90
metal organic chemical vapor deposition, 351
metal particles, plasmons, 121
metal thin film plasmons, 109
metal–graphene junctions, 181
metal–graphene microcavity, 192
metal–graphene–metal photodetector, 184
metallic bonding, 7
metallic ferromagnet, 201
metallic ferromagnet, 201
metallic octahedral 1T phase, 374
mexican hat dispersion, 19
mica, 30
mica, substrate, 9
microelectromechanical systems (MEMS), 197
micromanipulator, 221
micro-Raman thermal conductivity experiments, 424
mid-gap states, 31
mid-gap states, graphene, 36
mid-infrared resonances, plasmon, 120
minimum conductivity, 27, 29–32
mismatch angle, bilayer, 74
mobility, 21, 27–28, 30–33, 35, 163, 169, 226–227
mobility, GNRs, 166
mode volume, plasmons, 122, 130
mode-locked laser, 190
mode-locking, 191
modulation depth, 188
moire pattern, 230
moire superlattice, 228, 231
moire-coupling induced bandgap, 234
moire-patterned graphene, 230–231
molecular dynamics (MD), 92
molecular dynamics (MD) calculations, 473
molecular orbitals, 7
molybdenum hexacarbonyl (Mo(CO)6), 351
momentum conservation, 41, 72, 80–81, 191
momentum relaxation lifetime, graphene, 43
monolayer, 75, 134, 231
monolayer bandgap, 234
monolayer graphene, 46, 73
monolayer graphene growth, 240
monolayer graphene/MoS2 power conversion efficiencies, 334
Index

monolayer WS\textsubscript{2}/MoS\textsubscript{2} power conversion efficiencies, 38, 334
MoS\textsubscript{2}, 2, 68, 172, 232, 262, 481
MoS\textsubscript{2} 2DEG, 300
MoS\textsubscript{2} anti-sites, 360
MoS\textsubscript{2} atomically thin semiconductors, 273
MoS\textsubscript{2} chemical vapor transport methods, 361
MoS\textsubscript{2} circularly polarized light, 341
MoS\textsubscript{2} configuration entropy, 360
MoS\textsubscript{2} Coulomb-impurity scattering, 303
MoS\textsubscript{2} dark current, 339
MoS\textsubscript{2} disorder, 306
MoS\textsubscript{2} double S vacancy, 360
MoS\textsubscript{2} electron mobility, 359
MoS\textsubscript{2} electron transport, 295
MoS\textsubscript{2} electron–electron interaction, 263
MoS\textsubscript{2} electron–phonon interaction, 263, 299
MoS\textsubscript{2} ferromagnetic fluctuations, 263
MoS\textsubscript{2} field-effect transistor, 295, 334
MoS\textsubscript{2} flexible electronics, 375
MoS\textsubscript{2} Hall voltage, 341
MoS\textsubscript{2} helicoid geometry, 370
MoS\textsubscript{2} homopolar phonon mode quenching, 295
MoS\textsubscript{2} hydridesulfurization (HDS), 373
MoS\textsubscript{2} hydrogen evolution reaction (HER), 373
MoS\textsubscript{2} intrinsicals, 360
MoS\textsubscript{2} intervalley scattering, 300
MoS\textsubscript{2} intrinsic strength, 273
MoS\textsubscript{2} magnetization density, 368
MoS\textsubscript{2} massive Dirac Hamiltonian, 264
MoS\textsubscript{2} mechanical properties, 68
MoS\textsubscript{2} nanoscale transistor, 374
MoS\textsubscript{2} nucleation energy barrier, 346
MoS\textsubscript{2} photovoltaic material, 339
MoS\textsubscript{2} photovoltaic effect, 339
MoS\textsubscript{2} piezoelectric interaction, 299
MoS\textsubscript{2} quantum dot, 374
MoS\textsubscript{2} quantum lead, 374
MoS\textsubscript{2} S coverage, 372
MoS\textsubscript{2} S vacancy, 372
MoS\textsubscript{2} Schottky diode, 374
MoS\textsubscript{2} screw dislocations, 370
MoS\textsubscript{2} sheet conductivity, 296
MoS\textsubscript{2} short-range repulsion, 263
MoS\textsubscript{2} single S vacancy, 360
MoS\textsubscript{2} single vacancy formation energy, 360
MoS\textsubscript{2} spintronics devices, 361
MoS\textsubscript{2} superconductivity, 263
MoS\textsubscript{2} synthesis, 481
MoS\textsubscript{2} tellurium-assisted low-temperature synthesis, 347
MoS\textsubscript{2} trigonal crystals, 346
MoS\textsubscript{2} triangular monolayer flakes, 346
MoS\textsubscript{2} trigonal warping, 264
MoS\textsubscript{2} vacancies, 360
MoS\textsubscript{2} valleytronic devices, 361
MoS\textsubscript{2} vapor phase growth, 346
MoS\textsubscript{2} α boundary, 374
MoS\textsubscript{2} β boundary, 374
MoS\textsubscript{2} γ boundary, 374
mosaic nanocrystalline, graphene, 244
MoS\textsubscript{2}e, 262, 481
MoS\textsubscript{2} midgap-state-induced metallicity, 368
MoS\textsubscript{2} molecular beam epitaxy growth, 367
MoS\textsubscript{2} optical micrograph, 313
MoS\textsubscript{2} strain energy, 367
MoS\textsubscript{2} vacancy lines, 367
MoS\textsubscript{2}e/WSe\textsubscript{2} heterobilayer, 314
MoX\textsubscript{2}/WX\textsubscript{2} AA-type stacking, 310
MoX\textsubscript{2}/WX\textsubscript{2} full band structure, 310
MoX\textsubscript{2}/WX\textsubscript{2} hybridization, 311
MoX\textsubscript{2}/WX\textsubscript{2} idealized lattice matching, 310
MoX\textsubscript{2}/WX\textsubscript{2} interlayer hole transfer, 315
