2D Materials
Properties and Devices

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. You will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin, and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers, and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Phaedon Avouris is an IBM Fellow Emeritus. He is a member of the National Academy of Sciences, and a Fellow of the American Academy of Arts and Sciences, the American Physical Society, the Institute of Physics, the IEEE, the Materials Research Society, and the American Association for the Advancement of Science.

Tony F. Heinz is a Professor of Applied Physics and Photon Science at Stanford University and the SLAC National Accelerator Laboratory. He previously worked at Columbia University and IBM Research, USA.

Tony Low is Assistant Professor of Electrical and Computer Engineering at the University of Minnesota. He previously worked at Yale University, Columbia University, and the IBM T. J. Watson Research Center.
“This book, edited by the top researchers who have been working on atomically thin materials in the past decade, contains the essential contents of our current scientific understanding of this novel form of materials. The authors have compiled comprehensive and contemporary reviews on various topics ranging from fundamental science to engineering applications, providing an excellent textbook for students as well as references for experts in the research field.”

Philip Kim, Harvard University

“This edited volume consists of 25 topical chapters contributed by scientists active in the growing field of 2D semiconductors, who summarize the most salient features of these intriguing materials. Contributions are grouped into three parts dedicated to graphene, transition metal dichalcogenides, and elemental group V layered semiconductors including phosphorene. Covered are the most actively researched topics: synthesis, stability, thermal and electronic properties including transport, optics, optoelectronics and spintronics, phonon structure, and mechanical properties of few-layer systems including heterostructures, as probed by state-of-the-art experimental and theoretical techniques. While emphasis is placed on the rigorous scientific representation of knowledge acquired to date, the contributors also offer a refreshing insight into potential applications of this new class of materials.”

David Tomanek, Michigan State University

“The field of 2D materials, which started with graphene, now includes dozens of one-atom thick crystals. Many of them demonstrate properties and effects which are equally as exciting as those found for the famous ancestor. And, judging from the recent progress, the field will be developing very fast for many years ahead.

This book, written by scientists who are the leaders in their fields, is the most comprehensive and up-to-date attempt to review this fast-developing subject. Starting with an in-depth summary on graphene, it moves to other 2D crystals, such as transition metal dichalcogenides, black phosphorous, and others, providing probably the most complete reference on the topic at the moment.”

Kostya Novoselov, University of Manchester
2D Materials

Properties and Devices

PHAEDON AVOURIS
IBM T. J. Watson Research Center, New York

TONY F. HEINZ
Stanford University and SLAC National Accelerator Laboratory

TONY LOW
University of Minnesota
Contents

Contributors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>page xi</th>
</tr>
</thead>
</table>

Introduction

1

Part I

1 **Graphene: Basic Properties**

1.1 Chemical Bonding and Ground-State Structure
1.2 Thermal (In)Stability of 2D Crystals
1.3 Electronic Structure of Single-Layer Graphene
1.4 Electronic Structure of Bilayer Graphene
1.5 Graphene as a Bridge between Condensed Matter and High-Energy Physics
1.6 References

7
7
11
17
20
21

2 **Electrical Transport in Graphene: Carrier Scattering by Impurities and Phonons**

2.1 Boltzmann Transport Theory
2.2 Charged Impurities
2.3 Resonant Scatterers
2.4 Corrugations of the Graphene Sheet
2.5 Phonons
2.6 References

25
28
31
33
34
36

3 **Optical Properties of Graphene**

3.1 Tunable Interband and Intraband Transitions in Electrically Gated Graphene
3.2 Landau Level Transitions in Graphene under a Magnetic Field
3.3 Plasmon Excitations in Graphene
3.4 Bilayer and Multilayer Graphene
3.5 References

38
43
44
46
48

4 **Graphene Mechanical Properties**

4.1 Introduction
4.2 Experiments

52
53
Contents

4.3 Non-linear and Anisotropic Response of Graphene 57
4.4 Experimental Validation 61
4.5 Instabilities 63
4.6 Defective Graphene 64
4.7 Conclusion 68
4.8 References 68

