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1 Some
Highlights

This chapter surveys a few of the highlights to be encountered in this book, mainly,

Chapters 2, 3, 4, 5, 15, and 16. Several of the topics in the book do not appear at all here

since they are not as suitable to a quick overview. Also, we concentrate in this overview on

trees, since it is easiest to use them to illustrate many of our themes.

1.1 Graph Terminology

For later reference, we introduce in this section the basic notation and terminology for

graphs. A graph is a pair G = (�, �), where � is a set of vertices and � is a symmetric

irreflexive subset of � × �, called the edge set. Irreflexive means that � contains no element

of the form (x, x). The word symmetric means that (x, y) ∈ � iff (y, x) ∈ �; here, x and y are

called the endpoints of (x, y). The symmetry assumption is usually phrased by saying that

the graph is undirected or that its edges are unoriented. Without this symmetry assumption,

the graph is called directed. If we need to distinguish the two, we write an unoriented edge

as [x, y], whereas an oriented edge is written as ⟨x, y⟩. An unoriented edge can be thought

of as the pair of oriented edges with the same endpoints. If (x, y) ∈ �, then we call x and

y adjacent or neighbors, and we write x ∼ y. The degree of a vertex is the number of its

neighbors. If this is finite for each vertex, we call the graph locally finite. If the degree of

every vertex is the same number d, then the graph is called regular or d-regular. If x is

an endpoint of an edge e, then we also say that x and e are incident, whereas if two edges

share an endpoint, then we call those edges adjacent. If we have more than one graph under

consideration, we distinguish the vertex and edge sets by writing �(G) and �(G). A subgraph

of a graph G is a graph whose vertex set is a subset of �(G) and whose edge set is a subset of

�(G). One can define the product of two graphs Gi = (�i, �i) (i = 1, 2) in various ways. The

one we use almost exclusively is the Cartesian product G = (�, �) with � := �1 × �2 and

� :=

{

(

(x1, x2), (y1, y2)
)

;
(

x1 = y1, (x2, y2) ∈ �2

)

or
(

(x1, y1) ∈ �1, x2 = y2

)

}

;

this product graph is denoted G = G1 □ G2.

A path* in a graph is a sequence of vertices where each successive pair of vertices is an

edge in the graph; it is said to join its first and last vertices. When a path does not pass

* In graph theory, a path is necessarily self-avoiding. What we call a path is called in graph theory a walk.
However, to avoid confusion with random walks, we do not adopt that terminology.
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2 Chap. 1: Some Highlights

through any vertex (resp., edge) more than once, we will call it vertex simple (resp., edge

simple). We’ll just say simple also to mean vertex simple, which implies edge simple. A

finite path with at least one edge and whose first and last vertices are the same is called a

cycle. A cycle is called simple if no pair of vertices are the same except for its first and last

ones. A graph is connected if, for each pair x ̸= y of its vertices, there is a path joining x to

y. The distance between x and y is the minimum number of edges among all paths joining

x and y, denoted either d(x, y) or dist(x, y). A graph with no cycles is called a forest; a

connected forest is a tree.

If there are numbers (weights) c(e) assigned to the edges e of a graph, the resulting object is

called a network. Given a network G = (�, �) with weights c(•) and a subset K of its vertices,

the induced subnetwork G↾K is the subnetwork with vertex set K , edge set (K ×K)∩�, and
weights c↾

�

(K × K) ∩ �
�

.

Sometimes we work with objects more general than graphs, called multigraphs. A

multigraph is a pair of sets, � and �, together with a pair of maps �→ �, denoted e 7→ e−

and e 7→ e+. The images of e are called the endpoints of e, the former being its tail and the

latter its head. If e− = e+ = x, then e is a loop at x. Edges with the same set of endpoints

are called parallel or multiple. If the multigraph is undirected, then for every edge e ∈ �,

there is an edge −e ∈ � such that (−e)− = e+ and (−e)+ = e−. For a vertex x of an undirected

multigraph, its degree is |{e ; e− = x}|. Sometimes we use paths of edges rather than of

vertices; in this case, the head of each edge must equal the tail of the next edge. Given a

subset K ⊆ �, the multigraph G/K obtained by identifying K to a single vertex z /∈ � is

the multigraph whose vertex set is (� \ K) ∪ {z} and whose edge set is obtained from � by

replacing the tail and head maps so that every tail or head that took a value in K now takes the

value z. A similar operation is contraction of an edge e, which is the result of first deleting e

and then identifying e− and e+; we denote this graph by G/e. A multigraph that is a graph is

called a simple graph.

