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CHAPTER

ONE

Brittle fracture of rock

Under the low-temperature and pressure conditions of Earth’s upper lithosphere, silicate rock

responds to large strains by brittle fracture. The mechanism of brittle behavior is by the

propagation of cracks, which may occur on all scales. We begin by studying this form of

deformation, which is fundamental to the topics that follow.

1.1 THEORETICAL CONCEPTS

1.1.1 Historical

Understanding the basic strength properties of rock has been a practical pursuit since ancient

times, both because of the importance of mining and because rock was the principal building

material. The crafting of stone tools required an intuitive grasp of crack propagation, andmining,

quarrying, and sculpture are trades that require an intimate knowledge of themechanical proper-

ties of rock. The layout and excavation of quarries, for example, is a centuries-old art that relies

on the recognition and exploitation of preferred splitting directions in order to maximize effi-

ciency and yield. One of the principal properties of brittle solids is that their strength in tension is

much less than their strength in compression. This led, in architecture, to the development of

fully compressional structures through the use of arches, domes, and flying buttresses.

Rock was one of the first materials for which strength was studied with scientific scrutiny

because of its early importance as an engineering material and in mining. By the end of the

nineteenth century the macroscopic phenomenology of rock fracture had been put on a scien-

tific basis. Experimentation had been conducted over a variety of conditions up to moderate

confining pressures. The Coulomb criterion and the Mohr circle analysis had been developed

and applied to rock fracture with sufficient success that they remain the principal tools used to

describe this process for many engineering and geological applications.
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The modern theory of brittle fracture arose as a solution to a crisis in understanding the

strength of materials, brought about by the atomic theory of matter. In simplest terms,

strength can be viewed as the maximum stress that a material can support under given

conditions. Fracture (or flow) must involve the breaking of atomic bonds. An estimate of

the theoretical strength of a solid is therefore the stress required to break the bonds across a

lattice plane.

Consider a simple anharmonic model for the forces between atoms in a solid, as in

Figure 1.1, in which an applied tension σ produces an increase in atomic separation r from

an equilibrium spacing a (Orowan, 1949). Because we need only consider the prepeak region,

we can approximate the stress–displacement relationship with a sinusoid,

σ ¼ σt sin
2πðr � aÞ

λ

� �

ð1:1Þ

For small displacements, when r ≈ a, then

dσ

dðr � aÞ
¼

E

a
¼

2π

λ
σt cos

2πðr � aÞ

λ

� �

ð1:2Þ

but because (r − a)/λ ≪ 1, the cosine is equal to 1, and

σt ¼
Eλ

2πa
ð1:3Þ

where E is Young’s modulus. When r = 3a/2, the atoms are midway between two equilibrium

positions, so by symmetry, σ = 0 there and a ≈ λ. The theoretical strength is thus about E/2π.

The work done in separating the planes by λ/2 is the specific surface energy γ, the energy per

unit area required to break the bonds, so

2γ ¼

ðλ=2

0

σt sin
2πðr � aÞ

λ

� �

dðr � aÞ ¼
λσt

π

ð1:4Þ

which, with σt ≈ E/2π, yields the estimate γ ≈ Ea/4π2.

The value of the theoretical strength from this estimate is 5–10 GPa, several orders of

magnitude greater than the strength of real materials. This discrepancy was explained by the

Fig. 1.1. Sketch of an anharmonicmodel of interatomic

forces, showing the relationship between stress and

atomic separation (solid curve) and a sinusoidal

approximation (dashed curve).
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postulation and later recognition that all real materials contain defects. Two types of defects

are important: cracks, which are surface defects; and dislocations, which are line defects. Both

types of defects may propagate in response to an applied stress and produce yielding in the

material. This will occur at applied stresses much lower than the theoretical strength, because

both mechanisms require that the theoretical strength be achieved only locally within a stress

concentration deriving from the defect. The twomechanisms result in grossly different macro-

scopic behavior. When cracks are the active defect, material failure occurs by its separation into

parts, often catastrophically: this is brittle behavior. Plastic flow results from dislocation

propagation, which produces permanent deformation without destruction of the lattice

integrity.

These two processes tend to bemutually inhibiting, but not exclusive, so that the behavior

of crystalline solids usually can be classed as brittle or ductile, although mixed behavior,

known as semibrittle, may be more prevalent than commonly supposed. Because the litho-

sphere consists of two parts with markedly different rheological properties, one brittle and

the other ductile, it is convenient to introduce two new terms to describe them. These are

schizosphere (literally, the broken part) for the brittle region, and plastosphere (literally, the

moldable part) for the ductile region. In this book we will assume, for the most part, that we

are dealing with purely brittle processes, so that we will be concerned principally with the

behavior of the schizosphere.