5 Vibrations in Graphene
5.1 Structure and Vibrations of Monolayer Graphene 71
5.2 Many-Layers Graphene and the Interlayer Vibrations in 2D Systems 74
5.3 The Quantum Nature of Atomic Vibrations 77
5.4 Phonon Coherence Length in Graphene 79
5.5 Probing Phonons Near Defects and Edges/Grain Boundaries 79
5.6 References 83

6 Thermal Properties of Graphene: From Physics to Applications
6.1 Thermal Conductivity of Graphene and Few-Layer Graphene 90
6.2 Isotope and Rotational Engineering of Thermal Properties of Graphene 93
6.3 Graphene Applications in Thermal Management Technologies 96
6.4 Conclusions 100
6.5 References 101

7 Graphene Plasmonics
7.1 Macroscopic Approach to Graphene Plasmonics 104
7.2 Microscopic Approach 111
7.3 Plasmon Damping 115
7.4 Experimental Observation of Graphene Plasmons 117
7.5 Applications 134
7.6 References 136

8 Electron Optics with Graphene p–n Junctions
8.1 Introduction 141
8.2 Basic Electrical Properties of p–n Junctions 142
8.3 Photon Analogies for Carriers in Graphene 148
8.4 Future Directions 156
8.5 References 157

9 Graphene Electronics
9.1 Introduction 159
9.2 Graphene RF Transistors and Circuits 160
9.3 Graphene Nanostructures 166
9.4 Bilayer Graphene Transistors 169
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 Vertical Graphene Transistors</td>
<td>171</td>
</tr>
<tr>
<td>9.6 Conclusion</td>
<td>174</td>
</tr>
<tr>
<td>9.7 References</td>
<td>175</td>
</tr>
<tr>
<td>10 Graphene: Optoelectronic Devices</td>
<td>180</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>10.2 Light to Current Conversion</td>
<td>181</td>
</tr>
<tr>
<td>10.3 Photodetectors</td>
<td>184</td>
</tr>
<tr>
<td>10.4 Light Modulators</td>
<td>187</td>
</tr>
<tr>
<td>10.5 Ultra-Fast Lasers</td>
<td>189</td>
</tr>
<tr>
<td>10.6 Thermal Radiation Sources</td>
<td>191</td>
</tr>
<tr>
<td>10.7 Passive Optical Elements</td>
<td>192</td>
</tr>
<tr>
<td>10.8 Transparent Conductive Electrodes</td>
<td>193</td>
</tr>
<tr>
<td>10.9 References</td>
<td>194</td>
</tr>
<tr>
<td>11 Graphene Spintronics</td>
<td>197</td>
</tr>
<tr>
<td>11.1 Introduction to Spintronics</td>
<td>197</td>
</tr>
<tr>
<td>11.2 Advantages of Graphene for Spintronics</td>
<td>198</td>
</tr>
<tr>
<td>11.3 How to Measure Spin Lifetimes in Graphene and 2D Materials</td>
<td>200</td>
</tr>
<tr>
<td>11.4 New Spin Relaxation Mechanisms</td>
<td>206</td>
</tr>
<tr>
<td>11.5 Proximity Effects and Spin Gating</td>
<td>212</td>
</tr>
<tr>
<td>11.6 References</td>
<td>215</td>
</tr>
<tr>
<td>12 Graphene–BN Heterostructures</td>
<td>219</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>219</td>
</tr>
<tr>
<td>12.2 Mechanical Assembly of Graphene–BN Heterostructures</td>
<td>220</td>
</tr>
<tr>
<td>12.3 High-Performance Graphene</td>
<td>225</td>
</tr>
<tr>
<td>12.4 Beyond Graphene</td>
<td>232</td>
</tr>
<tr>
<td>12.5 References</td>
<td>233</td>
</tr>
<tr>
<td>13 Controlled Growth of Graphene Crystals by Chemical Vapor Deposition: From Solid Metals to Liquid Metals</td>
<td>238</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>238</td>
</tr>
<tr>
<td>13.2 CVD Method for Graphene Growth</td>
<td>239</td>
</tr>
<tr>
<td>13.3 Prospects</td>
<td>250</td>
</tr>
<tr>
<td>13.4 References</td>
<td>251</td>
</tr>
<tr>
<td>Part II</td>
<td>257</td>
</tr>
<tr>
<td>14 Electronic Properties and Strain Engineering in Semiconducting Transition Metal Dichalcogenides</td>
<td>259</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td>14.2 Electronic Structure</td>
<td>260</td>
</tr>
</tbody>
</table>
Contents