Let G1 = (�1, �1) and G2 = (�2, �2) be two (multi)graphs. A homomorphism of G1 to G2

is a map φ:G1 → G2 such that whenever x and e are incident in G1, then so are φ(x) and

φ(e) in G2. When the graph is directed, then φ must also preserve orientation of edges, that

is, if the head and tail of e are x and y, respectively, then the head and tail of φ(e) must be

φ(x) and φ(y), respectively. If in addition, these graphs come with weight functions c1 and

c2, so that they are networks, then a network homomorphism is a graph homomorphism φ

that satisfies c1(e) = c2(φ(e)) for all edges e ∈ �1. If φ induces bijections of �1 to �2 and

of �1 to �2, then φ is called an isomorphism. When G1 = G2, an isomorphism is called an

automorphism. A homomorphism φ:G1 → G2 extends to map each subset A of G1 to a

subset φ(A) of G2 by mapping all elements of A by φ. We also extend φ to collections A of

subsets of G1 by applying φ to all elements of A.

1.2 Branching Number

Our trees will usually be rooted, meaning that some vertex is designated as the root,

denoted o. We imagine the tree as growing (upward) away from its root. Each vertex then

has branches leading to its children, which are its neighbors that are farther from the root.

For the purposes of this chapter, we do not allow the possibility of leaves, that is, vertices

without children.

www.cambridge.org/9781107160156
www.cambridge.org


Cambridge University Press
978-1-107-16015-6 — Probability on Trees and Networks
Russell Lyons , Yuval Peres 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

§2. Branching Number 3

How do we assign an average branch-

Figure 1.1. The binary tree.

ing number to an arbitrary infinite locally

finite tree? If the tree is a binary tree, as

in Figure 1.1, then clearly the answer will

be 2. But in the general case, since the

tree is infinite, no straight average is avail-

able. We must take some kind of limit or

use some other procedure, but we will be

amply rewarded for our efforts.

One simple idea is as follows. Let Tn be the set of vertices at distance n from the root, o,

called the nth level of T . Define the lower (exponential) growth rate of the tree to be

gr T := lim inf
n→∞

|Tn |
1/n .

This certainly will give the number 2 to the binary tree. One can also define the upper

(exponential) growth rate

gr T := lim sup
n→∞

|Tn |
1/n

and the (exponential) growth rate

gr T := lim
n→∞

|Tn |
1/n

when the limit exists. However, notice that these notions of growth barely account for the

structure of the tree: only |Tn | matters, not how the vertices at different levels are connected to

each other. Of course, if T is spherically symmetric, meaning that for each n, every vertex at

distance n from the root has the same number of children (which may depend on n), then there

is really no more information in the tree than that contained in the sequence



|Tn | ; n ≥ 0
�

.

For more general trees, however, we will use a different approach.

Consider the tree as a network of pipes and imagine water entering the network at the root.

However much water enters a pipe leaves at the other end and splits up among the outgoing

pipes (edges). Formally, this means that we consider a nonnegative function θ on the edges of

T , called a flow, with the property that for every vertex x other than the root, if x has parent z

and children y1, . . . , yd, then θ((z, x)) =
∑d

i=1 θ((x, yi)). We say that θ(e) is the amount of

water flowing along e and that the total amount of water flowing from the root to infinity is∑k
j=1 θ((o, x j)), where the children of the root o are x1, . . . , xk .

Consider the following sort of restriction on a flow: given � ≥ 1, suppose that the amount

of water that can flow through an edge at distance n from o is only �
−n. In other words, if

x ∈ Tn has parent z, then the restriction is that θ((z, x)) ≤ �
−n. If � is too big, then perhaps

no positive amount of water can flow from the root to infinity. Indeed, consider the binary

tree. Then the equally splitting flow that sends an amount 2−n through each edge at distance

n from the root will satisfy the restriction imposed when � ≤ 2 but not for any � > 2. In fact,

it is intuitively clear that there is no way to get any water to flow when � > 2. Obviously,

this critical value of 2 for � is the same as the branching number of the binary tree – if the

tree were ternary, then the critical value would be 3. So let us make a general definition: the

www.cambridge.org/9781107160156
www.cambridge.org


Cambridge University Press
978-1-107-16015-6 — Probability on Trees and Networks
Russell Lyons , Yuval Peres 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Chap. 1: Some Highlights

branching number of a tree T is the supremum of those � that admit a positive total amount

of water to flow through T ; denote this critical value of � by br T .

