# TOWARDS HIGHER MATHEMATICS: A COMPANION

Containing a large and varied set of problems, this rich resource will allow students to stretch their mathematical abilities beyond the school syllabus, and bridge the gap to university-level mathematics. Many proofs are provided to better equip students for the transition to university.

The author covers substantial extension material using the language of sixth form mathematics, thus enabling students to understand the more complex material. Exercises are carefully chosen to introduce students to some central ideas, without building up large amounts of abstract technology. There are over 1500 carefully graded exercises, with hints included in the text, and solutions available online. Historical and contextual asides highlight each area of mathematics and show how it has developed over time.

RICHARD EARL is currently Director of Undergraduate Studies in the Mathematical Institute, Oxford, and a Tutor in Mathematics at Worcester College. From 2003 to 2013, he was Admissions Coordinator and Schools Liaison Officer in the department and has more than a decade of experience setting the MAT (Oxford's Mathematics Admissions Test). He has won several teaching awards within the university for his teaching and lecturing. This book grew out of a residential week he ran for several years at the University of Oxford for new mathematics undergraduates who had not had the chance to study Further Mathematics at A-level.

# TOWARDS HIGHER MATHEMATICS: A COMPANION

RICHARD EARL University of Oxford



Cambridge University Press & Assessment 978-1-107-16238-9 — Towards Higher Mathematics: A Companion Richard Earl Frontmatter <u>More Information</u>

#### **CAMBRIDGE** UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107162389 DOI: 10.1017/9781316677193

© Richard Earl 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-16238-9 Hardback ISBN 978-1-316-61483-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of Jazz.



Never the most focused of students, but your tender presence in tutorials and around college is sorely missed.

# Contents

| Gl  | ossary  | ,                                              | <i>page</i> ix |
|-----|---------|------------------------------------------------|----------------|
| Lis | t of Sy | vmbols                                         | xiii           |
|     | Gene    | eral Notation                                  | xiii           |
|     | Rela    | xiii                                           |                |
|     | Rela    | xiii                                           |                |
|     |         | ting to Special Functions                      | XV             |
|     |         | ting to Integration and Differential Equations | XV             |
|     |         | reviations                                     | XV             |
|     | Gree    | k Alphabet                                     | xvi            |
| Ι   | Intr    | oduction                                       | 1              |
|     | I.1     | Mathematics in Higher Education                | 1              |
|     | I.2     | Using These Notes (Important to Read)          | 4              |
| 1   | Con     | plex Numbers                                   | 8              |
|     | 1.1     | The Need for Complex Numbers                   | 8              |
|     | 1.2     | Their Algebra                                  | 10             |
|     | 1.3     | The Argand Diagram                             | 13             |
|     | 1.4     | Roots of Unity                                 | 20             |
|     | 1.5     | Solving Cubic Equations*                       | 28             |
|     | 1.6     | Their Geometry                                 | 35             |
|     | 1.7     | Some Geometric Theory                          | 44             |
|     | 1.8     | Further Exercises*                             | 51             |
| 2   | Indu    | iction                                         | 68             |
|     | 2.1     | Introduction                                   | 68             |
|     | 2.2     | Examples                                       | 73             |
|     | 2.3     | The Binomial Theorem                           | 84             |
|     | 2.4     | Fibonacci Numbers*                             | 100            |
|     | 2.5     | Recurrence Relations*                          | 106            |
|     | 2.6     | Further Exercises*                             | 116            |
| 3   | Vect    | ors and Matrices                               | 128            |
|     | 3.1     | The Algebra of Vectors                         | 128            |
|     | 3.2     | The Geometry of Vectors. The Scalar Product    | 133            |

