

PRINCIPLES OF MAGNETOSTATICS

The subject of magnetostatics—the mathematical theory that describes the forces and fields resulting from the steady flow of electrical currents—has a long history. By capturing the basic concepts, and building toward the computation of magnetic fields, this book is a self-contained discussion of the major subjects in magnetostatics.

Overviews of Maxwell's equations, the Poisson equation, and boundary value problems pave the way for dealing with fields from transverse, axial, and periodic magnetic arrangements and assemblies of permanent magnets. Examples from accelerator and beam physics give up-to-date context to the theory. Furthermore, both complex contour integration and numerical techniques (including finite difference, finite element, and integral equation methods) for calculating magnetic fields are discussed in detail with plentiful examples.

Both theoretical and practical information on carefully selected topics make this a one-stop reference for magnet designers, as well as for physics and electrical engineering students.

RICHARD C. FERNOW received his PhD at Syracuse University for work on particle physics and worked at Brookhaven National Laboratory. He contributed to the optimization of the coil design for collider magnets and made calculations of magnetic fields in solenoid channels. He is a member of the American Physical Society.

PRINCIPLES OF MAGNETOSTATICS

RICHARD C. FERNOW

Formerly Brookhaven National Laboratory

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

 $www. cambridge.org \\ Information on this title: www.cambridge.org/9781107161122$

© Richard C. Fernow 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing-in-Publication Data
Fernow, Richard C. (Richard Clinton), 1947– author.
Principles of magnetostatics / Richard C. Fernow, Brookhaven National Laboratory.
Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2016. | © 2016
LCCN 2016008446 | ISBN 9781107161122 (hardback) | ISBN 1107161126 (hardback)
LCSH: Magnetostatics.

LCC QC754.2.M35 F47 2016 | DDC 538/.3–dc 3

LC record available at http://lccn.loc.gov/2016008446

ISBN 978-1-107-16112-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		page ix	
1	Basic concepts		1
	1.1	Current	2
	1.2	Magnetic forces	3
	1.3	The Biot-Savart law	6
	1.4	Divergence of the magnetic field	11
	1.5	Circulation of the magnetic field	12
	1.6	The Ampère law	14
	1.7	Boundary conditions at a current sheet	17
	1.8	Inductance	19
	1.9	Energy stored in the magnetic field	20
2	Magnetic materials		23
	2.1	Magnetization	23
	2.2	Magnetic field intensity	26
	2.3	Permeability and susceptibility	27
	2.4	Types of magnetism	27
	2.5	Magnetic circuits	31
	2.6	Boundary conditions between regions with different μ	33
	2.7	Method of images	34
3	Potential theory		39
	3.1	Vector potential	39
	3.2	Vector potential in two dimensions	41
	3.3	Boundary conditions on A	44
	3.4	Vector potential for a localized current distribution	45
	3.5	Force on a localized current distribution	49
	3.6	Magnetic scalar potential	50

V

vi		Contents	
	3.7	Scalar potential for a magnetic body	52
	3.8	General solutions to the Laplace equation	53
	3.9	Boundary value problems	59
	3.10	Green's theorem	67
4	Conductor-dominant transverse fields		71
	4.1	General solution to the Laplace equation in	
		two dimensions	71
	4.2	Harmonic expansion for a line current	76
	4.3	Field for a current sheet	80
	4.4	Ideal multipole current sheet	84
	4.5	Multipole dependence on the current distribution	88
	4.6	Approximate multipole configurations	90
	4.7		93
	4.8	Ideal multipole current block	100
	4.9	ž ,	102
	4.10	Superconductors	104
	4.11	End fields	105
5	Complex analysis of transverse fields		108
	5.1	Complex representation of potentials and fields	108
	5.2	Maxwell's equations in complex conjugate	
		coordinates	111
	5.3	Field from a line current	113
	5.4	Field from a current sheet	115
	5.5	$\cos \phi$ current sheets	120
	5.6	1 1	123
	5.7		124
	5.8	Block conductor examples	126
	5.9	8	132
	5.10	Multipole expansion	135
	5.11	Field due to a magnetized body	138
	5.12	Force	140
	5.13	Conformal mapping	141
	5.14	Integrated potentials	147
6	Iron-dominant transverse fields		150
		Ideal multipole magnets	150
		Approximate multipole configurations	153
		Dipole configurations	154
	6.4	Quadrupole configurations	159

	Contents	vii
7	Axial field configurations	165
	7.1 Circular current loop	165
	7.2 Radial expansion of the on-axis magnetic field	170
	7.3 Zonal harmonic expansions	172
	7.4 Multiple coil configurations	178
	7.5 Sheet model for the solenoid	182
	7.6 Block model for the solenoid	189
	7.7 Bent solenoid	190
	7.8 Toroid	193
8	Periodic magnetic channels	197
	8.1 Field from a helical conductor	197
	8.2 Planar transverse field	204
	8.3 Helical transverse field	206
	8.4 Axial fields	209
9	Permanent magnets	211
	9.1 Bar magnets	211
	9.2 Magnetic circuit energized by a permanent magnet	214
	9.3 Material properties	216
	9.4 Model for rare earth materials	217
	9.5 Rare earth model in two dimensions	219
	9.6 Multipole expansion for continuously	
	distributed material	221
	9.7 Segmented multipole magnet assemblies	224
10	Time-varying fields	229
	10.1 Faraday's law	229
	10.2 Energy in the magnetic field	232
	10.3 Energy loss in hysteresis cycles	234
	10.4 Eddy currents	235
	10.5 Skin effect	239
	10.6 Displacement current	240
	10.7 Rotating coil measurements	241
11	Numerical methods	245
	11.1 Finite difference method	245
	11.2 Example solution using finite differences	251
	11.3 Finite element method	254
	11.4 Integral equation method	258
	11.5 The POISSON code	265
	11.6 Inverse problems and optimization	267

viii		Contents	
Appendices			274
A	Symbols and SI units		274
В	Vector analysis		275
C	Bessel functions		279
D	Legendre functions		283
E	Complex variable analysis		287
F	Complete elliptic integrals		293
Index			297