1.1.2 Griffith theory

All modern theories of strength recognize, either implicitly or explicitly, that real materials

contain imperfections that, because of the stress concentrations they produce within the

body, result in failure atmuch lower stresses than the theoretical strength. A simple example,

Figure 1.2(a), is a hole within a plate loaded with a uniform tensile stress σ
∞
. It can be shown

Fig. 1.2. Stress concentration around (a) a circular hole, and (b) an elliptical hole in a

plate subjected to a uniform tension σ∞.

1.1 Theoretical concepts 3

www.cambridge.org/9781107163485
www.cambridge.org


Cambridge University Press
978-1-107-16348-5 — The Mechanics of Earthquakes and Faulting 3rd Edition
Christopher H. Scholz
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

from elasticity theory that at the top and bottom of the hole a compressive stress of magni-

tude −σ
∞
exists and that at its left and right edges there will be tensile stresses of magnitude

3σ
∞
. These stress concentrations arise from the lack of load-bearing capacity of the hole,

and their magnitudes are determined solely by the geometry of the hole and not by its size.

If the hole is elliptical, as in Figure 1.2(b), with semiaxes b and c, with c > b, the stress

concentration at the ends of the ellipse increases proportionally to c/b, according to the

approximate formula

σ ≈ σ∞ 1þ 2 c=bð Þ

or

σ ≈ σ∞ 1þ 2ðc=ρÞ1=2
h i

≈ σ∞ðc=ρÞ
1=2 ð1:5Þ

for c≫ b, where ρ is the radius of curvature at that point. It is clear that for a long narrow crack

the theoretical strength can be attained at the crack tip when σ
∞
≪ σt. Because Equation (1.5)

indicates that the stress concentration will increase as the crack lengthens, crack growth can

lead to a dynamic instability.

Griffith (1920; 1924) posed this problem at a more fundamental level, in the form of an

energy balance for crack propagation. The system he considered is shown in Figure 1.3(a) and

consists of an elastic body that contains a crack of length 2 c, which is loaded by forces on its

external boundary. If the crack extends an increment δc, work W will be done by the external

forces and there will be a change in the internal strain energy Ue. There will also be an

Fig. 1.3.Griffith’smodel for a crack propagating in a rod (a), and the energy partition for

the process (b).
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expenditure of energy in creating the new surfaces Us. Thus, the total energy of the system, U,

for a static crack, will be

U ¼ �W þ Ueð Þ þ Us ð1:6Þ

The combined term in parentheses is referred to as the mechanical energy. It is clear that, if

the cohesion between the incremental extension surfaces δc were removed, the crack would

accelerate outward to a new lower energy configuration. Thus, mechanical energy must

decrease with crack extension. The surface energy, however, will increase with crack extension,

because work must be done against the cohesion forces in creating the new surface area. There

are two competing influences; for the crack to extend there must be reduction of the total

energy of the system, and hence at equilibrium there is a balance between them. The condition

for equilibrium is

dU=dc ¼ 0 ð1:7Þ

Griffith analyzed the case of a rod under uniform tension. A rod of length y, modulus E, and

unit cross section loaded under a uniform tensionwill have strain energyUe= yσ2/2E. If a crack

of length 2 c is introduced into the rod, it can be shown that the strain energy will increase an

amount πc2σ2/E, so that Ue becomes

Ue ¼ σ2ðy þ 2πc2Þ=2E ð1:8Þ

The rod becomes more compliant with the crack, with an effective modulus E = yE/(y +

2πc2). The work done in introducing the crack is

W ¼ σy σ=E � σ=Eð Þ ¼ 2π2c2=E ð1:9Þ

and the surface energy change is

Us ¼ 4cy ð1:10Þ

Substituting Equations (1.8)–(1.10) into Equation (1.6) gives

U ¼ �πc2σ2=E þ 4cy ð1:11Þ

and applying the condition for equilibrium (Equation (1.7)), we obtain an expression for the

critical stress at which a suitably oriented crack will be at equilibrium,

σf ¼ 2Eγ=πcð Þ1=2 ð1:12Þ

The energies of the system are shown in Figure 1.3(b), from which it can be seen that

Equation (1.12) defines a position of unstable equilibrium: when this condition is met the

crack will propagate without limit, causing macroscopic failure of the body.

Griffith experimentally tested his theory by measuring the breaking strength of glass rods

that had been notched to various depths. He obtained an experimental result with the form of

Equation (1.12) fromwhich he was able to extract an estimate of γ. He obtained an independent

estimate of γ by measuring the work necessary to pull the rods apart by necking at elevated

temperatures. By extrapolating this result to room temperature, he obtained a value that was

within reasonable agreement with that derived from the strength tests.