MoX\textsubscript{2}/WX\textsubscript{2} type II band alignment, 314
multilayer antimonene, 481
multilayer graphene, 39, 46, 100
multilayer graphene/insulator stacks, 122
multilayer silicene, 476
multiple nuclei method approach, graphene, 243
MX\textsubscript{2}, 472
MX\textsubscript{2} asymmetric Z-grain boundary, 365
MX\textsubscript{2z}, band alignment, 310
MX\textsubscript{2}\textsubscript{z}, dislocation diversity, 364
MX\textsubscript{2}, dislocations, 365
MX\textsubscript{2}, point defects, 365
MX\textsubscript{2}, small tilt grain boundary, 365
MX\textsubscript{2}, symmetric A-grain boundary, 365
MX\textsubscript{2}/WX\textsubscript{2}, tunable photocurrent generation, 315
nanoindentation, 53, 55, 56, 61–62, 67
nanoribbon arrays, graphene, 120, 134
nanoribbon extinction spectra, 124
nanoribbon plasmon, damping, 121
nanoribbons, 20, 124, 134–135, 181, 192
nanoselenoids, 370
nanotube devices, 35
nanotubes, 8
NbSe\textsubscript{2}, 233
NbSe\textsubscript{2} superconductivity, 233
nearest-neighbor hopping parameter, 13
near-field microscopy (s-SNOM), graphene, 127
near-infrared photons, 448
negative differential resistance (NDR), 298
negative GB/interface energy, 367
negative index, 150
negative index materials, 149
negative index refraction, 149
negative magnetoresistance, 33
negative permittivity, 109
negative refractive index materials, 149
nitrogen, 480
nitrogene, 480
noise-equivalent-power, graphene photodetector, 187
nonequilibrium Green’s function (NEGF) formalism, 298
nonlinear and anisotropic response of graphene, 57
nonlinear valley current, 288
nonlinear valley spin current, 288
non-local resistance, graphene, 150, 153
non-relativistic electrons, 31
non-symorphic space group, 75
non-zero bandgap, bilayer graphene, 48
Néel thermostat, 473
nucleation density, graphene, 241
on/off ratio, 167–168, 170–171, 173
one-dimensional edge-contact, 222
one-dimensional plasmons, graphene, 121
on/off ratio, transistor, 159
OPG carrier guiding, 153
opposite valley configuration, 324
optical (O) phonon, 33, 71
optical absorption control, graphene, 187
optical absorption modulation, graphene, 180
optical absorption of graphene, effect of doping, 41
optical absorption spectroscopy, 118
optical absorption, graphene, 38–39, 40, 187, 190
optical cavity, 184
optical communication networks, 184
optical communications, 184
optical conductivity, 189
optical conductivity, few-layer graphene, 46
optical conductivity, graphene, 39, 104, 120, 180
optical coupling, interlayer exciton, 323
optical desert, 191
optical fiber waveguides, 152
optical phonon, graphene, 35, 71, 77–79, 96, 124, 126
optical phonons, plasmon decay, 121
optical phonons, SiO$_2$, 34
optical properties control, graphene, 181
optical properties of interlayer exciton, 320
optical properties THz, graphene, 189
optical properties, graphene, 38, 77, 180
optical selection rules, 283
optical sheet conductivity, graphene, 42
optical spectroscopy, graphene, 38
optical telecommunication, 185
optical transitions, graphene, 48
optical transmission/absorption, graphene, 21
optical transmission/reflection spectroscopy, graphene, 38
optical waveguide, 188
optoelectronics, 38, 181
optoelectronics, bilayer graphene, 170
optothermal Raman spectroscopy, 90–91, 93–94
organic field-effect transistors, 338
oriented graphene fillers, 99
orthorhombic lattice, graphene, 74
orthotropic model, 405–406
oscillator, 164
oscillator strength, 35, 42, 123
oscillator strength, graphene, 43, 122, 131, 180
oscillator strength, graphene plasmons, 45
oscillator strength, phonon, 123
out-of-plane (ZA) phonons, graphene, 92
out-of-plane acoustic modes, graphene, 10
oxidation, graphene, 64
oxygen plasma, 64
parabolic band structure, bilayer graphene, 170
parabolic dispersion, 20, 288
parabolic dispersion, graphene bilayer, 18
parasitic capacitance, 162
particle–hole symmetry, 286
passive mode-locking, 189
passive optical elements, graphene, 192
Pauli blocking, 42–43, 114, 191
Pauli blocking, graphene, 40–41, 187
Pauli blocking, interband excitations, 181
Pauli matrices, 15, 198, 199, 271, 282
Pauli matrices, graphene, 15
PbS quantum dots, 185, 339
PbS–MoS$_2$ detector, 339
PbS–MoS$_2$ interface, 339
p−d hybridized ionic M—X bonds, 481
PDMS, 221
peak responsivity, 183
PEDOT:PSS films, 193
Perdew–Burke–Ernzerhof (PBE), 382
perfect transmission, graphene, 144
periodic table, 472
permittivity, 106
permittivity dispersion, 110
phase 1T–2H interfaces, 374
phase velocity, 107–109, 111, 116, 149
phonon, 34–36, 63, 75, 77, 79, 81, 83, 92, 94, 122–123, 127
phonon anharmonicities, phonons, 77
phonon branches, graphene, 71, 75, 93–94
phonon coherence, graphene, 79
phonon density of states, graphene, 95
phonon dispersion, graphene, 71–73, 92, 96
phonon engineering, graphene, 96