Preface

My career at Brookhaven National Laboratory began in 1978, when I was hired to work on a particle physics experiment at the alternating gradient synchrotron (AGS). At that time, one of the lab's major projects was a high-energy proton collider known as ISABELLE. Unfortunately, development of the superconducting magnets proposed for the project ran into serious technical difficulties. As a result, a member of the physics department, Dr. Robert Palmer, proposed a radically different design for the collider magnets. He began recruiting a small group from the physics and accelerator departments to work on the alternate magnet design. I was one of the staff members who joined his group.

Because I came from a background in particle physics, the work on the design of high-field magnets was a revelation to me. One of my main responsibilities was to work on the optimization of the dipole conductor cross-section and end designs needed to achieve the demanding field quality requirements for the accelerator. I quickly discovered that the methods needed for practical magnetic field design went far beyond my academic training in electricity and magnetism. Much of the work required frequent feedback with the engineers working on the project. Although I moved on from the magnet division after about four years, my interest in calculating magnetic fields remained with me throughout the rest of my career. A significant part of the contents of this book are based on my notes from that period.

The subject of magnetostatics has a long history. There is a vast literature, so a book of this size has to make difficult choices about which topics to include. My primary objective was to produce a self-contained discussion of the major subjects in magnetostatics with an emphasis on the computation of magnetic fields. For that reason, I have included brief treatments of most standard background material, such as the magnetostatic Maxwell's equations and potential theory. However, the choice of example topics relies heavily on my background and interests. Many of the examples come from the fields of accelerator and beam

ix

x Preface

physics. I also felt it was important to expose a wider audience to a series of very insightful papers by the late Klaus Halbach of Lawrence Berkeley Laboratory. For the discussion of numerical methods, I decided to concentrate on a small number of subjects while including sufficient details to enable readers to begin writing their own computer codes, if they so desired.

The first three chapters are mostly a survey of basic material. Chapter 1 treats the theory of magnetic fields from conductors in free space, and Chapter 2 discusses fields from magnetic materials. Chapter 3 introduces the vector and scalar potentials. It includes general solutions to the Laplace equation and the solution of boundary value problems.

Chapter 4–6 discuss transverse fields in two dimensions. Chapter 4 looks at fields from line currents, current sheets, and current blocks. Field quality is introduced in terms of multipole expansions, and the effects of approximating ideal current distributions are described. Chapter 5 looks at transverse fields using complex variable methods. The powerful techniques for computing the fields of block conductors using contour integration are discussed in detail. Contour integrals are also derived for the fields from image currents and magnetized bodies. Chapter 6 looks at transverse fields that are determined by the shape of the iron. The discussion here mainly concerns the iron surfaces used in dipole and quadrupole magnets.

Chapters 7–9 discuss some other field configurations. Chapter 7 looks at axial field arrangements. This includes the fields from current loops, solenoids, and systems of coils. The solution of the solenoid field using the sheet model is treated in detail. Chapter 8 considers periodic magnetic channels. First the field from a helical conductor winding is discussed. Then inverse problems are introduced, and some of the field configurations used for magnetic wigglers and particle beamfocusing channels are examined. Chapter 9 begins with a standard treatment of the properties of permanent magnets. This is followed by a discussion of Halbach's model for rare-earth cobalt magnets and his analysis of assemblies of permanent magnets.

In Chapter 10, we relax the strict conditions of magnetostatics and allow for the case of slowly varying currents. This leads to brief discussions of some standard subjects such as Faraday's law, but also some more engineering-related topics such as eddy currents and the skin effect. This also seemed an appropriate place to include a brief discussion of magnetic field measurements using rotating coils.

Chapter 11 discusses numerical methods. No attempt is made here to survey the thousands of papers devoted to numerical solutions of magnetic field problems. Instead, three methods for solving the Poisson equation are presented with a significant amount of detail. This chapter also includes a discussion of the POISSON code, which is freely available and extremely useful for investigating

Preface xi

2D problems. The chapter ends by returning to the inverse problem and presenting several examples of using optimization methods.

The appendices collect some important details about mathematical techniques and special functions used in the book.

The level of the treatment of background magnetostatic topics in the book is typical of those encountered by undergraduate physics majors. Some of the material in Chapters 4–11 will likely be unfamiliar to many readers. However, an attempt has been made to include sufficient details and references, so interested physics and engineering majors should be able to follow the discussions.

At a number of places in the text, I have indicated the source of a mathematical relation in footnotes using the following notation.

- AS M. Abramowitz & I. Stegun (eds.), *Handbook of Mathematical Functions*, Dover Publications, 1972.
- CRC S. Selby (ed.), *Standard Mathematical Tables*, 14th ed., The Chemical Rubber Company, 1965.
- GR I. Gradshteyn & I. Ryzhik, *Table of Integrals, Series and Products*, Academic Press, 1980.

I would like to thank several of my former colleagues, especially Gerry Morgan, Steve Kahn, Bob Palmer, Juan Gallardo, and Scott Berg, for many interesting discussions concerning magnetic fields and the methods used for calculating them. I would like to thank Peter Wanderer and Animesh Jain of the Superconducting Magnet Division at Brookhaven National Laboratory for providing the image of field lines in a RHIC dipole, which has been used on the cover of this book. I would also like to thank Simon Capelin and the staff at Cambridge University Press for their collaboration on this project. Finally, I would like to thank my wife Ruth for her constant support and encouragement.