Introduction to Magnetohydrodynamics

Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasises physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications.

With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.

P. A. Davidson is a professor in the Department of Engineering at the University of Cambridge. He has authored over 100 publications in the fields of magnetohydrodynamics and turbulence, including the books Turbulence: An Introduction for Scientists and Engineers and Turbulence in Rotating, Stratified and Electrically Conducting Fluids. He is also an associate editor of the Journal of Fluid Mechanics.
Introduction to Magnetohydrodynamics

Second Edition

P. A. DAVIDSON

University of Cambridge
Dedicated to the memory of Henri
Contents

Preface to the Second Edition
Preface to the First Edition

PART I FROM MAXWELL’S EQUATIONS TO MAGNETOHYDRODYNAMICS

1 A Qualitative Overview of MHD
 1.1 What Is MHD?
 1.2 A Brief History of MHD
 1.3 From Electrodynamics to MHD: A Simple Experiment
 1.3.1 Some Important Parameters in Electrodynamics and MHD
 1.3.2 Electromagnetism Remembered
 1.3.3 A Familiar High School Experiment
 1.4 A Glimpse at the Astrophysical and Terrestrial Applications of MHD
 Exercises

2 The Governing Equations of Electrodynamics
 2.1 The Electric Field and the Lorentz Force
 2.2 Ohm’s Law and the Volumetric Lorentz Force
 2.3 Ampère’s Law and the Biot–Savart Law
 2.4 Faraday’s Law and the Vector Potential
 2.5 An Historical Aside: Faraday and the Concept of the Field
 2.6 Maxwell’s Equations
 2.6.1 The Displacement Current and Electromagnetic Waves
 2.6.2 Gauges, Retarded Potentials and the Biot–Savart Law Revisited
 2.7 The Reduced Form of Maxwell’s Equations for MHD
 2.8 A Transport Equation for the Magnetic Field
2.9 A Second Look at Faraday’s Law
 2.9.1 An Important Kinematic Equation 50
 2.9.2 The Full Significance of Faraday’s Law 51
 2.9.3 Faraday’s Law in Ideal Conductors: Alfvén’s Theorem 53
 Exercises 56

3 A First Course in Fluid Dynamics
 3.1 Different Categories of Fluid Flow
 3.1.1 Viscosity, the Reynolds Number and Boundary Layers 58
 3.1.2 Laminar Versus Turbulent Flow 62
 3.1.3 Rotational Versus Irrotational flow 65
 3.2 The Navier–Stokes Equation 69
 3.3 Vorticity, Angular Momentum, and the Biot–Savart Law 70
 3.4 The Vorticity Equation and Vortex Line Stretching 74
 3.5 Inviscid Flow
 3.5.1 Kelvin’s Theorem 80
 3.5.2 Helmholtz’s Laws 81
 3.5.3 Helicity Conservation 83
 3.6 Viscous Flow
 3.6.1 The Dissipation of Energy 85
 3.6.2 The Burgers Vortex 86
 3.6.3 The Prandtl–Batchelor Theorem 88
 3.7 Boundary Layers, Reynolds Stresses and Elementary Turbulence Models
 3.7.1 Boundary Layers 91
 3.7.2 Turbulence and Simple Turbulence Models 93
 3.8 Ekman Layers and Ekman Pumping in Rotating Fluids 98
 3.9 Waves and Columnar Vortices in Rotating Fluids
 3.9.1 The Taylor–Proudman Theorem 102
 3.9.2 Inertial Waves, Helicity Transport and the Formation of Taylor Columns 103
 3.9.3 Inertial Wave Packets, Columnar Vortices and Transient Taylor Columns 106
 3.9.4 A Glimpse at Rapidly Rotating Turbulence 109
 Exercises 110

4 The Governing Equations of MHD
 4.1 The MHD Equations and Key Dimensionless Groups 112
 4.2 Energy Considerations 116
 4.3 Maxwell’s Stresses and Faraday’s Tension 117
 4.4 A Glimpse at Alfvén Waves 120
PART II THE FUNDAMENTALS OF INCOMPRESSIBLE MHD

