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Introduction

1.1 Dimensional Homogeneity

Most physical variables and constants have dimensions. A mass, a distance,

and a time have, respectively, the dimensions mass, length, and time. Dimen-

sions are often taken for granted. They slip beneath our notice. Yet dimensions

are important elements of the way we think about the physical world.

Imagine an animal that grows in size while keeping roughly the same shape.

Galileo (1584–1642) reasoned that the weight of the animal increases with its

volume in direct proportion to the third power l3 of a characteristic length l,

say, for an elephant, the length of its foreleg. Because animal limbs push and

pull across a cross-section, the strength of an animal increases with the cross-

sectional area of its limbs, that is, in direct proportion to l2. Thus the animal’s

strength-to-weight ratio changes in proportion as l2=l3, that is, as 1=l or l�1.

Therefore, larger animals are less able to support their weight than smaller

ones are. Galileo illustrated this conclusion by comparing the relative strength

of dogs and horses – creatures with roughly the same shape.

A small dog could probably carry on his back two or three dogs of his own size; but

I believe that a horse could not carry even one of his own size. [1]

If Galileo had not thought dimensionally, he could not have made this inter-

esting argument.

By the time of Isaac Newton (1643–1727) scientists had begun to think in

terms of combinations of different dimensions. For instance, the dimension of

speed is length divided by time, the dimension of acceleration is length divided

by time squared, and, according to Newton’s second law, the dimension of

force is mass times length divided by time squared. Newton regarded mass,

length, and time as primary, fundamental dimensions and combinations of

these as secondary, derived ones. [2]
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One of the first things a physics student learns is that one should not add,

subtract, equate, or compare quantities with different dimensions or quantities

with the same dimension and different units of measure. For instance, one

cannot add a mass to a length or, for that matter, 5 meters to 2 kilometers.

This rule against what is sometimes called “adding apples and oranges” means

that every term that is added, subtracted, equated, or compared in every valid

equation or inequality must be of the same dimension denominated in the same

unit of measure. This is the principle of dimensional homogeneity.

The principle of dimensional homogeneity is nothing new. Scientists have

long assumed that every term in every fully articulated equation that accurately

describes a physical state or process has the same dimension denominated

in the same unit of measure. However, it was not until 1822 that Joseph Fourier

(1768–1830) expressed this principle in a way that allowed important conse-

quences to be derived from it. [3]

Symmetry under Change of Units

Behind the principle of dimensional homogeneity is a symmetry principle.

Symmetry principles tell us that something remains the same as something else

is changed. Here the something that remains the same is the form of the

equation or inequality and the things that are changed are the units in which

the dimensions of its terms are expressed. Thus, if we change the unit of length

from meters to kilometers and the form of the equation does not change, that

equation observes this particular symmetry and is, at least in this regard,

dimensionally homogeneous. If we change all of its units and the form of the

equation does not change, this equation is fully dimensionally homogeneous.

An equation can be useful without being dimensionally homogeneous. For

instance,

s ¼ 4:9t2 (1.1)

correctly describes the downward displacement s denominated in meters of an

object falling freely from rest for a period of time t denominated in seconds.

Yet (1.1) is not invariant with respect to changes in its units of measure.

Compare (1.1) with

s ¼ 1

2
gt2 (1.2)

in which we have parameterized the acceleration of gravity with the symbol g.

This equation is now symmetric with respect to changes in all its units of

measure. It is fully articulated and dimensionally homogeneous.
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We are concerned in this text with relations among dimensional variables,

for instance, s and t, and dimensional constants, such as g, that are symmetric

with respect to changes in units and, therefore, dimensionally homogeneous.

The principle of dimensional homogeneity and its consequences are founda-

tional to the theory of dimensional analysis.