phonon group velocity, 96
phonon mean free path, graphene, 90, 141
phonon mode frequencies, 473
phonon mode quenching, 301
phonon modes, out of plane, graphene, 96
phonon modes, thermal properties, 81, 92
phonon polaritons, 191
phonon scattering, graphene, 34–36, 72–73, 75, 77, 79–80, 93
phonon spectrum, 10
phonon temperature, phonons, 77, 79
phonon thermal conductivity, 96
phonon wavevector, 81
phonon resonance, 129
phosphorene, 233, 413
phosphorene few-layer transistors, 459
phosphorene optical properties, 414
photoconductive effect, 338
photoconductive gain, 183, 185, 339
photocurrent, 182
photocurrent generation mechanisms in graphene, 182
photocurrent sign, 182
photodetector responsivity, graphene, 184
photodetectors, 135, 184, 185
photodetectors, graphene, 184
photoelectric (PE) effect, 181
photo-gate, 183
photogating effect, 338
photogenerated carrier relaxation, 336
photoluminescence excitation spectroscopy, 317
photonic applications, graphene, 181
photoresponse time, 183
photo-thermoelastic effect, 181, 338
photovoltage, 181–182
photovoltaic effect, 338
photovoltaic response, 314
physical vapor deposition method, 351
physical vapor phase transport, 344–345
pinholes, 204
Piola–Kirchhoff stress, mechanical properties, 58, 60–61
pi-orbital, graphene, 38
pi-plasmon, 118
Planck’s law, 191
plasma frequency, 42, 181
plasma-bombardment-induced defects, 362
plasmonar, graphene, 118
plasmon absorption, 45
plasmon damping, graphene, 115–116
plasmon decay, graphene, 130
plasmon dispersion, 107, 109, 114, 118
plasmon dispersion, graphene, 106–107, 119–120
plasmon enhancement, 184
plasmon excitation, graphene, 39, 44, 46, 119
plasmon frequency, graphene, 109
plasmon lifetime, 117
plasmon lifetime, graphene, 117, 121–122, 134
plasmon oscillator strength, graphene, 121
plasmon resonance, 105, 119, 131
plasmon resonance frequency, 122, 181
plasmon resonance, graphene, 45, 80, 105, 126–127, 134, 181
plasmon tunability, graphene, 130, 132
plasmon wavelength, graphene, 109
plasmon wavevector, 104, 389
plasmon, graphene, 46, 104, 127
plasmon–optical phonon coupling, 119
plasmon–phonon coupling, graphene, 122
plasmon–phonon hybridization, graphene, 108, 119, 123, 127
plasmon–phonon mode energies, 123
plasmon–phonon modes, graphene, 124
plasmon–phonon polaritons, graphene, 117
plasmons, 38, 44, 105, 124, 126–133, 137, 180, 191
plasmons, 2D systems, 108
plasmons, graphene nanoribbons, 121, 124
plasmons, graphene ribbons, 119
plasmons, patterned graphene, 119
p–n junction, graphene, 141–142, 182
PNG carrier guiding, 153
p–n–p junctions, 21
point defect scattering, graphene, 25–36, 93
point defects, 25–36, 53, 303
point defects repair, 307
potential energy curve, graphene, 134
potential energy, graphene, 181
potentials, 17, 19, 33, 54, 58
point defects, graphene, 56, 64, 67, 82
Poisson’s ratio, 60, 474
Poisson’s ratio, graphene, 55
Poisson’s ratio, mechanical properties, 55, 59
polar optical phonons, 30, 35, 36
polar optical phonons, SiO$_2$, phonons, 34
polar phonon scattering, 34
polar substrate phonon scattering, 30, 35, 36, 121
polar substrates, 123
polarization vector, 81
poly-reflective graphene, graphene, 79
polymer stamp, 314
polymer-stamp-based transfer techniques, 311
polymer transfer technique, graphene, 220
poly(methylmethacrylate), 30
potassium, 48
potassium, adsorption, 30
hydrogen, pristine graphene, 35
probing phonons, 79
probing plasmons, EELS, 118
propagating plasmons, graphene, 45, 90, 111, 115, 121, 128
propagating plasmons, thermal excitation, 191
propagation factor, plasmons, 117
propagation length, plasmons, 115–116
propagation losses, plasmons, 128
propagation quality factor, plasmons, 115
protein, vibrational enhancement, 134
pseudospin, 16, 142–144, 157, 198, 199, 206–207, 207, 210, 212
pseudospin conservation, 143
PTE effect, 184
Purcell effect, 192, 333
Purcell enhancement, plasmons, 122
Purcell-factor, 122
Index

quality factor, plasmons, 117, 122
quantum confinement, 79, 167–168
quantum Hall effect, graphene, 146, 148, 238
quantum hall regime, 133
quantum interference, 215
quantum memory, phonons, 78
quantum relativistic effects, 12, 21
quantum resistance, 224
quantum spin Hall effect, 214, 463
quantum transport models, 298
quantum-confined Stark effect, 187
quasi-particle GW, corrections, 474
quasi-degenerate perturbation theory, 384
quasi-electrostatic limit, 107–110
quasiparticles, 118

electrodynamics, 191
radio frequency (RF) transistors, 160
Raman optothermal technique, 97
Raman optothermal, graphene, 90
Raman scattering, graphene, 73, 77, 82
Raman spectra, graphene on h-BN, 229
Raman spectroscopy, 35, 71, 74–75, 79, 82
Raman spectroscopy, graphene, 38, 64
Rashba field, 212
Rashba SOC Hamiltonian, 199
Rashba SOC magnetic field, 199