5 Kinematics: Advection, Diffusion and Intensification of Magnetic Fields

5.1 The Analogy to Vorticity
5.2 Diffusion of a Magnetic Field
5.3 Advection in Ideal Conductors: Alfvén’s Theorem
 5.3.1 Alfvén’s Theorem
 5.3.2 An Aside: Sunspots
5.4 Helicity Invariants in Ideal MHD
 5.4.1 Magnetic Helicity
 5.4.2 Minimum Energy states
 5.4.3 Cross Helicity
5.5 Advection Plus Diffusion
 5.5.1 Field Sweeping
 5.5.2 Flux Expulsion
 5.5.3 Azimuthal Field Generation by Differential Rotation: The \(\Omega \)-Effect
 5.5.4 Stretched Flux Tubes and Current Sheets
 5.5.5 Magnetic Reconnection
5.6 Field Generation by Flux-Tube Stretching: A Glimpse at Dynamo Theory
Exercises

6 Dynamics at Low Magnetic Reynolds Numbers

6.1 The Low Magnetic Reynolds Number Approximation
6.2 The Suppression of Motion
 6.2.1 Magnetic Damping
 6.2.2 The Damping of a Two-Dimensional Jet
 6.2.3 The Damping of a Vortex
 6.2.4 The Damping of Turbulence at Low \(R_m \)
 6.2.5 Natural Convection in a Magnetic Field: Rayleigh–Bénard Convection
6.3 An Aside: A Glimpse at the Damping of Turbulence at Arbitrary \(R_m \)
6.4 The Generation of Motion
 6.4.1 Rotating Fields and Swirling Motion
 6.4.2 Swirling Flow Induced between Two Parallel Plates
 6.4.3 Flows Resulting from Current Injection
6.5 Boundary Layers and Associated Duct Flows
 6.5.1 Hartmann Boundary Layers
Contents

6.5.2 Pumps, Propulsion and Projectiles 181
Exercises 183

7 Dynamics at High Magnetic Reynolds Numbers 185
7.1 Alfvén Waves and Elsasser Variables 187
7.2 Finite-Amplitude Alfvén Waves and the Conservation of Cross Helicity 190
7.3 Colliding Alfvén Wave Packets and a Glimpse at Alfvénic Turbulence 192
7.4 Magnetostrophic Waves 195
7.5 The Energy Principle for Magnetostatic Equilibria in Ideal Fluids 197
 7.5.1 The Need for Stability in Plasma Confinement 198
 7.5.2 The Stability of Static Equilibria: A Variational Approach 201
 7.5.3 The Stability of Static Equilibria: A Direct Attack 206
7.6 An Energy-Based Stability Theorem for Non-Static Equilibria 209
7.7 The Chandrasekhar–Velikhov Instability in Rotating MHD 215
 7.7.1 The Magnetic Destabilisation of Rotating Flow 216
 7.7.2 The Energy Principle Applied to Rotating MHD 220
 7.7.3 The Destabilising Influence of an Azimuthal Field 222
 7.7.4 The Destabilising Influence of an Axial Field 223
7.8 From MHD to Euler Flows: The Kelvin–Arnold Theorem 224
Exercises 226

8 An Introduction to Turbulence 228
8.1 An Historical Interlude 229
8.2 The Structure of Turbulent Flows: Richardson’s Cascade 233
8.3 Kinematic Preliminaries (for Homogeneous Turbulence) 239
 8.3.1 Correlation Functions and Structure Functions 239
 8.3.2 Spectral Analysis 244
 8.3.3 The Special Case of Statistically Isotropic Turbulence 249
8.4 Kolmogorov’s Theory of the Small Scales 255
8.5 The Kármán–Howarth Equation 259
 8.5.1 The Kármán–Howarth Equation and the Closure Problem 259
 8.5.2 The Four-Fifths Law 262
8.5.3 Spectral Dynamics 264
8.6 Freely Decaying Turbulence 266
 8.6.1 Saffman versus Batchelor Turbulence: Two Canonical Energy Decays Laws 266
 8.6.2 Long-Range Interactions in Turbulence 271
Contents

8.6.3 Landau’s Theory: The Role of Angular Momentum Conservation 273
8.6.4 Problems with Landau’s Theory and Its Partial Resolution 275