14.3 From Density Functional Theory to Tight-Binding Approximation 264
14.4 Including Strain in the Tight-Binding Hamiltonian 268
14.5 Low-Energy Model of Strained Transition Metal Dichalcogenides 270
14.6 Strain Engineering in Transition Metal Dichalcogenides 272
14.7 References 276

15 Valley-Spin Physics in 2D Semiconducting Transition Metal Dichalcogenides 279
15.1 Introduction 279
15.2 Electronic Structure at the Band Edges 280
15.3 Valley-Spin Physics in Monolayers 283
15.4 Valley and Spin Physics in Bilayers 289
15.5 References 292

16 Electrical Transport in MoS$_2$: A Prototypical Semiconducting TMDC 295
16.1 Introduction 295
16.2 Ballistic Transport Simulations 297
16.3 Scattering Mechanisms 299
16.4 Point Defects 303
16.5 References 308

17 Optical Properties of TMD Heterostructures 310
17.1 Fundamentals of 2D TMD Heterostructures 310
17.2 Interlayer Exciton Properties 315
17.3 Valley Optoelectronic Properties of 2D Heterostructure 319
17.4 Outlook 325
17.5 References 326

18 TMDs – Optoelectronic Devices 329
18.1 Introduction 329
18.2 Light-Emitting Diodes and Lasers 330
18.3 Photovoltaic Devices 333
18.4 Photodetectors 336
18.5 Valley-Dependent Optoelectronic Devices 340
18.6 References 342

19 Synthesis of Transition Metal Dichalcogenides 344
19.1 Introduction 344
19.2 Mechanism of Growth 345
19.3 Sulfurization/Selenization of Transition Metal Oxides 345
19.4 Metal Organic Chemical Vapor Deposition 351
19.5 Physical Vapor Phase Transport 351
19.6 Summary and Outlook 354
19.7 References 354
Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Defects in Two-Dimensional Materials</td>
<td></td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>Introduction</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>20.2</td>
<td>Point Defects</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>Topological Defects: Dislocations and Grain Boundaries</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>20.4</td>
<td>Dislocations in Bilayer Materials</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>20.5</td>
<td>Other 1D Defects – Edges, Interfaces, and Nanowires</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>20.6</td>
<td>Summary</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>20.7</td>
<td>References</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>Part III</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>21</td>
<td>Theoretical Overview of Black Phosphorus</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>21.1</td>
<td>Crystal and Electronic Band Structures</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>21.2</td>
<td>Electronic Properties</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>21.3</td>
<td>Optical Properties</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>21.4</td>
<td>Thermal Properties</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>21.5</td>
<td>Mechanical Properties – Elasticity</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>21.6</td>
<td>Concluding Remarks</td>
<td>408</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>References</td>
<td>408</td>
</tr>
<tr>
<td>22</td>
<td>Anisotropic Properties of Black Phosphorus</td>
<td></td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>Synthesis of Black Phosphorus</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>22.2</td>
<td>Anisotropic Response of Black Phosphorus</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td>Conclusion</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>22.4</td>
<td>References</td>
<td>429</td>
</tr>
<tr>
<td>23</td>
<td>Optical Properties and Optoelectronic Applications of Black Phosphorus</td>
<td></td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>23.1</td>
<td>Introduction</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>23.2</td>
<td>Optical Properties</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>23.3</td>
<td>Optoelectronic Devices</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td>Outlook and Remarks</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>References</td>
<td>452</td>
</tr>
<tr>
<td>24</td>
<td>Silicene, Germanene, and Stanene</td>
<td></td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>24.1</td>
<td>Introduction</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>24.2</td>
<td>The Advent of Silicene</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>24.3</td>
<td>Epitaxial Silicene</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>24.4</td>
<td>Electronic Structure of Silicene</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>24.5</td>
<td>Functionalization of Silicene</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>Multilayer Silicene</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>24.7</td>
<td>Germanene and Stanene</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>24.8</td>
<td>Summary</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>24.9</td>
<td>References</td>
<td>469</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Predictions of Single-Layer Honeycomb Structures from First Principles</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td>Motivation and Methodology</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>25.2</td>
<td>Group IV Elements: Silicene, Germanene</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>25.3</td>
<td>Group III–V and II–VI Compounds</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td>Group V Elements: Nitrogene and Antimonene</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>Transition Metal Oxides and Dichalcogenides</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>25.6</td>
<td>Conclusions</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>25.7</td>
<td>References</td>
<td>482</td>
<td></td>
</tr>
</tbody>
</table>