Rashba spin–orbit coupling, 203, 207, 209
Rashba SOC field, 208
resistance, 106
real-space imaging, plasmons, 127
reciprocal lattice vector, 12, 14
red phosphorus, 414
reflection phase, plasmon, 120
relativistic atomic collapse, 21
relativistic Dirac equation, 142
relativistic spin–orbit coupling, 213
relaxation time, 27, 183, 211
relaxation time approximation, 288
relaxation time, phonons, 96
relaxation time, plasmons, 104, 109, 134
resistance, 106
resistance, negative, 226
resistance, graphene, 105, 146, 161, 187, 230
resistivity, 26, 29, 33, 34, 224
resistivity, graphene, 34–36
resonance, 32, 43, 45, 78, 127, 129, 132, 181, 193
resonance scatterers, graphene, 25, 32
resonant cavity, 183
resonant scatterers, 31–32, 206
reststrahlen frequency, 108
retardation effects, 108
RF frequency doubler, 165
rhombohedral graphite, 7

ribbon array, bilayer graphene, 45, 126
ribbon arrays, graphene, 45
ribbon arrays, optical response, graphene, 45
ripples, graphene, 11, 34
ripples, 11, 22, 25, 33, 212
ripplocations, 372
room temperature photoluminescence spectrum, 313
Ross Kozarsky, 459
RPA, 29, 31
RPA conductivity, 107, 114
rupture, graphene, 52, 54–56, 63
Rydberg series of excited excitonic states, 394
saddle-point singularity, 180
Salisbury screen, graphene, 122
saturable absorber, 189, 191
saturable absorber mirrors, SESAMs, 189
saturable absorption, 189–190
saturation velocity, 159
scale-invariant quantum conductivity, 215
scattering, phonons, 34
scattering, plasmon, 115
scattering mechanisms, 25–36, 299
scattering, phonons, 34–36, 180
scattering, plasmon, 115
scattering, thermal vibrations, 116
Schottky contact, 172
Schottky diodes, 187
screened Coulomb potential, 28, 210, 396
screened electron–hole interaction potential, 395
screened potential, plasmons, 112–113
second-order effective Hamiltonian, 384
second-order G mode, graphene, 80–81
Seebeck coefficient, 181–182
seeing graphene monolayer, 38
selection rules, graphene, 44
self-aligned gate, 161
self-sustaining oscillation, plasmon, 106
semiconductor/dielectric interface, 306
semiconductors, 15, 21, 27, 42, 122, 141, 149, 160, 168–169, 187, 200, 201, 204
semi-transparent optoelectronics, 333
sensitized graphene photodetectors, 185
shear mode, bilayer graphene, 75–76
sheet current, 105
sheet current density, 104
sheet inductance, graphene, 105
sheet resistance, graphene, 194
sheet resistivity, 225
sheet-plasmon, graphene, 118
short-range defect scattering, 121
short-range defects, graphene, 29, 31, 34, 81
short-range scatterers, graphene, 36
Shubnikov–de Haas oscillations, 156
Si sp^3-sp^3 hybridization, 459
SiC band gap, 476
SiC honeycomb structure, 476
SiC substrate, 123
SiC substrate, graphene, 47, 119, 129–130
SiC synthesis, 476
silica honeycomb structure, 477
silicane band gap, 464
silicatene, 476
silicatene auxetic, 477
silicatene metamaterials, 477
silicene, 8, 74, 458
silicene $\sqrt{3} \times \sqrt{3}$, 475
silicene $2\sqrt{3} \times 2\sqrt{3}R(30^\circ)$ superstructure, 462
silicene ambipolar Dirac charge transport, 476
silicene armchair nanoribbons, 475
silicene band gap, 463
silicene Dirac cone, 467
silicene electronic structure, 462
silicene ferromagnetism, 467
silicene field effect transistors, 458, 469
silicene flower pattern, 460
silicene functionalization, 463
silicene GW approximation, 463
silicene honeycomb, 462
silicene hybridization, 463
silicene hydrogenated indirect bad gap, 464
silicene hydrogenation, 465
silicene linear dispersions, 466
silicene massless Dirac fermion, 466, 474
silicene molecular beam epitaxy (MBE), 459
silicene negative thermal expansion coefficient, 461
silicene phonon dispersion curves, 474
silicene rotational epitaxial phases, 461
silicene sheet resistance, 466
silicene stable structure, 474
silicene synthesis, 475
silicene topological insulator, 463, 474
silicene/metal interaction, 460
silicite, 476
silicon carbide, 476
silicone, epitaxial growth method, 238
single layer honeycomb structure, 473
single layer materials band gap, 474
single layer polymorphism, 474
single layer structure uniaxial strain, 474
single nucleus growth approach, graphene, 241
single-particle excitations, 118
SiO$_2$, 30, 91, 189, 191, 203, 210–211, 219–221, 301
SiO$_2$ dielectric, 40
SiO$_2$ substrate, 34
SiO$_2$ surface modes, 34–36, 124
SiO$_2$, substrate, 9
sister silicene phases, 461
skipping trajectories, 154
Slater–Koster parameters, 264, 268, 271–272
Slater–Koster scheme, 265
Slater–Koster tight-binding model, 264, 268
SLZnO structure, 478
snake state trajectories, 149, 153–156
Snell’s law, 135, 144, 148–149, 155
snowflake-like graphene crystals, 248
SO phonon frequency, 123
SO phonon modes, 124
SOC in graphene, 198
soft phonon mode instability, 65
soft phonon mode, mechanical properties, 68