Cambridge University Press & Assessment 978-1-107-16238-9 — Towards Higher Mathematics: A Companion Richard Earl Frontmatter <u>More Information</u>

| viii | i        | Contents                                           |     |
|------|----------|----------------------------------------------------|-----|
|      | 3.3      | The Algebra of Matrices                            | 146 |
|      | 3.4      | Simultaneous Equations. Inverses                   | 162 |
|      | 3.5      | Elementary Row Operations                          | 172 |
|      | 3.6      | Dimension. Rank and Nullity*                       | 195 |
|      | 3.7      | Matrices as Maps                                   | 211 |
|      | 3.8      | Determinants                                       | 223 |
|      | 3.9      | Permutation Matrices*                              | 238 |
|      | 3.10     | The Vector Product                                 | 248 |
|      | 3.11     | Diagonalization                                    | 255 |
|      | 3.12     | Further Exercises*                                 | 268 |
| 4    | More     | e on Matrices                                      | 282 |
|      | 4.1      | Changing Bases*                                    | 282 |
|      | 4.2      | Orthogonal Matrices and Isometries*                | 292 |
|      | 4.3      | Conics                                             | 306 |
|      | 4.4      | Spectral Theory for Symmetric Matrices*            | 319 |
|      | 4.5      | Further Exercises*                                 | 332 |
| 5    | Tech     | niques of Integration                              | 341 |
|      | 5.1      | History and Foundations*                           | 341 |
|      | 5.2      | Standard Functions                                 | 361 |
|      | 5.3      | Integration by Parts. Reduction Formulae           | 372 |
|      | 5.4      | Substitution                                       | 383 |
|      | 5.5      | Rational and Algebraic Functions                   | 396 |
|      | 5.6      | Numerical Methods                                  | 404 |
|      | 5.7      | A Miscellany of Definite Integrals                 | 411 |
|      | 5.8      | Further Exercises*                                 | 413 |
| 6    | Diffe    | rential Equations                                  | 426 |
|      | 6.1      | Introduction and History                           | 426 |
|      | 6.2      | Separable Equations                                | 435 |
|      | 6.3      | Integrating Factors                                | 442 |
|      | 6.4      | Linear Differential Equations                      | 445 |
|      | 6.5      | Linear Constant Coefficient Differential Equations | 450 |
|      | 6.6      | Systems of Linear Differential Equations*          | 458 |
|      | 6.7      | Laplace Transform*                                 | 467 |
|      | 6.8      | Further Exercises*                                 | 484 |
| Hi   | nts to S | Selected Exercises                                 | 490 |
| Bil  | bliogra  | phy                                                | 515 |
|      | lex      |                                                    | 517 |

# Glossary

### **Relating to Sets**

The set of **real numbers** is denoted as  $\mathbb{R}$ .

A **natural number** is a non-negative whole number. The set of natural numbers is denoted  $\mathbb{N}$ . Note that by this definition 0 is a natural number; some texts consider only positive whole numbers to be natural.

An **integer** is a whole number. The set of integers is denoted  $\mathbb{Z}$ . The letter zed is used from the German word *Zahlen* meaning 'numbers'.

A **rational number** is a real number which can be written as the ratio of two integers. The set of rational numbers is denoted  $\mathbb{Q}$ . A real number which is not rational is said to be **irrational**.

If *S* is a set, we write  $x \in S$  to denote that *x* is an **element** of *S*. So  $\sqrt{2} \in \mathbb{R}$  but  $\sqrt{2} \notin \mathbb{Q}$ , as  $\sqrt{2}$  is real but irrational.

If *S* is a set, the notation  $\{x \in S : P(x)\}$  denotes the **subset** of *S* consisting of those elements *x* that satisfy some property *P*. So, for example,  $\{x \in \mathbb{R} : x > 0\}$  denotes the set of positive real numbers.

Two sets *A* and *B* are said to be **disjoint** if there is no element common to both sets. Equivalently this means that the intersection  $A \cap B$  is empty.

A **partition** of a set *X* is a collection of disjoint non-empty subsets of *X* whose union equals *X*. So every element of *X* is an element of one and only one subset from the partition.

### **Relating to Logic**

Given statements *P* and *Q*, we say that *P* **implies** *Q*, and write  $P \Longrightarrow Q$ , if whenever *P* is true then *Q* is true. The **converse** implication is  $Q \Longrightarrow P$ . So, for example, the statement 'x > 0' implies ' $x^2 > 0$ '. In this case the converse is false: ' $x^2 > 0$ ' does not imply 'x > 0', as  $(-1)^2 > 0$ .