9 MHD Turbulence at Low and High Magnetic Reynolds Numbers 277
9.1 The Growth of Anisotropy at Low and High R_m 277
9.2 Loitsyansky and Saffman-like Invariants for MHD Turbulence at Low R_m 281
9.3 Decay Laws for Fully Developed MHD Turbulence at Low R_m 286
9.4 The Spontaneous Growth of a Seed Field at High R_m: Batchelor’s Criterion 288
9.5 Magnetic Field Generation in Forced, Non-Helical Turbulence at High R_m 291
 9.5.1 Different Categories of Magnetic Field Generation 292
 9.5.2 A Kinematic Model for Field Generation in Forced, Non-Helical Turbulence 294
 9.5.3 The Role of the Magnetic Reynolds and Magnetic Prandtl Numbers 296
9.6 Unforced, Helical Turbulence at High Magnetic Reynolds Numbers 297
 9.6.1 Ideal Invariants and Selective Decay 298
 9.6.2 Taylor Relaxation 300
 9.6.3 Dynamic Alignment and Alfvénic States 301

PART III APPLICATIONS IN ENGINEERING AND MATERIALS 305
10 The World of Metallurgical MHD 307
 10.1 The History of Electrometallurgy 307
 10.2 An Overview of the Role of Magnetic Fields in Materials Processing 310
11 The Generation and Suppression of Motion in Castings 317
 11.1 Magnetic Stirring Using Rotating Fields 317
 11.1.1 Casting, Stirring and Metallurgy 317
 11.1.2 The Magnetic Teaspoon 320
 11.1.3 Simple Models of Stirring 322
 11.1.4 The Role of Secondary Flows in Steel Casting 325
 11.1.5 The Role of Ekman Pumping for Non-Ferrous Metals 327
 11.2 Magnetic Damping Using Static Fields 332
 11.2.1 Metallurgical Applications 332
Contents

11.2.2 The Need to Conserve Momentum in the Face of Joule Dissipation 334
11.2.3 The Magnetic Damping of Submerged Jets 337
11.2.4 The Magnetic Damping of Vortices 342

12 Axisymmetric Flows Driven by the Injection of Current 351
12.1 The Need to Purify Metal for Critical Aircraft Parts: Vacuum-Arc Remelting 351
12.2 A Model Problem 354
12.3 Integral Constraints and the Work Done by the Lorentz Force 356
12.4 Structure and Scaling of the Flow 359
 12.4.1 Confined versus Unconfined Domains 359
 12.4.2 Shercliff’s Solution for Unconfined Domains 361
 12.4.3 Confined Flows 363
12.5 The Influence of Buoyancy 364
12.6 The Apparent Spontaneous Growth of Swirl 366
 12.6.1 An Extraordinary Experiment 366
 12.6.2 But There Is no Spontaneous Growth of Swirl! 368
 12.6.3 Flaws in Traditional Theories Predicting a Spontaneous Growth of Swirl 369
12.7 Poloidal Suppression versus Spontaneous Swirl 369

13 MHD Instabilities in Aluminium Reduction Cells 374
13.1 The Prohibitive Cost of Reducing Alumina to Aluminium 374
 13.1.1 Early Attempts to Produce Aluminium by Electrolysis 374
 13.1.2 An Instability in Modern Reduction Cells and Its Financial consequences 376
13.2 Attempts to Model Unstable Interfacial Waves in Reduction Cells 377
13.3 A Simple Mechanical Analogue for the Instability 379
13.4 Simplifying Assumptions and a Model Problem 384
13.5 A Shallow-Water Wave Equation for the Model Problem 386
 13.5.1 The Shallow-Water Wave Equations 386
 13.5.2 Key Dimensionless Groups 389
13.6 Solutions of the Wave Equation 390
 13.6.1 Travelling Waves 390
 13.6.2 Standing Waves in Circular Domains 391
 13.6.3 Standing Waves in Rectangular Domains 392
13.7 Implications for Cell Design and Potential Routes to Saving Energy 397
Exercises 398
PART IV APPLICATIONS IN PHYSICS