1.2 Dimensionless Products

Consider the vertical position y of a freely falling object at time t. We know

that

y� yo ¼ υyot �
gt2

2
(1.3)

where y� yo is the object’s displacement from its initial position yo, υyo is its

initial velocity, g is the magnitude of the gravitational acceleration, and our

coordinate system is oriented so that y becomes more negative as the object

falls and time advances. Equation (1.3) observes the principle of dimensional

homogeneity. For the dimension of y� yo is length; the dimensions of υyo and

t are, respectively, length/time and time so that the dimension of their product

υyot is length; and the dimension of gt2 is length/time2 multiplied by time2 or,

again, length. Furthermore, (1.3) contains no dimensional constants masquer-

ading as dimensionless numbers – as does (1.1).

One consequence of the dimensional homogeneity of (1.3) is that dividing

each of its terms by gt2 produces an equation,

y� yo

gt2
¼ υyo

gt
� 1

2
, (1.4)

,that relates one dimensionless combination or “product” y� yoð Þ=gt2 to

another υyo=gt. This transformation of a dimensionally homogeneous equation,

from a relation among dimensional variables and constants to a relation among

dimensionless products, can always be realized.

Consider, for instance, the Stefan-Boltzmann law, according to which the

density of radiant energy E in a cavity of volume V whose walls are at a

temperature T is described by

E

V
¼ 8π5

15

k4BT
4

c3h3
(1.5)

where kB is Boltzmann’s constant, c is the speed of light, and h is Planck’s

constant. Each of the variables E, V , and T and each of the constants kB, c, and

1.2 Dimensionless Products 3
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h are dimensional quantities. If equation (1.5) is dimensionally homogeneous

(and it is), it may take the form

Ec3h3

Vk4BT
4
¼ C (1.6)

of a dimensionless product Ec3h3= Vk4BT
4

� �

equal to a dimensionless number

C. In this case C ¼ 8π5=15.

Dimensional Analysis

We have, in these two examples, turned dimensionally homogeneous relations

among dimensional variables and constants, (1.3) and (1.5), into relations

among one or more dimensionless products, (1.4) and (1.6). We shall soon

learn a way to reverse this process. We will first use an algorithm, the Rayleigh

algorithm, to discover the dimensionless products relevant to a particular state

or process. When only one dimensionless product is found, the only way it can

form a dimensionally homogeneous equation is for this product to equal some

dimensionless number as in (1.6). When two or more dimensionless products

are found, as in (1.3), they must be related to one another by some function, as

in (1.4). The Rayleigh algorithm does not determine these numbers and these

functions but merely finds the dimensionless products.

1.3 Dimensional Formulae

Every dimensional variable or constant assumes values in the form of a

number times a unit of measure – for instance, 5 kilograms or 16 meters.

Furthermore, every unit of measure makes its dimension known. A meter per

second and a kilometer per hour are both a length/time while a metric ton and a

kilogram are both masses. We need to know the dimension, more precisely the

dimensional formula, of every relevant dimensional variable and constant in

order to dimensionally analyze a state or process. For this purpose we use the

symbolM to stand for the dimension mass, L to stand for the dimension length,

and T to stand for the dimension time. The notation x½ � means “the dimension

of x.” Therefore, m½ � ¼ M and g½ � ¼ LT�2 are dimensional formulae. Not

every dimensional formula can be expressed in terms of only M, L, and T ,

but many can be.

The dimensional formula of a product of factors is the product of the

dimensional formula of each factor. Thus ma½ � ¼ m½ � a½ �. For convenience,
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we define the dimensional formula of a dimensionless number to be 1.

Therefore, π½ � ¼ 1 and so 9:8 �m=s2½ � ¼ 9:8½ � � m=s2½ � ¼ m½ � � s�2½ � ¼ LT�2.

1.4 The Rayleigh Algorithm

John William Strutt (1842–1919), also known as Lord Rayleigh, successfully

applied dimensional analysis to a number of problems over a long career.