Griffith’s result stems strictly from a consideration of thermodynamic equilibrium.

Returning to our original argument, we may ask if the theoretical strength is reached at the
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crack tip when the Griffith condition is met: that is, is the stress actually high enough to break

the bonds? This question was posed by Orowan (1949), who considered the stress at the tip of

an atomically narrow crack, as described before. Combining Equations (1.3) and (1.4), we

obtain

σt ¼ Eγ=að Þ1=2 ð1:13Þ

This stress will exist at the ends of a crack of length 2 cwhen themacroscopic applied stress

σf is (Equation (1.5))

σt ¼ 2σf c=að Þ1=2 ð1:14Þ

so that

σf ¼ Eγ=4cð Þ1=2 ð1:15Þ

which is very close to Equation (1.12). The close correspondence of these two results demon-

strates both necessary and sufficient conditions for crack propagation. Griffith’s thermody-

namic treatment shows the condition for which the crack is energetically favored to propagate,

while Orowan’s calculation shows the condition inwhich the crack-tip stresses are sufficient to

break atomic bonds. For a typical value of γ ≈ Ea/30 (Equation (1.4)), commonly observed

values of strength of E/500 can be explained by the presence of cracks of length c ≈ 1 μm.

Prior to the advent of the electron microscope, the ubiquitous presence of such microscopic

cracks was hypothetical, and this status was conferred upon them with the use of the term

Griffith crack.

Griffith’s formulation has an implicit instability as a consequence of the constant stress

boundary condition. In contrast, the experiment of Obriemoff (1930) leads to a stable crack

configuration. Obriemoff measured the cleavage strength of mica by driving a wedge into a

mica book using the configuration shown in Figure 1.4(a). In this experiment the boundary

condition is one of constant displacement. Because the wedge can be considered to be rigid,

the bending force F undergoes no displacement and the external work done on the system is

simply

Fig. 1.4. The configuration of Obriemoff’smica cleaving experiment (a), and the energy

partition for this process (b).
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W ¼ 0 ð1:16Þ

From elementary beam theory, the strain energy in the bent flake is

Ue ¼ Ed3h2=8c3 ð1:17Þ

and, using Us = 2cγ and the condition dU/dc = 0, we obtain the equilibrium crack length

c ¼ 3Ed3h2=16γ
� �1=4

ð1:18Þ

The energies involved in this system are shown in Figure 1.4(b). It is clear that in this case the

crack is in a state of stable equilibrium; it advances the same distance that the wedge is

advanced. This example shows that the stability is controlled by the system response, rather

than being amaterial property, a point that will be taken up in greater detail in the discussion of

frictional instabilities in Section 2.3. In this case the loading systemmay be said to be infinitely

stiff, and crack growth is controlled and stable. Griffith’s experiment, on the other hand, had a

system of zero stiffness and the crack was unstable. Most real systems, however, involve

loading systems with finite stiffness so that the stability has to be evaluated by balancing the

rate at which work is done by the loading system against the energy absorbed by crack

propagation.

Obriemoff noticed that the cracks in his experiment did not achieve their equilibrium length

instantly, but that on insertion of the wedge they jumped forward and then gradually crept to

their final length. When he conducted the experiment in vacuum, however, he did not observe

this transient effect. Furthermore, the surface energy that hemeasured in vacuumwas about 10

times the surface energymeasured in ambient atmosphere. He was thus the first to observe the

important effect of the chemical environment on the weakening of brittle solids and the

subcritical crack growth that results from this effect. This effect is very important in brittle

processes in rock and will be discussed in more detail in Section 1.2.4.

1.1.3 Fracture mechanics

Linear elastic fracturemechanics is an approach that has its roots in theGriffith energy balance,

but that lends itself more readily to the solution of general crack problems. It is a continuum

mechanics approach in which the crack is idealized as amathematically flat and narrow slit in a

linear elastic medium. It consists of analyzing the stress field around the crack and then

formulating a fracture criterion based on certain critical parameters of the stress field. The

macroscopic strength is thus related to the intrinsic strength of the material through the

relationship between the applied stresses and the crack-tip stresses. Because the crack is

treated as residing in a continuum, the details of the deformation and fracturing processes at

the crack tip are ignored.

The displacement field of cracks can be categorized into three modes (Figure 1.5). Mode I is

the tensile, or opening, mode, in which the crack wall displacements are normal to the crack.

There are two shearmodes: in-plane shear, Mode II, in which the displacements are in the plane

of the crack and normal to the crack edge; and antiplane shear, Mode III, in which the displace-

ments are in the plane of the crack and parallel to the edge. The latter are analogous to edge and

screw dislocations, respectively.