14 The Geodynamo

14.1 Why Do We Need a Dynamo Theory for the Earth? 401
14.2 Sources of Convection, Reversals and Key Dimensionless Groups
 14.2.1 The Structure of the Earth and Sources of Convection 404
 14.2.2 Field Structure and Reversals 405
 14.2.3 Key Dimensionless Groups 408
14.3 A Comparison with the Other Planets
 14.3.1 The Properties of the Other Planets 410
 14.3.2 Trends in the Strengths of the Planetary Dipoles: Scaling Laws 413
14.4 Tentative Constraints on Planetary Dynamo Theories 416
14.5 Elementary Kinematic Theory: Phenomena, Theorems and Dynamo Types
 14.5.1 A Survey: Six Important Kinematic Results 418
 14.5.2 A Large Magnetic Reynolds Number Is Required 421
 14.5.3 Differential Rotation in the Core and the \(\Omega \)-Effect 422
 14.5.4 An Axisymmetric Dynamo Is not Possible: Cowling’s Theorem 427
 14.5.5 An Evolution Equation for the Axial Field 429
 14.5.6 A Glimpse at Parker’s Helical Dynamo Mechanism 431
 14.5.7 Different Classes of Planetary Dynamo 436
14.6 Building on Parker’s Helical Lift-and-Twist Mechanism
 14.6.1 Mean-Field Electrodynamics 440
 14.6.2 A More Careful Look at the \(\alpha \)-Effect 442
 14.6.3 Exact Integrals Relating the Large-Scale Field to the Small-Scale EMF 446
 14.6.4 Putting the Pieces Together: A Kinematic Criterion for Dynamo Action 448
14.7 The Numerical Simulations of Planetary Dynamos 450
14.8 Speculative Dynamo Cartoons Based on the Numerical Simulations
 14.8.1 Searching for the Source of the North-South Asymmetry in Helicity 453
 14.8.2 A Speculative Weak-Field Cartoon 456
 14.8.3 A Speculative Strong-Field Cartoon 461
14.9 Dynamics of the Large Scale: the Taylor Constraint 462
14.10 Laboratory Dynamo Experiments 464
14.10.1 Two Classic Experiments 465
14.10.2 More Recent Experiments 467
14.11 Scaling Laws for Planetary Dynamos (Reprise) 469
Exercises 472

15 Stellar Magnetism 482
15.1 The Dynamic Sun 483
15.1.1 The Sun’s Interior and Atmosphere 483
15.1.2 Is There a Solar Dynamo? 486
15.1.3 Sunspots and the 11-Year Solar Cycle 487
15.1.4 The Location of the Solar Dynamo and Dynamo Cartoons 488
15.1.5 Prominences, Flares and Coronal Mass ejections 492
15.2 The Solar Wind 496
15.2.1 Why Is There a Solar Wind? 496
15.2.2 Parker’s Model of the Solar Wind 498
15.3 Accretion Discs 501
15.3.1 The Basic Properties of Accretion Discs 502
15.3.2 The Standard Model of Accretion Discs 507
15.3.3 The Chandrasekhar–Velikhov Instability Revisited 512

16 Plasma Containment in Fusion Reactors 514
16.1 The Quest for Controlled Fusion Power 514
16.2 The Requirements for Controlled Nuclear Fusion 515
16.3 Magnetic Confinement and the Instability of Fusion Plasmas 517
16.3.1 The Topology of Confinement 517
16.3.2 Sausage-Mode and Kink Instabilities Revisited 518
16.3.3 Axisymmetric Internal Modes 524
16.3.4 Interchange and Ballooning Modes 526
16.4 The Development of Tokamak Reactors 532
16.5 Tritium Breeding and Heat Extraction: MHD Channel Flow Revisited 536
Exercises 539

Appendices
Appendix A Vector Identities and Theorems 541
Appendix B Physical Properties of Liquid Metals 543
References 544
Index 551
Preface to the Second Edition

Some 15 years have passed since the first edition of this book was published, and it seems natural to revisit the subject after so long a break, reacquainting oneself with an old friend, so to speak.