Let’s spend some time on this new concept. For a vertex x other than the root, let e(x)

denote the edge that joins x to its parent. The total amount of water flowing is, by definition,∑
x∈T1
θ(e(x)). If we apply the flow condition to each x in T1, then we see that this sum

also equals
∑

x∈T2
θ(e(x)). Induction shows, in fact, that it equals

∑
x∈Tn

θ(e(x)) for every
n ≥ 1. When the flow is constrained in the way we have specified, then this sum is at most∑

x∈Tn

�
−n = |Tn |�

−n. Now if we choose � > gr T , then lim infn→∞ |Tn |�
−n = 0, whence for

such �, no water can flow. Conclusion:

br T ≤ gr T . (1.1)

Often, as in the case of the binary tree, equality holds here. However, there are many examples

of strict inequality.

Before we give an example of strict inequality, here is another example where equality

holds in (1.1).

Example 1.1. If T is a tree such that vertices at even distances from o have two children

whereas the rest have three children, then br T = gr T =
√

6. Why? It is easy to see that

gr T =
√

6, whence by (1.1), it remains to show that br T ≥
√

6. In other words, it remains to

show that, given � <
√

6, a positive amount of water can flow to infinity under the constraints

described. Indeed, we can use the water flow with amount 6−n/2 flowing on those edges at

distance n from the root when n is even and with amount 6−(n−1)/2/3 flowing on those edges

at distance n from the root when n is odd.

More generally, one can show (Exercise 1.2) that equality holds in (1.1) whenever T is

spherically symmetric.

Now we give an example where strict inequality holds in (1.1).

Example 1.2. (The 1–3 Tree) We will con-

struct a tree T embedded in the upper half-

plane with o at the origin. We’ll have |Tn | = 2n,

o

Figure 1.2. A tree with branch-

ing number 1 and growth rate 2.

but we’ll connect them in a funny way. List

Tn in clockwise order as ⟨xn
1
, . . . , xn

2n
⟩. Let

xn
k
have one child if k ≤ 2n−1 and three chil-

dren otherwise; see Figure 1.2. Define a ray

in a tree to be an infinite path from the root

that doesn’t backtrack. If x is a vertex of T

that does not have the form xn
2n
, then there are

only finitely many rays that pass through x.

This means that water cannot flow to infinity

through such a vertex x when � > 1. That

leaves only the possibility of water flowing

along the single ray consisting of the vertices

xn
2n
, but that’s impossible too. Hence br T = 1,

yet gr T = 2.
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§3. Electric Current 5

Example 1.3. If T (1) and T (2) are trees, form a

new tree T (1) ∨T (2) from disjoint copies of T (1)

and T (2) by joining their roots to a new point

taken as the root of T (1) ∨ T (2) (Figure 1.3).

Then

br
(

T (1) ∨ T (2)
)

= br T (1) ∨ br T (2)

since water can flow in the join T (1) ∨ T (2) iff

water can flow in one of the trees. Here, as

T (1) T (2)

o

Figure 1.3. Joining two trees.usual in probability, we use a ∨ b to mean

max{a, b} when a and b are real numbers.

Although gr T is easy to compute, br T may not be. Nevertheless, it is the branching

number that is much more important. Theorems to be described shortly will bear out this

assertion. We will develop tools to compute br T in many common situations.

1.3 Electric Current

We can ask another flow question on trees, this one concerning electrical current. All

electrical terms are given precise mathematical definitions in Chapter 2, but for now, we give

some bare definitions to sketch the arc of some of the fascinating and surprising connections

that we develop later. If positive numbers c(e) are assigned to the edges e of a tree, we

may call these numbers conductances, and in that case, the energy of a flow θ is defined to

be
∑

e θ(e)
2/c(e). We say that electrical current flows from the root to infinity if there is a

nonzero flow with finite energy.

Here’s our new flow question: if �−n is the conductance of edges at distance n from the

root of T , will current flow?

Example 1.4. Consider the binary tree. The equally splitting flow has finite energy for every

� < 2, so in those cases, electrical current does flow. One can show that when � ≥ 2, not

only does the equally splitting flow have infinite energy, but so does every nonzero flow

(Exercise 1.4). Thus, current flows in the infinite binary tree iff � < 2. Note the slight

difference to water flow: when � = 2, water can still flow on the binary tree.

In general, there will be a critical value of � below which current flows and above which it

does not. In the example of the binary tree that we just analyzed, this critical value was the

same as that for water flow. Is this equality special to nice trees, or does it hold for all trees?

We have seen an example of a strange tree (another is in Exercise 1.3), so we might doubt its

generality. However, it is indeed a general fact (Lyons, 1990):

Theorem 1.5.* If � < br T , then electrical current flows, but if � > br T , then it does not.