soft phonon, graphene, 63
solid state metal oxide precursor vaporization, 351
sp^3 bonding, graphene, 8
sp^3–sp^3 bonding mixture, 8
sp^3 bonding, 8
space group, 72
spatial coherence, phonons, 79
spatially indirect effects, 317
spin accumulation, 202
spin-Bloch diffusion equation, 202
spin current, 213
spin diffusion length, 200
spin dynamics, graphene, 208
spin gating, 212
spin Hall effect, 200, 212, 287
spin Hall effect, 213
spin injection, 200
spin lifetime, 198, 200, 203, 210–211
spin lifetime, 2D materials, 200
spin lifetime, graphene, 200
spin optical selection rules, 291
spin–orbit, 205, 207, 212, 213
spin–orbit coupling, 7, 9, 16, 197–199, 208, 214
spin–orbit enhancement, 213
spin orientation manipulation, 202
spin polarizers, 202
spin precession, 202, 205
spin precession frequency, 208
spin precession time, 205, 207, 211
spin relaxation, 201, 211
spin relaxation length, 200, 212
spin relaxation mechanism, 204, 206
spin relaxation time, 198, 201–202, 205, 210
spin resistance, 201
spin scattering, 197
spin transfer torque effect, 197
spin–valley coupling, 329
spin–valley-polarized LED, 340
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin–valley-polarized photovoltage/current generation</td>
<td>336</td>
</tr>
<tr>
<td>spinors</td>
<td>113, 144</td>
</tr>
<tr>
<td>spin-polarized electron injection</td>
<td>197</td>
</tr>
<tr>
<td>spin-polarized electrons</td>
<td>213</td>
</tr>
<tr>
<td>spin-polarized transport, graphene</td>
<td>33</td>
</tr>
<tr>
<td>spin-torque</td>
<td>213</td>
</tr>
<tr>
<td>spin-torque applications</td>
<td>204</td>
</tr>
<tr>
<td>spin-value</td>
<td>197, 201</td>
</tr>
<tr>
<td>spintronics</td>
<td>9, 197, 200</td>
</tr>
<tr>
<td>stable single layer honeycomb structures, 474</td>
<td></td>
</tr>
<tr>
<td>stacking domain-walls solitons, 370</td>
<td></td>
</tr>
<tr>
<td>stacking orders, graphene</td>
<td>46</td>
</tr>
<tr>
<td>stanene, 47, 458</td>
<td></td>
</tr>
<tr>
<td>stanene spin–orbit coupling</td>
<td>468</td>
</tr>
<tr>
<td>stanene topological insulator phases</td>
<td>468</td>
</tr>
<tr>
<td>stanene topological transistor, 468</td>
<td></td>
</tr>
<tr>
<td>stannine, epitaxial growth method</td>
<td>238</td>
</tr>
<tr>
<td>Stark effect</td>
<td>199, 318</td>
</tr>
<tr>
<td>Stark shift</td>
<td>317</td>
</tr>
<tr>
<td>Stokes scattering</td>
<td>77–79</td>
</tr>
<tr>
<td>Stokes scattering (S), Raman spectroscopy</td>
<td>77–78</td>
</tr>
<tr>
<td>Stokes/anti-Stokes scattering ratio</td>
<td>191</td>
</tr>
<tr>
<td>Stoner model</td>
<td>368</td>
</tr>
<tr>
<td>strain, 20, 54, 57–60, 62–63, 68, 71, 92, 212</td>
<td></td>
</tr>
<tr>
<td>strain anisotropic, graphene, 74</td>
<td></td>
</tr>
<tr>
<td>strain-dependent Hamiltonian, 271, 272</td>
<td></td>
</tr>
<tr>
<td>strain included in tight-binding Hamiltonian, 272</td>
<td></td>
</tr>
<tr>
<td>strain tensor, 269</td>
<td></td>
</tr>
<tr>
<td>strain uniaxial</td>
<td>59</td>
</tr>
<tr>
<td>strain, compressive</td>
<td>72</td>
</tr>
<tr>
<td>strain, equibiaxial</td>
<td>59</td>
</tr>
<tr>
<td>strain, graphene, 36, 58, 60–61, 60, 68, 74</td>
<td></td>
</tr>
<tr>
<td>strained TMD</td>
<td>270</td>
</tr>
<tr>
<td>straintronic devices, 273</td>
<td></td>
</tr>
<tr>
<td>Stranski–Krastanov growth, 350</td>
<td></td>
</tr>
<tr>
<td>Stranski–Krastanov mode, 345</td>
<td></td>
</tr>
<tr>
<td>stress-strain, 405</td>
<td></td>
</tr>
<tr>
<td>stress-strain relationship, graphene, 58</td>
<td></td>
</tr>
<tr>
<td>structural defects, graphene, 25, 241</td>
<td></td>
</tr>
<tr>
<td>structural engineering, 38</td>
<td></td>
</tr>
<tr>
<td>structure stability, 473</td>
<td></td>
</tr>
<tr>
<td>sublattice, 13, 15, 18, 142</td>
<td></td>
</tr>
<tr>
<td>sublattices, graphene, 8, 11</td>
<td></td>
</tr>
<tr>
<td>sublattices A and B, 13</td>
<td></td>
</tr>
<tr>
<td>substrate phonons, 25, 192</td>
<td></td>
</tr>
<tr>
<td>substrate surface roughness, scattering</td>
<td>219</td>
</tr>
<tr>
<td>substrate-induced disorder, 219</td>
<td></td>
</tr>
<tr>
<td>sulfur vacancies, 306</td>
<td></td>
</tr>
<tr>
<td>sulfurization of metal thin films, 344</td>
<td></td>
</tr>
<tr>
<td>sulfurization/selenization of transition metal oxides, 345–346</td>
<td></td>
</tr>
<tr>
<td>sum rule, graphene, 43</td>
<td></td>
</tr>
<tr>
<td>suppression of backscattering, graphene, 198</td>
<td></td>
</tr>
<tr>
<td>surface admittance, 106</td>
<td></td>
</tr>
<tr>
<td>surface corrugations, graphene, 36</td>
<td></td>
</tr>
<tr>
<td>surface optical phonons, 123, 219</td>
<td></td>
</tr>
<tr>
<td>surface phonon mode (SO), 123</td>
<td></td>
</tr>
<tr>
<td>surface plasmon polariton (SPP), 109</td>
<td></td>
</tr>
<tr>
<td>surface plasmons, dispersion, 109</td>
<td></td>
</tr>
<tr>
<td>surface transfer doping, graphene, 131</td>