He dimensionally analyzed the strength of bridges, the velocity of waves on

the surface of water, the vibration of tuning forks and drops of falling water,

the color of the sky, the decay of charge on an electrical circuit, the deter-

minants of viscosity, and the flow of heat from a hot object immersed in a cool

stream of water. Rayleigh prefaced his 1915 summary of these applications of

the principle of dimensional homogeneity (known to him as “the principle of

similitude”) with these words,

I have often been impressed with the scanty attention paid even by original workers

to the great principle of similitude. It happens not infrequently that results in the

form of “laws” are put forth as novelties on the basis of elaborate experiments,

which might have been predicted a priori after a few minutes’ consideration. [4]

While our applications of dimensional analysis may require more than “a few

minutes consideration,” Rayleigh’s method of applying “the principle of

similitude” is simple and direct. We adopt it, as have many others, with only

slight modification.

A Marble on the Interior Surface of a Cone

To illustrate Rayleigh’s method, imagine a small marble of mass m rolling in a

circle of radius R on the interior surface of an inverted cone defined by an

angle θ as illustrated in Figure 1.1. We wish to know how the time Δt required

for the marble to complete one orbit is determined by m, R, and θ. The

acceleration of gravity g may also enter into the relation we seek. Gravity,

Figure 1.1. Marble on the interior surface of a cone defined by angle θ.
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after all, is one of the two forces that keep the marble on the cone’s

surface. The intermolecular forces of the material composing the cone and

the marble also determine, in some degree, the period Δt, but we ignore these

forces because we believe their effect is adequately accounted for by assuming

the marble stays on the surface of the cone. By including some variables

and constants in our analysis and excluding others we construct a model of

the marble’s motion.

Rayleigh’s Algorithm

Rayleigh’s method of dimensional analysis identifies the dimensionless prod-

ucts one can form out of the model variables and constants, in this case Δt, m,

R, g, and θ. Each dimensionless product takes a form ΔtαmβRγgδθε determined

by the Greek letter exponents α, β, γ, δ, and ε or, somewhat more simply, by

the form ΔtαmβRγgδ and the exponents α, β, γ, and δ. After all, the angle θ,

whether denominated in radians or degrees, is proportional to a ratio of an arc

length to a radius, that is, a ratio of one length to another. While angles have

units (degrees or radians), their units are dimensionless.

The key to Rayleigh’s method of finding dimensionless products is

to require that the product ΔtαmβRγgδ be dimensionless. Since

ΔtαmβRγgδ
� �

¼ Δtα½ � mβ
� �

Rγ½ � gδ
� �

¼ Δt½ �α m½ �β R½ �γ g½ �δ

¼ TαMβLγ LT�2
� �δ

¼ Tα�2δMβLγþδ,

(1.7)

the product ΔtαmβRγgδ is dimensionless when

T : α� 2δ ¼ 0, (1.8a)

M : β ¼ 0, (1.8b)

and

L : γþ δ ¼ 0: (1.8c)

The three equations (1.8a), (1.8b), and (1.8c) constrain the four unknowns,

α, β, γ, and δ, to a family of solutions β ¼ 0, γ ¼ �α=2, and δ ¼ α=2 parame-

terized by α. [The symbols T , M, and L preceding equations (1.8) identify

the source of each constraint.] Therefore, Δtg1=2=R1=2
� �α

is dimensionless for

any α, which means that Δtg1=2=R1=2, as well as θ, is dimensionless.

Once we know the dimensionless products that can be formed out of the

model’s dimensional variables and constants, we know they must be related

to one another by an undetermined function, that is, in this case expressed by
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Δt ¼
ffiffiffi

R

g

s

� f θð Þ (1.9)

where f θð Þ is a dimensionless function of the dimensionless “product” θ. This

is as far as dimensional analysis per se takes us. A more detailed, dynamical

study reveals that f θð Þ ¼ 2π
ffiffiffiffiffiffiffiffiffi

tanθ
p

.

The Rayleigh Algorithm Modified

Note that equations (1.8) are solved by a family of solutions parameterized by

a non-vanishing exponent α and also that the identity of the dimensionless

product Δtg1=2=R1=2 is independent of the value of α. The exponent α, intro-

duced in the term Δtα, seems superfluous, and indeed, it is – as long as we

know that Δt, the variable whose expression we seek, the variable of interest,

remains in the dimensionless product. In this case no harm is done by freely

choosing α. In particular, choosing α ¼ 1 is equivalent to determining the three

remaining exponents β, γ, and δ as those that make ΔtmβRγgδ dimensionless.