If statement *P* implies statement *Q*, we say that *Q* is **necessary** for *P* and *P* is **sufficient** for *Q*. For example, 'x = 2' implies '*x* is even'. It is necessary for *x* to be even for *x* to equal 2; it is sufficient for *x* to equal 2 for *x* to be even. It is not necessary for *x* to equal 2 for *x* to be even, and it is not sufficient for *x* to be even for *x* to equal 2; these last two facts show the converse is false: '*x* is even' does not imply 'x = 2'.

х

Glossary

Given two statements *P* and *Q* such that  $P \Longrightarrow Q$  and  $Q \Longrightarrow P$ , then we say *P* is true **if and** only if *Q* is true and write  $P \Longleftrightarrow Q$ . We also say that *P* is **necessary and sufficient** for *Q*.

#### **Relating to Functions**

Given sets *X* and *Y*, a **function** or **map** *f* from *X* to *Y* is a rule which assigns an element f(x) of *Y* to each *x* in *X*. This is commonly denoted as  $f: X \to Y$ .

Given a function f from X to Y, we refer to X as the **domain** and Y as the **codomain**. The **image** or **range** of f is the subset  $\{f(x) : x \in X\}$  of Y. So given the function  $f(x) = x^2$  from  $\mathbb{R}$  to  $\mathbb{R}$ , its image is the set of non-negative real numbers. A **bijection** f from a set S to a set T is a function satisfying:

(i) if  $f(s_1) = f(s_2)$  where  $s_1, s_2$  are in *S*, then  $s_1 = s_2$ ; that is, *f* is **injective** or **1-1**.

(ii) if *t* is in *T* then there is *s* in *S* such that f(s) = t; that is, *f* is **surjective** or **onto**.

For example, as functions from  $\mathbb{R}$  to  $\mathbb{R}$ , 2x + 1 is bijective,  $e^x$  is only 1–1,  $x^3 - x$  is only onto and sin x is neither.

A function *f* from a set *S* to a set *T* is said to be **invertible** if there is a map *g* from *T* to *S* such that g(f(s)) = s for all *s* in *S* and f(g(t)) = t for all *t* in *T*. We refer to *g* as the **inverse** of *f* and write  $g = f^{-1}$ . It is a fact that a function is invertible if and only if it is bijective.

Given a function *f* from a set *S* to a set *T*, and if *R* is a subset of *S*, then the **restriction** of *f* to *R*, denoted  $f|_R$ , is the map from *R* to *T* defined by  $f|_R(r) = f(r)$  for all *r* in *R*.

Let R, S, T be sets and f a map from R to S and g a map from S to T. Then the **composition**  $g \circ f$  from R to T is defined as

 $(g \circ f)(r) = g(f(r))$  for all r in R.

Let *f* be a real-valued function, defined on some subset *S* of  $\mathbb{R}$ . We say *f* is **increasing** if  $f(x) \leq f(y)$  whenever  $x \leq y$  and is **strictly increasing** if f(x) < f(y) whenever x < y. Similarly we say *f* is **decreasing** if  $f(x) \geq f(y)$  whenever  $x \leq y$  and is **strictly decreasing** if f(x) > f(y) whenever x < y.

Let *f* be a real-valued function, defined on some subset *S* of  $\mathbb{R}$ . We say that *f* is **bounded** if there is a positive number *M* such that |f(x)| < M for all *x* in *S*. A function which is not bounded is said to be **unbounded**. For example,  $\sin x$  and  $e^{-x^2}$  are bounded on  $\mathbb{R}$ , whilst  $x^{-1}$  is unbounded on the interval 0 < x < 1.

A sequence  $(x_n)$  is an infinite ordered list of real (or complex) numbers. We denote the *n*th term of the sequence as  $x_n$ . Sequences typically begin from n = 0 or n = 1.

A real sequence  $(x_n)$  is **increasing** if  $x_m \le x_n$  when  $m \le n$  and **strictly increasing** if  $x_m < x_n$  when m < n. Likewise  $(x_n)$  is **decreasing** if  $x_m \ge x_n$  when  $m \le n$  and **strictly decreasing** if  $x_m > x_n$  when m < n.

A real (or complex) sequence  $(x_n)$  is said to be **bounded** if there is a positive number M such that  $|x_n| < M$  for all n and is otherwise said to be **unbounded**. For example  $(2^{-n})$  is bounded while  $(n^2)$  is unbounded.