Index

485
Contributors

Thierry Angot
Aix-Marseille Université

Phaedon Avouris
IBM T. J. Watson Research Center

Alexander A. Balandin
University of California, Riverside

S. Cahangirov
Bilkent University

Luiz Gustavo Cançado
Federal University of Minas Gerais

Andres Castellanos-Gomez
Instituto Madrileño de Estudios Avanzados en Nanociencia

Andrey Chaves
Universidade Federal do Ceará

Jian-Hao Chen
Peking University

S. Ciraci
Bilkent University

Aron W. Cummings
ICN2 – Catalan Institute of Nanoscience and Nanotechnology (CSIC and the Barcelona Institute of Science and Technology)

Cory.R. Dean
Columbia University
Contributors

C. DiMarco
Columbia University

Yuchen Du
Purdue University

Xiangfeng Duan
University of California, Los Angeles

Xidong Duan
Hunan University

Traian Dumitrică
University of Minnesota

Annalisa Fasolino
Radboud University

Dechao Geng
National University of Singapore

Francisco Guinea
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-nanociencia)

Tony F. Heinz
Stanford University and SLAC National Accelerator Laboratory

J. Hone
Columbia University

Wei Ji
Renmin University of China

Ado Jorio
Federal University of Minas Gerais

Mikhail I. Katsnelson
Radboud University

Andras Kis
École Polytechnique Fédérale de Lausanne (EPFL)

Frank H.L. Koppens
ICFO Institut de Ciències Fotòniques
J.W. Kysar
Columbia University

Guy Le Lay
Aix-Marseille Université

Lain-Jong Li
King Abdullah University of Science and Technology

Mo Li
University of Minnesota

R. Li
Columbia University

Han Liu
Purdue University

Kian Ping Loh
National University of Singapore

Tony Low
University of Minnesota

Mark B. Lundeberg
ICFO Institut de Ciències Fotòniques

Zhe Luo
Purdue University

Jesse Maassen
Dalhousie University

Leandro M. Malard
Federal University of Minas Gerais

Thomas Mueller
Vienna University of Technology

Frank Ortmann
Technische Universität Dresden

Marco Polini
NEST, Istituto Nanoscienze – CNR and Scuola Normale Superiore
Contributors

S. Rastogi
Columbia University

Pasqual Rivera
University of Washington

Stephan Roche
Catalan Institute of Nanoscience and Nanotechnology

Rafael Roldán
Instituto de Ciencia de Materiales de Madrid, CSIC

Eric Salomon
Aix-Marseille Université

Sufei Shi
Rensselaer Polytechnic Institute

Yumeng Shi
Shenzhen University

Sergio O. Valenzuela
Catalan Institute of Nanoscience and Nanotechnology

Chen Wang
University of California, Los Angeles

Feng Wang
University of California, Berkeley

Lei Wang
Cornell University

James R. Williams
University of Maryland

Xianfan Xu
Purdue University

Xiaodong Xu
University of Washington

Wang Yao
The University of Hong Kong
Contributors

Boris I. Yakobson
Rice University

Peide D. Ye
Purdue University

Hongyi Yu
The University of Hong Kong

Xiaolong Zou
Rice University and Tsinghua–Berkeley Shenzhen Institute