If an excuse were required to revisit MHD after such a prolonged absence, then the recent advances in geophysical and astrophysical applications provide ample motivation. Astrophysical MHD, for example, has made great progress, partially as a result of the extraordinary observational data gathered from spacecraft-based instruments. On the other hand the relentless rise in computing power has, for the first time, made it possible to compute certain (but certainly not all) aspects of planetary dynamos, heralding a new wave of dynamo theories. As a result, the geophysical and astrophysical applications of MHD are now more thought-provoking and inviting than ever before.

So how should one update a book in the light of these developments? Clearly there is a need to place more emphasis on the geophysical and astrophysical applications in a second edition, which in any event provides the perfect excuse for offering a more balanced presentation of MHD. So Chapter 14, on planetary dynamos, and Chapter 15, on astrophysical applications, are largely new. Another omission in the first edition was an absence of fusion plasma MHD, and it is hoped that this has been remedied by the addition of Chapter 16. Between them, Chapters 14 through 16 provide an introduction to many of the applications of MHD in physics, and the author thanks Felix Parra Diaz and Gordon Ogilvie for providing helpful comments on draft versions of Chapters 15 and 16. Perhaps the final major addition is an extended treatment of turbulence (in Chapter 8) and MHD turbulence (in Chapter 9), which reflect recent progress in theories of MHD turbulence. Despite this shift in emphasis, the engineering applications, which were a particular feature of the first edition, have been largely retained as they are sadly underrepresented elsewhere in textbooks on MHD.
Despite these changes, the ambition of the text remains largely the same: to provide a self-contained introduction to MHD for graduate and advanced undergraduate students, with background material on electromagnetism and fluid mechanics developed from first principles, and with the fundamental theory illustrated through a broad range of applications.
Preface to the First Edition

Prefaces are rarely inspiring and, one suspects, seldom read. They generally consist of a dry, factual account of the content of the book, its intended readership, and the names of those who assisted in its preparation. There are, of course, exceptions, of which Den Hartog’s preface to a text on mechanics is amongst the wittiest. Musing whimsically on the futility of prefaces in general, and on the inevitable demise of those who, like Heaviside, use them to settle old scores, Den Hartog’s preface contains barely a single relevant fact. Only in the final paragraph does he touch on more conventional matters with the observation that he has ‘placed no deliberate errors in the book, but he has lived long enough to be quite familiar with his own imperfections’.

We, for our part, shall stay with a more conventional format. This work is more of a text than a monograph. Part I (the larger part of the book) is intended to serve as an introductory text for (advanced) undergraduates and post-graduate students in physics, applied mathematics and engineering. Part II, on the other hand, is more of a research monograph and we hope that it will serve as a useful reference for professional researchers in industry and academia. We have at all times attempted to use the appropriate level of mathematics required to expose the underlying phenomena. Too much mathematics can, in our opinion, obscure the interesting physics and needlessly frighten the student. Conversely, a studious avoidance of mathematics inevitably limits the degree to which the phenomena can be adequately explained.

It is our observation that physics graduates are often well versed in the use of Maxwell’s equations, but have only a passing acquaintance with fluid mechanics. Engineering graduates often have the opposite background. Consequently, we have decided to develop, more or less from first principles, those aspects of electromagnetism and fluid mechanics which are most relevant to our subject, and which are often treated inadequately in elementary courses.
Preface to the First Edition

The material in the text is heavily weighted towards incompressible flows and to engineering (as distinct from astrophysical) applications. There are two reasons for this. The first is that there already exist several excellent texts on astrophysical, geophysical and plasma MHD, whereas texts oriented towards engineering applications are somewhat thinner on the ground. Second, in recent years we have witnessed a rapid growth in the application of MHD to metallurgical processes. This has spurred a great deal of fruitful research, much of which has yet to find its way into textbooks or monographs. It seems timely to summarise elements of this research. We have not tried to be exhaustive in our coverage of the metallurgical MHD, but we hope to have captured the key advances.

The author is indebted to S. Davidson for his careful perusal of the manuscript and his many incisive comments, to H. K. Moffatt and J. C. R. Hunt for their constant advice over the years, to K. Graham for typing the manuscript, and to C. Davidson for her patience.