#### Glossary

xi

#### Miscellaneous

An **equivalence relation** on a set *S* is a binary relation  $\sim$  on *S*, binary here meaning  $\sim$  compares two elements of *S* and says whether the relation is true or not for that pair. Further  $\sim$  must satisfy (i)  $s \sim s$  for all *s* in *S*, (ii) if  $s \sim t$  then  $t \sim s$ , (iii) if  $s \sim t$  and  $t \sim u$  then  $s \sim u$ . So similarity is an equivalence relation on the set of triangles in the *xy*-plane. However,  $\leq$  is not an equivalence relation on  $\mathbb{R}$ , as it does not satisfy condition (ii); for example, '3  $\leq$  4' is true but '4  $\leq$  3' is false.

A **group** (G, \*) is a set *G* together with a binary operation \* on *G*, binary here meaning that \* takes two inputs  $g_1, g_2$  from *G* and returns an output  $g_1 * g_2$  in *G*. Further:

- (i) the operation needs to be **associative**, that is,  $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$  for all  $g_1, g_2, g_3$  in *G*;
- (ii) there needs to be an identity element *e* satisfying e \* g = g = g \* e for all *g*;
- (iii) for each element there needs to be an inverse  $g^{-1}$  such that  $g * g^{-1} = e = g^{-1} * g$ .

There are many examples of groups in mathematics including the real numbers under addition, the non-zero rational numbers under multiplication, and the bijections from a set to itself under composition.

Two positive integers m, n are said to be **coprime** if the only positive integer which divides both is 1.

Given a natural number *n*, its **factorial** *n*! is defined inductively by 0! = 1 and  $n! = n \times (n-1)!$  for  $n \ge 1$ .

Two random variables X and Y are said to be **independent** if for all x, y we have

$$P(X = x \text{ and } Y = y) = P(X = x) \times P(Y = y).$$

For example, two rolls of a fair die are independent, but the sum of the rolls is not independent of the first roll.

# Symbols

| Notation            | Meaning                 | Page | Notation                                 | Meaning                    | Page  |
|---------------------|-------------------------|------|------------------------------------------|----------------------------|-------|
| $\mathbb{R}$        | the real numbers        | p.ix | $\binom{n}{k}$                           | binomial coefficient       | p.85  |
| Q                   | the rational numbers    | p.ix | $\binom{n}{i,j,k}$ trinomial coefficient |                            | p.89  |
| Z                   | the integers            | p.ix | sinh                                     | hyperbolic sine            | p.364 |
| $\mathbb{N}$        | the natural numbers     | p.ix | cosh                                     | hyperbolic cosine          | p.364 |
| $\mathbb{C}$        | the complex numbers     | p.9  | tanh                                     | hyperbolic tangent         | p.364 |
| <i>n</i> !          | factorial               | p.xi | [ <i>a</i> , <i>b</i> ]                  | interval $a \leq x \leq b$ | p.341 |
| $\lfloor x \rfloor$ | integer part (or floor) | p.78 | ( <i>a</i> , <i>b</i> )                  | interval $a < x < b$       | p.341 |

### **General Notation**

### **Relating to Complex Numbers**

| Notation | Meaning               | Page | Notation   | Meaning                    | Page |
|----------|-----------------------|------|------------|----------------------------|------|
| i        | $\sqrt{-1}$           | p.9  | z          | modulus of z               | p.14 |
| Rez      | real part of z        | p.9  | arg z      | argument of z              | p.15 |
| Imz      | imaginary part of $z$ | p.9  | cisθ       | $\cos\theta + i\sin\theta$ | p.15 |
| Ī        | conjugate of z        | p.11 | $\sqrt{z}$ | square roots of z          | p.23 |