Then β ¼ 0, γ ¼ �1=2, and δ ¼ 1=2. This solution again produces the dimen-

sionless product Δtg1=2=R1=2. Henceforth we adopt the practice of including

the variable of interest with an exponent of 1 as the first factor in the

dimensionless product.

Observe that this analysis, issuing as it does in Δtg1=2=R1=2 ¼ f θð Þ, is a

significant advance on knowing only that Δt, m, R, g, and θ are related to one

another by an unknown function, say, by Δt ¼ h m,R, g, θð Þ. For suppose that
empirically determining the function f θð Þ in (1.9) requires 10 pairs of

Δtg1=2=R1=2 versus θ data. Since 10 pairs of data determine how one term

depends on one other (the others remaining constant), 104 pairs of data are

required to determine how one variable Δt depends on the four dimensional

variables and constants m, R, g, and θ. Thus, 104 pairs of data are required to

determine the function in Δt ¼ h m,R, g, θð Þ. The Rayleigh algorithm reduces

the effort required by a factor of 1,000!

1.5 The Buckingham π Theorem

In 1914, Edgar Buckingham (1867–1940) proved, in formal algebraic detail, a

theorem we have, thus far, merely illustrated – a theorem usually referred to as

the Buckingham π theorem or sometimes, more simply, as the π theorem.

[5] The π theorem may be divided into two conceptually distinct parts. First,

1.5 The Buckingham π Theorem 7
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If an equation is dimensionally homogeneous, it can be reduced to a relationship

among a complete set of independent dimensionless products. [6]

A set of dimensionless products is complete if and only if all possible dimen-

sionless products of the dimensional variables and constants can be expressed

as a product of powers of the members of this set. The members of this set are

independent if and only if none of them can be expressed as a product of

powers of the other members.a The symbol π in the phrase π theorem refers to

members of a complete set of independent dimensionless products. Bucking-

ham denoted these dimensionless products by π1 , π2 . . . Thus, for example, in

the marble on the interior of a cone problem, π1 ¼ Δtg1=2=R1=2 and π2 ¼ θ.

The second part of the π theorem consists of the following statement.

The number of complete and independent dimensionless products Np is equal to

the number of dimensional variables and constants NV that describe the state or

process minus the minimum number of dimensions ND needed to express their

dimensional formulae. Thus,

Np ¼ NV � ND: (1.10)

Statement (1.10) is the most common expression of the π theorem.

1.6 The Number of Dimensions

Most dimensional analysts adopt M, L, and T as dimensions appropriate for

mechanical processes and states. We did so in describing the marble on the

interior surface of a cone. In that case, ND ¼ 3. Furthermore, since Δt, m, R, g,

and θ describe the marble’s motion, NV ¼ 5. Therefore, according to (1.10)

NP ¼ NV � ND, 2 ¼ 5� 3ð Þ complete and independent dimensionless prod-

ucts should be produced. By applying the Rayleigh algorithm we find these to

be Δtg1=2=R1=2 and θ. The set Δtg1=2=R1=2 and θ is complete because every

possible dimensionless product of Δt, m, R, g, and θ can be expressed as a

product of some power of Δt2R=g times some power of θ. And its members are

independent because Δt2R=g and θ are not powers of each other.

But the minimum number of dimensions needed to express the dimensional

formulae of the NV dimensional variables and constants is not always 3, as it is

in this example. Neither is the identity of the minimum number of dimensions

necessarilyM, L, and T – as they often are in mechanical problems. Rather, the

dimensions required are, in Buckingham’s words, the “arbitrary fundamental

a A complete set of independent products plus all dimensionless products that can be formed
from them is itself a group because these products: (a) are closed under multiplication,
(b) contain an identity element 1, and (c) each product πi has an inverse π�1

i .
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units [dimensions] needed as a basis for the absolute system.” [7] And only

when we can ensure that ND is the minimum number of dimensions needed

can we depend on NP ¼ NV � ND to be observed. Otherwise, NP ¼ NV � ND

remains a mere “rule of thumb” – often observed but sometimes not.