<td></td>
</tr>
<tr>
<td>surface-optical (SO) phonon scattering, 301</td>
<td></td>
</tr>
<tr>
<td>suspended graphene, 10–11, 25, 36, 54, 66, 68, 90–91, 93–94, 96, 146, 153</td>
<td></td>
</tr>
<tr>
<td>symmetry arguments, 383</td>
<td></td>
</tr>
<tr>
<td>symmetry breaking, bilayer graphene, 171</td>
<td></td>
</tr>
<tr>
<td>symmetry points, graphene, 12</td>
<td></td>
</tr>
<tr>
<td>thermal management, graphene, 96, 98–100</td>
<td></td>
</tr>
<tr>
<td>thermal conductivity, 77, 92–96, 99–100</td>
<td></td>
</tr>
<tr>
<td>thermal conductivity of plastics, 97</td>
<td></td>
</tr>
<tr>
<td>thermal conductivity, few layer graphene, 97</td>
<td></td>
</tr>
<tr>
<td>thermal conductivity, graphene, 90, 92–93, 98</td>
<td></td>
</tr>
<tr>
<td>thermal conductivity, suspended graphene, 91, 94</td>
<td></td>
</tr>
<tr>
<td>thermal contact resistance, graphene, 59</td>
<td></td>
</tr>
<tr>
<td>thermal emission, plasmon enhancement, 135, 192</td>
<td></td>
</tr>
<tr>
<td>thermal instability, graphene, 10</td>
<td></td>
</tr>
<tr>
<td>thermal interface materials (TIM), 96</td>
<td></td>
</tr>
<tr>
<td>thermal light emission, graphene, 192</td>
<td></td>
</tr>
<tr>
<td>thermal management, graphene, 96, 98–100</td>
<td></td>
</tr>
<tr>
<td>thermal pastes, 98</td>
<td></td>
</tr>
<tr>
<td>thermal properties, graphene, 90, 93</td>
<td></td>
</tr>
<tr>
<td>thermal radiation emitter, graphene, 228</td>
<td></td>
</tr>
<tr>
<td>thermal radiation sources, 191</td>
<td></td>
</tr>
<tr>
<td>thermal radiation, graphene on SiO2, 191</td>
<td></td>
</tr>
<tr>
<td>thermal resistance, graphene, 185, 200</td>
<td></td>
</tr>
<tr>
<td>thermoelectric effects, 204</td>
<td></td>
</tr>
<tr>
<td>thermolysis of thiosalts, 344</td>
<td></td>
</tr>
<tr>
<td>thin films, plasmons, 110</td>
<td></td>
</tr>
<tr>
<td>THz detector, 187</td>
<td></td>
</tr>
<tr>
<td>THz light sources, 191</td>
<td></td>
</tr>
<tr>
<td>THz plasmon resonance, graphene, 133</td>
<td></td>
</tr>
<tr>
<td>THz radiation, 183, 187</td>
<td></td>
</tr>
<tr>
<td>tight-binding approximation, 267</td>
<td></td>
</tr>
<tr>
<td>tight-binding Hamiltonian, 13, 17, 265</td>
<td></td>
</tr>
<tr>
<td>tight-binding Hamiltonian energy bands, 387</td>
<td></td>
</tr>
<tr>
<td>tight-binding model, 12, 384, 386</td>
<td></td>
</tr>
<tr>
<td>tight-binding model, graphene, 39</td>
<td></td>
</tr>
<tr>
<td>tilt grain boundary, 368</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>TIM efficiency, graphene, 100</td>
<td></td>
</tr>
<tr>
<td>TIMs electronics, 98</td>
<td></td>
</tr>
<tr>
<td>TMD barriers for dislocations, 370</td>
<td></td>
</tr>
<tr>
<td>TMD berry curvatures, 279</td>
<td></td>
</tr>
<tr>
<td>TMD bilayered interlayer hopping properties, 280</td>
<td></td>
</tr>
<tr>
<td>TMD bilayered valley and spin physics, 289</td>
<td></td>
</tr>
<tr>
<td>TMD bottom-up synthesis, 345</td>
<td></td>
</tr>
<tr>
<td>TMD bottom-up synthesis, 344</td>
<td></td>
</tr>
<tr>
<td>TMD carrier density, 263</td>
<td></td>
</tr>
<tr>
<td>TMD catalysts for hydrogen evolution reaction, 374</td>
<td></td>
</tr>
<tr>
<td>TMD channel transistors, 418</td>
<td></td>
</tr>
<tr>
<td>TMD chemical vapor deposition, 279</td>
<td></td>
</tr>
<tr>
<td>TMD chemical vapor deposition grown device, 338</td>
<td></td>
</tr>
<tr>
<td>TMD circularly polarized electroluminescence, 340</td>
<td></td>
</tr>
<tr>
<td>TMD circularly polarized emission, 340</td>
<td></td>
</tr>
<tr>
<td>TMD circularly polarized luminescence, 340</td>
<td></td>
</tr>
<tr>
<td>TMD conduction band (CB), 262</td>
<td></td>
</tr>
<tr>
<td>TMD controllable synthesis, 345</td>
<td></td>
</tr>
<tr>
<td>TMD edge-epitaxy, 350</td>
<td></td>
</tr>
<tr>
<td>TMD electrical output current, 337</td>
<td></td>
</tr>
<tr>
<td>TMD electroluminescence, 330–331, 340</td>
<td></td>
</tr>
<tr>
<td>TMD electron–hole pairs, 340</td>
<td></td>
</tr>
<tr>
<td>TMD electronic properties, 259, 344</td>
<td></td>
</tr>
<tr>
<td>TMD electronic structure, 260</td>
<td></td>
</tr>
<tr>
<td>TMD electronic structure at the band edges, 280</td>
<td></td>
</tr>
<tr>
<td>TMD electrostatic doping, 335</td>
<td></td>
</tr>
<tr>
<td>TMD energy splitting, 262</td>
<td></td>
</tr>
<tr>
<td>TMD equilibrium concentration of defects, 360</td>
<td></td>
</tr>
<tr>
<td>TMD excitonic transitions, 340</td>
<td></td>
</tr>
<tr>
<td>TMD external deformations, 269</td>
<td></td>
</tr>
<tr>
<td>TMD extrinsic defects, 344</td>
<td></td>
</tr>
<tr>
<td>TMD field effect transistor photocurrent generation, 338</td>
<td></td>
</tr>
<tr>
<td>TMD field-effect transistor, 330, 374</td>
<td></td>
</tr>
<tr>
<td>TMD first principle calculations, 264</td>
<td></td>
</tr>
<tr>
<td>TMD grain boundary polar discontinuity, 368</td>
<td></td>
</tr>
<tr>