### **Relating to Vectors and Matrices**

| Notation         | Meaning                   | Page Notation |                | Meaning                          | Page  |
|------------------|---------------------------|---------------|----------------|----------------------------------|-------|
| $\mathbb{R}^{n}$ | space of $1 \times n$ row | p.129         | $\mathbf{e}_i$ | standard basis                   | p.131 |
|                  | vectors                   |               |                | vector in $\mathbb{R}^n$         |       |
| $\mathbb{R}_n$   | space of $n \times 1$     | p.129         | i, j, k        | standard basis in $\mathbb{R}^3$ | p.131 |
|                  | column vectors            |               |                |                                  |       |
| M <sub>mn</sub>  | set of $m \times n$ real  | p.147         | $E_{ij}$       | standard basis                   | p.154 |
|                  | matrices                  |               |                | vector in $M_{mn}$               |       |

Cambridge University Press & Assessment 978-1-107-16238-9 — Towards Higher Mathematics: A Companion **Richard Earl** Frontmatter **More Information** 

| xiv                                  |                                                          | Symbo | ls                |                                                            |       |
|--------------------------------------|----------------------------------------------------------|-------|-------------------|------------------------------------------------------------|-------|
| Notation                             | Meaning                                                  | Page  | Notation          | Meaning                                                    | Page  |
| Row(A)                               | rowspace of A                                            | p.181 | $A = (a_{ij})$    | the $(i,j)$ th entry of<br>A is $a_{ij}$                   | p.146 |
| Col(A)                               | column space of A                                        | p.204 | [A] <sub>ij</sub> | (i,j)th entry of A                                         | p.146 |
| Null(A)                              | the null space of A                                      | p.204 | $A^T$             | the transpose of A                                         | p.153 |
| dim                                  | dimension                                                | p.199 | $A^{-1}$          | the inverse of A                                           | p.165 |
| rank(A)                              | rank of A                                                | p.184 | x·y               | scalar or dot<br>product                                   | p.135 |
| RRE(A)                               | reduced row echelon<br>form of A                         | p.182 | x∧y               | vector or cross<br>product                                 | p.248 |
| $I_n$                                | $n \times n$ identity matrix                             | p.150 | $\oplus$          | direct sum                                                 | p.270 |
| 0 <sub>mn</sub>                      | $m \times n$ zero matrix                                 | p.147 | det A             | determinant of A                                           | p.223 |
| $\delta_{mn}$                        | Kronecker delta                                          | p.150 | $R_{	heta}$       | anticlockwise rotation by $\theta$                         | p.212 |
| S <sub>ij</sub>                      | ERO swapping <i>i</i> th and <i>j</i> th rows            | p.172 | $S_{	heta}$       | reflection in<br>$y = x \tan \theta$                       | p.212 |
| $M_i(\lambda)$                       | ERO multiplying <i>i</i> th row by λ                     | p.172 | $WT_V$            | matrix of $T$ wrt<br>bases $\mathcal{V}$ and $\mathcal{W}$ | p.284 |
| $A_{ij}(\lambda)$                    | ERO adding $\lambda(\text{row } i)$<br>to row j          | p.172 | $J(\lambda, r)$   | Jordan block                                               | p.160 |
| $\langle S \rangle$                  | the span of <i>S</i>                                     | p.196 | $Z(\mathbf{v},A)$ | cyclic subspace                                            | p.335 |
| $(\mathbf{c}_1 \cdots \mathbf{c}_n)$ | matrix with columns $\mathbf{c}_1, \ldots, \mathbf{c}_n$ | p.196 | C(f)              | companion matrix                                           | p.335 |
| $(\mathbf{r}_1/\cdots/\mathbf{r}_m)$ | matrix with rows $\mathbf{r}_1, \ldots, \mathbf{r}_m$    | p.196 | K <sub>n</sub>    | complete graph                                             | p.275 |
| $\operatorname{diag}(a,\ldots,z)$    | diagonal matrix                                          | p.151 | K <sub>m,n</sub>  | complete bipartite<br>graph                                | p.275 |
| $\operatorname{diag}(A,B)$           | matrix with blocks $A, B$                                | p.151 |                   |                                                            |       |