We will learn how to recognize the minimum number of dimensions in

Section 2.2.

1.7 The Number of Dimensionless Products

Note that the more dimensionless products, π1, π2, . . . πNP
, produced, the less

determined the state or process described by the dimensional model. After all,

if only one product π1 is produced, the result sought assumes a form f π1ð Þ ¼ 0

whose solution π1 ¼ C is in terms of a single undetermined dimensionless

number C. However, if two dimensionless products, π1 and π2, are produced,

these are related by g π1, π2ð Þ ¼ 0 whose solution π1 ¼ h π2ð Þ leaves a function
h π2ð Þ of a single variable undetermined. And if three dimensionless products,

π1, π2, and π3, are produced, these are related by a function j π1, π2, π3ð Þ ¼ 0

whose solution π1 ¼ k π2, π3ð Þ leaves a function k π1, π2ð Þ of two variables

undetermined.

It is clear that in order to more completely determine a state or process, we

need to minimize the number NP of complete and independent dimensionless

products. According to the rule of thumb NP ¼ NV � ND, we do this by

minimizing NV (the number of dimensional variables and constants that

describe the model) and, assuming we have such freedom, by maximizing

ND (the minimum number of dimensions in terms of which these variables and

constants can be expressed.) However, minimizing NV and maximizing ND are

not straightforward tasks. Both require skill and judgment – the same kind of

skill and judgment needed to construct a model of a physical state or process.

1.8 Example: Pressure of an Ideal Gas

Many of these ideas are illustrated in the dimensional analysis of how the

pressure p of an ideal gas depends on quantities that describe its state.

The pressure a gas exerts on its container walls is the average rate per unit

area with which its molecules collide with and transfer momentum to the wall.

The ideal gas model treats these molecules as randomly and freely moving,

massive, point particles whose instantaneous collisions with other particles and

with the walls conserve their energy.

1.8 Example: Pressure of an Ideal Gas 9
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Therefore, we believe the ideal gas pressure p should depend on the

number density of the gas molecules N=V where N is the number of gas

molecules contained in volume V , the mass of each of the molecules m,

and their average or characteristic speed υ. These parameters should be suffi-

cient, since they are the elements out of which the momentum of the gas

particles, the rate at which they collide with the wall, and their energy are

composed. To include other variables or constants such as, for instance,

the acceleration of gravity g would be to introduce extraneous dimensionless

products and make our result not so much inaccurate as uninformative.

For convenient reference, we collect these symbols, their descriptions, and

their dimensional formulae in Table 1.1.

Note that we have included the number of particles N in volume V only in

the combination N=V . For this reason, we have 4 ¼ NVð Þ variables: p, N=V , m,
and v. Since they are expressed in terms of 3 ¼ NDð Þ dimensions, M, L, and T ,

the rule of thumb NP ¼ NV � Nd predicts 1 ¼ 4� 3ð Þ dimensionless product.

Recall that in executing the Rayleigh algorithm, here and elsewhere, we

enter the variable of interest, the one whose expression in terms of other

variables we seek, in this case the gas pressure p, with an exponent of 1 in

the first position of the product p N=Vð Þαmβυγ. Then we find the three expo-

nents, α, β, and γ, that render this product dimensionless. Thus,

p N=Vð Þαmβυγ
� �

¼ ML�1T�2
� �

L�3
� �α

Mβ LT�1
� �γ

¼ M1þβL�1�3αþγT�2�γ
(1.11)

and, therefore, the exponents must be solutions of

M : 1þ β ¼ 0, (1.12a)

L : �1� 3αþ γ ¼ 0, (1.12b)

and

T : �2� γ ¼ 0: (1.12c)

Table 1.1

Symbol Description Dimensional Formula

p Pressure ML�1T�2

N=V Number density L�3

m Molecular mass M
υ Characteristic speed LT�1
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