<td>TMD growth on graphene, 346</td>
<td></td>
</tr>
<tr>
<td>TMD growth on h-BN, 346</td>
<td></td>
</tr>
<tr>
<td>TMD heterostructure fabrication, 311</td>
<td></td>
</tr>
<tr>
<td>TMD heterostructures vertically stacked, 348</td>
<td></td>
</tr>
<tr>
<td>TMD hexagonal Brillouin zone, 279</td>
<td></td>
</tr>
<tr>
<td>TMD hybrid detector, 337</td>
<td></td>
</tr>
<tr>
<td>TMD hybridization, 261, 270</td>
<td></td>
</tr>
<tr>
<td>TMD hydrophilicity, 374</td>
<td></td>
</tr>
<tr>
<td>TMD interlayer exciton, 315, 317</td>
<td></td>
</tr>
<tr>
<td>TMD intralayer exciton, 317</td>
<td></td>
</tr>
<tr>
<td>TMD intrinsic p–n junction, 350</td>
<td></td>
</tr>
<tr>
<td>TMD inversion symmetry, 259</td>
<td></td>
</tr>
<tr>
<td>TMD island growth, 345</td>
<td></td>
</tr>
<tr>
<td>TMD isomorphism, 347</td>
<td></td>
</tr>
<tr>
<td>TMD kp model, 283</td>
<td></td>
</tr>
<tr>
<td>TMD large scale growth nanosheets, 344</td>
<td></td>
</tr>
<tr>
<td>TMD laser, 330, 333</td>
<td></td>
</tr>
<tr>
<td>TMD lateral heteroepitaxy growth, 345</td>
<td></td>
</tr>
<tr>
<td>TMD layer-plus-island growth, 345</td>
<td></td>
</tr>
<tr>
<td>TMD light emitter, 333</td>
<td></td>
</tr>
<tr>
<td>TMD light emitting diodes, 330</td>
<td></td>
</tr>
<tr>
<td>TMD liquid phase exfoliation, 344</td>
<td></td>
</tr>
<tr>
<td>TMD many-body interactions, 318</td>
<td></td>
</tr>
<tr>
<td>TMD mass production, 354</td>
<td></td>
</tr>
<tr>
<td>TMD mechanical deformations, 273</td>
<td></td>
</tr>
<tr>
<td>TMD mechanical exfoliation, 279</td>
<td></td>
</tr>
<tr>
<td>TMD mechanical properties, 272</td>
<td></td>
</tr>
<tr>
<td>TMD migration mechanisms, 370</td>
<td></td>
</tr>
<tr>
<td>TMD molecular beam epitaxy, 279</td>
<td></td>
</tr>
<tr>
<td>TMD monolayered valley-selective optical Stark effect, 285</td>
<td></td>
</tr>
<tr>
<td>TMD monolayered valley-spin physics, 283</td>
<td></td>
</tr>
<tr>
<td>TMD MOSFETs, 297</td>
<td></td>
</tr>
<tr>
<td>TMD nanoribbons, 282</td>
<td></td>
</tr>
<tr>
<td>TMD non-uniform strain, 269</td>
<td></td>
</tr>
<tr>
<td>TMD nucleation density, 346</td>
<td></td>
</tr>
<tr>
<td>TMD nucleation energy barrier, 345</td>
<td></td>
</tr>
<tr>
<td>TMD optical properties, 310</td>
<td></td>
</tr>
<tr>
<td>TMD oscillator strength, 318</td>
<td></td>
</tr>
<tr>
<td>TMD optical properties, 310</td>
<td></td>
</tr>
<tr>
<td>TMD nucleation energy barrier, 345</td>
<td></td>
</tr>
<tr>
<td>TMD p-n junctions, 331, 334</td>
<td></td>
</tr>
<tr>
<td>TMD point defects, 360</td>
<td></td>
</tr>
<tr>
<td>TMD power conversion efficiency, 336</td>
<td></td>
</tr>
<tr>
<td>TMD quantum dots, 282</td>
<td></td>
</tr>
<tr>
<td>TMD Rashba spin–orbit coupling, 263</td>
<td></td>
</tr>
<tr>
<td>TMD Schottky barrier, 338</td>
<td></td>
</tr>
<tr>
<td>TMD Schottky junctions, 334</td>
<td></td>
</tr>
<tr>
<td>TMD semiconducting, 269, 329</td>
<td></td>
</tr>
<tr>
<td>TMD short radiative lifetimes, 329</td>
<td></td>
</tr>
<tr>
<td>TMD spin relaxation, 283</td>
<td></td>
</tr>
<tr>
<td>TMD spin–orbit coupling, 262, 281</td>
<td></td>
</tr>
<tr>
<td>TMD spin–orbit interaction, 259</td>
<td></td>
</tr>
<tr>
<td>TMD spintronics, 259</td>
<td></td>
</tr>
<tr>
<td>TMD spin–valley coupling, 259</td>
<td></td>
</tr>
<tr>
<td>TMD strain engineering, 259, 272–273</td>
<td></td>
</tr>
<tr>
<td>TMD stretchability, 273</td>
<td></td>
</tr>
<tr>
<td>TMD strong light–matter interactions, 339</td>
<td></td>
</tr>
<tr>
<td>TMD supercapacitor electrodes, 374</td>
<td></td>
</tr>
<tr>
<td>TMD synthesis, 344</td>
<td></td>
</tr>
<tr>
<td>TMD synthesized on fluorophlogopite mica (K<sub>Mg</sub>A1<sub>Si3O<sub>10</sub>(F<sub>2</sub>)<sub>2</sub>), 350</td>
<td></td>
</tr>
<tr>
<td>TMD ternary alloy synthesis, 344, 347–348</td>
<td></td>
</tr>
<tr>
<td>TMD top-down synthesis, 344</td>
<td></td>
</tr>
<tr>
<td>TMD twin grain boundary metallicity, 368</td>
<td></td>
</tr>
<tr>
<td>TMD two-step growth method, 350</td>
<td></td>
</tr>
<tr>
<td>TMD ultrafast charge transfer, 335</td>
<td></td>
</tr>
<tr>
<td>TMD unit cell, 260</td>
<td></td>
</tr>
</tbody>
</table>
Index

TMD valence band (VB), 262
TMD valley Hall effect, 341
TMD valley polarization detection, 340
TMD valley pseudospin, 280
TMD valleytronics nano-devices, 259
TMD van der Waals epitaxy, 350
TMD van der Waals force, 279
TMD van der Waals heterostructure device, 337
TMD van der Waals stacking, 344
TMD vertical p–n junctions, 335–336
TMDs vertically stacked, 350
top-gating graphene, 145
topological defects, 363
topological insulators, 20, 214, 232
topological insulators, 232
topological state, 214
touch screens, graphene, 194
transconductance, 162
transfer characteristics, 166
transfer characteristics, bilayer FET, 171
transfer technique fabrication, 313
transit time, 183