If the crack is assumed to be planar and perfectly sharp, with no cohesion between the crack

walls, then the near-field approximations to the crack-tip stress and displacement fields may

be reduced to the simple analytic expressions:
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σij ¼ Knð2πrÞ�1=2fijðθÞ ð1:19Þ

and

ui ¼ ðKn=2EÞðr=2πÞ1=2fiðθÞ ð1:20Þ

where r is the distance from the crack tip and θ is the angle measured from the crack

plane, as shown in Figure 1.6. Kn is called the stress-intensity factor and depends

on mode, that is, KI, KII, and KIII, refer to the three corresponding crack modes.

The functions fij(θ) and fi(θ) can be found in standard references (e.g. Lawn, 2010), and

are illustrated in Figure 1.6. The stress-intensity factors depend on the geometry

and magnitudes of the applied loads and determine the intensity of the crack-tip stress

field. They also can be found tabulated, for common geometries, in standard references

(e.g. Tada, Paris, and Irwin, 1973). The other terms describe only the distribution of the

fields.

In order to relate this to the Griffith energy balance it is convenient to define an energy

release rate, or crack extension force,

G ¼ �d �W þ Ueð Þ=dc ð1:21Þ

which can be related to K by

G ¼ K2=E ð1:22Þ

(Lawn 2010, p. 29) for plane stress or

G ¼ K2ð1� v2Þ=E ð1:23Þ

for plane strain (ν is Poisson’s ratio). In Mode III, the right-hand sides of the corresponding

expressionsmust bemultiplied by (1+ ν) for plane stress and divided by (1 −ν) for plane strain,

respectively. From Equations (1.6) and (1.7), it is clear that the condition for crack propagation

will be met when

Gc ¼ K2
c =E ¼ 2γ ð1:24Þ

for plane stress, with a corresponding expression for plane strain. Thus Kc, the critical stress-

intensity factor, and Gc are material properties that, because they can be related to the applied

Fig. 1.5. The three crack propagation modes.
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stresses through a stress analysis, provide powerful and general failure criteria. Kc is also

sometimes called the fracture toughness, and Gc the fracture energy.

A simple and useful case is when uniform stresses σij are applied remote from the crack, as

in Figure 1.7. In this case the stress-intensity factors are given by

Fig. 1.6. The stress functions near the tips of the three modes of cracks, using both

Cartesian and cylindrical coordinates, as shown in the geometrical key. (After Lawn,

2010.)
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KI ¼ σyyðπcÞ1=2

KII ¼ σxyðπcÞ1=2

KIII ¼ σzyðπcÞ1=2

9

>

=

>

;

ð1:25Þ

and, using Equation (1.22), the corresponding crack extension forces, for plane stress, are

GI ¼ σyy

� �2
πc=E

GII ¼ σxy

� �2
πc=E

GIII ¼ σzy

� �2
πc 1þ vð Þ=E

9

>

=

>

;

ð1:26Þ

In plane strain, E is replaced by E/(1 − ν2) for Modes I and II.

Equation (1.25) may be compared with the approximate expression for the stress concen-

tration at the tip of an elliptical crack, Equation (1.5). However, inspection of Equation (1.19)

indicates that there is a stress singularity at the crack tip. This results from the assumptions of

perfect sharpness of the slit. This is nonphysical, both because it internally violates the

assumption of linear elasticity, which implies small strains, and because no real material can

support an infinite stress. There must be a region of nonlinear deformation near the crack tip

that relaxes this singularity. This can be ignored in the fracture mechanics approach, because it

can be shown that the strain energy in the nonlinear zone is bounded, and because the small

nonlinear zone does not significantly distort the stress field at greater distances from the crack.

It is, of course, of paramount importance for studies concerned with the detailed mechanics of

crack advancement, but it suffices here to state that linear elastic fracture mechanics is not

applicable at that scale or if there is large-scale yielding.

Within the nonlinear zone distributed cracking, plastic flow, and other dissipative processes

may occur that contribute to the crack extension force. To account for these additional con-

tributions we can rewrite Equation (1.24) as

Gc ¼ 2Г ð1:27Þ

where Γ is a lumped parameter that includes all dissipation within the crack-tip region.

This failure criterion is associated with the work of Irwin (1958). The fact that we do not

usually know the specific processes that contribute to G is not normally of practical sig-

nificance because G still can be evaluated if mechanical measurements can be made suitably

outside the nonlinear zone (because integration around the crack tip is path-independent

[Rice, 1968]).

Fig. 1.7. Geometry of a crack in a uniform stress

field.
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