### Symbols

| Notation       | Meaning                                        | Page  | Notation         | Meaning               | Page  |
|----------------|------------------------------------------------|-------|------------------|-----------------------|-------|
| B <sub>n</sub> | Bernoulli numbers                              | p.123 | erfx             | error function        | p.368 |
| $C_n$          | Catalan numbers                                | p.118 | li(x)            | logarithmic integral  | p.393 |
| F <sub>n</sub> | $F_n$ Fibonacci numbers                        |       | $B_n(x)$         | Bernoulli polynomials | p.123 |
| $H_n$          | harmonic numbers                               | p.424 | $H_n(x)$         | Hermite polynomials   | p.123 |
| $L_n$          | Lucas numbers                                  | p.104 | $P_n(x)$         | Legendre polynomials  | p.124 |
| $\Gamma(a)$    | $\Gamma(a)$ gamma function p.380 $T_n(x), U_n$ |       | $T_n(x), U_n(x)$ | Chebyshev polynomials | p.125 |
| B(a,b)         | beta function                                  | p.377 | $L_n(x)$         | Laguerre polynomials  | p.125 |
| $\psi(a)$      | digamma function                               | p.424 | γ                | Euler's constant      | p.369 |
| E(k), K(k)     | elliptic integrals                             | p.419 | G                | Catalan's constant    | p.381 |

# **Relating to Special Functions**

## **Relating to Integration and Differential Equations**

| Notation                | Meaning                            | Page  | Notation          | Meaning                     | Page  |
|-------------------------|------------------------------------|-------|-------------------|-----------------------------|-------|
| $1_{I}(x)$              | indicator function                 | p.342 | $\overline{f}(s)$ | Laplace transform of $f(x)$ | p.467 |
| [ <i>a</i> , <i>b</i> ] | $\{x: a \leqslant x \leqslant b\}$ | p.342 | L                 | Laplace transform           | p.467 |
| ( <i>a</i> , <i>b</i> ) | ${x: a < x < b}$                   | p.342 | H(x)              | Heaviside function          | p.468 |
| [ <i>a</i> , <i>b</i> ) | $\{x : a \leq x < b\}$             | p.342 | $\delta(x)$       | Dirac delta function        | p.477 |
| ( <i>a</i> , <i>b</i> ] | $\{x : a < x \leqslant b\}$        | p.342 |                   |                             |       |

### Abbreviations

| Notation                           | Meaning                           | Page  | Notation | Meaning                           | Page  |
|------------------------------------|-----------------------------------|-------|----------|-----------------------------------|-------|
| LHS                                | left-hand side                    |       | RHS      | right-hand side                   |       |
| RRE                                | row-reduced<br>echelon<br>form    | p.177 | DE       | differential equation             | p.426 |
| ERO elementary<br>row<br>operation |                                   | p.172 | ODE      | ordinary differential<br>equation | p.426 |
| ECO                                | elementary<br>column<br>operation | p.192 | PDE      | partial differential<br>equation  | p.432 |

xv

| X V1 |
|------|
|      |

Symbols

| Notation | Meaning     | Page  | Notation | Meaning                 | Page  |
|----------|-------------|-------|----------|-------------------------|-------|
| FTC      | fundamental | p.354 | SHM      | simple harmonic         | p.450 |
|          | theorem of  |       |          | motion                  |       |
|          | calculus    |       |          |                         |       |
| IBP      | integration | p.372 | pdf      | probability density     | p.413 |
|          | by parts    |       |          | function                |       |
|          |             |       | cdf      | cumulative distribution | p.413 |
|          |             |       |          | function                |       |

### The Greek Alphabet

| $A, \alpha$      | alpha   | $H,\eta$        | eta    | $N, \nu$                    | nu      | Τ,τ              | tau     |
|------------------|---------|-----------------|--------|-----------------------------|---------|------------------|---------|
| $B, \beta$       | beta    | $\Theta, 	heta$ | theta  | $\Xi,\xi$                   | xi      | $Y, \upsilon$    | upsilon |
| Γ,γ              | gamma   | $I,\iota$       | iota   | 0,0                         | omicron | $\Phi,\phi$      | phi     |
| $\Delta, \delta$ | delta   | K,ĸ             | kappa  | Π,π                         | pi      | Χ, χ             | chi     |
| $E,\epsilon$     | epsilon | Λ,λ             | lambda | $P, \rho$                   | rho     | $\Psi,\psi$      | psi     |
| $Z,\zeta$        | zeta    | $M, \mu$        | mu     | $\Sigma, \sigma, \varsigma$ | sigma   | $\Omega, \omega$ | omega   |