transition metal dichalcogenides (TMD), 472
transition metal oxides, 233, 472
transmission of carriers, p–n interface, 143
transmission probability, angle dependence, 92–93
transport in magnetic field, 146
transversal (T) phonons, 71
transverse acoustic (TA) phonons, 92–93
transverse magnetic field, 105
trap state density, 446
trapping lifetime, 183
trigonal warping, 180, 288, 340
trigonal warping, graphene, 17
trilayer graphene, 46, 74, 91
tron, 284
tron first-principles calculations, 284
tunable bandgap, bilayer, 48
tunability of Fermi level, 200
tunability of the electron system, graphene, 25
tunability, carrier density, 127, 130
tunable band gap, 170
tunable bandgap, bilayer graphene, 46
tunable interband transitions, 41
tunable metasurfaces, graphene, 135
tunable THz filter, graphene, 193
tungsten hexacarbonyl (W(CO)6), 351
twin boundary graphene, 368
twin grain boundaries conductivity, 368
twisted bilayer, graphene, 73–74, 93–94
two-band massive Dirac fermion model, 286
two-center approximation, 323
two-dimensional electron systems (2DES), 28
type-II band alignment, 310, 335
ultrafast carrier dynamics, 184
ultrafast interlayer charge transfer, 314, 317
ultrafast lasers, graphene, 189
ultrahigh speed transistors, graphene, 160
ultrarelativistic regime, 20
ultra-short channel transistors, 174
Umklapp scattering, 92, 94, 401
Umklapp-assisted light cones, 321
Umklapp-assisted momentum conservation, 321
uni-axial stress, 61
unilateral gain (U), 162
unipolar resistance graphene, 146
uniaxial strain, graphene, 73–74
valley dependent spin splitting, 291
valley functionality of interlayer excitons, 324
valley Hall current, 286, 291
valley Hall current, 289, 291
valley Hall effect, 286
valley Hall effect, 280, 287
valley Hall effect, inversion symmetry breaking, 289
valley magnetic moment, 285
valley optical selection rule, 280, 283
valley optoelectronic, 310
valley polarization, 287
valley polarization detection, 330
valley polarization/coherence, 285
valley pseudospin, 279, 287
valley pseudospin component, 282
valley quantum coherence, 285
valley Zeeman effect, 280, 285
valley Zeeman shift, 285
valley Zeeman splitting, 286
valley-dependent dispersion, 289
valley-dependent exciton current, 324
valley-dependent optical selection rules, 329
valley-dependent optoelectronic devices, 330
valley-dependent optoelectronic devices, 340
valleytronics, 279
van der Pauw measurement, 227
van der Waals (vdW) transfer, 220
van der Waals adhesion, 53, 220
van der Waals assembly, 220–221, 226, 233
van der Waals bonds, 75
van der Waals epitaxy, 1
van der Waals heterojunction diode, 335
van der Waals heterostructures photodetectors, 339
van der Waals epitaxy, 1
van der Waals heterostructures, 339
van der Waals interactions, 7
vapor transport techniques, 314
vapor–solid growth method, 352
variable range hopping, 33
Verlet algorithm, 473
vertical electric field, 170
vertical field-effect transistors, 172
vertical graphene transistors, 171
vertical structures fabrication, 331
vertical transistor (VFET), 173
vertical tunneling transistors, 172
vertically stacked 2D heterostructures fabrication, 312
Veselago device, 151
Veselago lensing, 149
vibrational absorption, graphene, 134–135
vibrational modes, 75
vibrational spectroscopy, graphene, 134
vibrations out of plane, graphene, 96
vibrations, graphene, 71–72, 74–75, 79, 134–135
vibrations, interlayer, graphene, 74–75
vibrations, quantum nature, graphene, 77
video and biomedical imaging, 184
Vienna ab-initio simulation package (VASP), 474
Volmer–Weber mode, 345
Wannier type exciton wave function, 284
Wannier–Mott exciton Hamiltonian, 396
wave function, 14–15, 157
wave guides, graphene, 149
waveguide-integrated photodetectors, 185
wavepackets, 211
wavevector, 71, 73, 75, 120, 126–127
wavevector, modulation, 73
wavevector, phonon, 10
weak intervalley scattering, 288
Weibull modulus, mechanical properties, 55
white noise disorder, 31
white phosphorus, 414
Wills–Harrison argument, 269
WS₂, 262
WS₂ photoluminescence intensity, 373
WS₂ synthesis, 481
WS₂ tellurium-assisted low-temperature synthesis, 347
WSe₂, 233, 262
WSe₂ helicoid geometry, 370
WSe₂ optical micrograph, 313
WSe₂ p–n junctions, 340
WSe₂ quantum photonics, 362
WSe₂ quantum-information, 362
WSe₂ screw dislocations, 370
WSe₂ single photon emission, 362
WSe₂ three-fold rotational defect, 367
yttrium iron garnet (YIG), 213
ZA phonons, 94, 96
Zeeman Hall effect, 213
Zeeman term, 199
zero bandgap, graphene, 48
zeroth-order Neumann functions, 396
zeroth-order Struve function, 396
zigzag direction, 57
zigzag edges, graphene, 81, 245
zigzag MoS₂ band structure, 269
ZnO armchair nanoribbon, 478
ZnO ferromagnetic, 478
ZnO optoelectronic material, 478
ZnO zigzag nanoribbons, 478
zone-folding, graphite, 46