* This will follow from Theorem 3.5 and the discussion in Section 2.2.
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6 Chap. 1: Some Highlights

1.4 Random Walks

There is a striking, but easily established, correspondence between electrical networks

and random walks on graphs (or on networks). Namely, given a finite connected graph G

with conductances (that is, positive numbers) assigned to the edges, we consider the random

walk that can go from a vertex only to an adjacent vertex and whose transition probabilities

from a vertex are proportional to the conductances along the edges to be taken. That is, if x

is a vertex with neighbors y1, . . . , yd and the conductance of the edge (x, yi) is ci , then the

transition probability from x to yj is p(x, yj) := cj
/
∑d

i=1 ci . Now consider two fixed vertices

a0 and a1 of G. A voltage function on the vertices is then a function v such that v(ai) = i for

i = 0, 1 and for every other vertex x ̸= a0, a1, the equation v(x)
∑d

i=1 ci =
∑d

i=1 civ(yi) holds,

where the neighbors of x are y1, . . . , yd. In other words, v(x) is a weighted average of the

values at the neighbors of x. We will see in Section 2.1 that voltage functions exist and are

unique. The following proposition provides the basic connection between random walks and

electrical networks:

Proposition 1.6. (Voltage as Probability) For every vertex x, the voltage at x equals the

probability that when the corresponding random walk starts at x, it will visit a1 before it

visits a0.

The proof of this proposition will be simple: In outline, there is a discrete Laplacian (a

difference operator) that will define a notion of harmonic function. Both the voltage and the

probability mentioned are harmonic functions of x. The two functions clearly have the same

values at ai (the “boundary” points), and the uniqueness principle holds for this Laplacian,

whence the functions agree at all vertices x. This is developed in detail in Section 2.1.

a1

Figure 1.4. Identifying a level to a vertex, a1.

What does this say about our trees? Given N , identify all the vertices of level N , that is, TN ,

to one vertex, a1 (see Figure 1.4). Use the root as a0. Then, according to Proposition 1.6, the

voltage at x is the probability that the random walk visits level N before it visits the root when

it starts from x. When N → ∞, the limiting voltages are all 0 iff the limiting probabilities are

all 0, which is the same thing as saying that on the infinite tree, the probability of visiting the

root from any vertex is 1, in other words, the random walk is recurrent. Although we have

not yet defined “current,” we’ll see that no current flows across edges whose endpoints have

the same voltage. This will imply, then, that no electrical current flows iff the random walk is

recurrent. Contrapositively, electrical current flows iff the random walk is transient. In this
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§5. Percolation 7

way, electrical networks will be a powerful tool to help us decide whether a random walk is

recurrent or transient. These ideas are detailed in Section 2.2.

Earlier we considered conductances �
−n on

edges at distance n from the root. In this case,

�

1

1

1

Figure 1.5. The relative weights at a

vertex. The tree is growing upwards.

the conductances decrease by a factor of � as the

distance increases by 1, so the relative weights

at a vertex other than the root are as shown in

Figure 1.5. That is, the edge leading back toward

the root is � times as likely to be taken as each

edge leading away from the root. Denoting the

dependence of the random walk on the parameter

� by ���, we may translate Theorem 1.5 into a

probabilistic form (Lyons, 1990):

Theorem 1.7.* If � < br T , then ��� is transient, whereas if � > br T , then ��� is recurrent.

Is this form intuitive? Consider a vertex other than the root with, say, d children. If we

consider only the distance from o, which increases or decreases at each step of the random

walk, a balance at this vertex between increasing and decreasing occurs when � = d. If d is

constant, then the distance from the root undergoes a random walk with a constant bias (for

a fixed �), so it is easy to see that indeed d is the critical value separating transience from

recurrence. What Theorem 1.7 says is that this same heuristic can be used in the general case,

provided we substitute the “average” br T for d.

We will also see how to use electrical networks to prove Pólya’s wonderful, seminal

theorem that simple random walk on the hypercubic lattice �d is recurrent for d ≤ 2 and

transient for d ≥ 3.

1.5 Percolation

Suppose that we remove edges at random from a tree, T . To be specific, we keep each edge

with some fixed probability p and make these decisions independently for different edges.

This random process is called percolation. As we’ll see, by Kolmogorov’s zero-one law, the

probability that an infinite connected component remains in the tree is either 0 or 1. On the

other hand, we’ll see that this probability is monotonic in p, whence there is a critical value

pc(T) where it changes from 0 to 1. It is also intuitively clear that the “bigger” the tree, the

more likely it is that there will be an infinite component for a given p. That is, the “bigger”

the tree, the smaller is the critical value pc. Thus, pc is vaguely inversely related to a notion

of average size or maybe average branching number. Surprisingly, this vague heuristic is

precise and general (Lyons, 1990):

* This will be proved as Theorem 3.5.
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8 Chap. 1: Some Highlights

Theorem 1.8.* For any tree, pc(T) = 1/br T .

What is this telling us? If a vertex x has d children, then the expected number of children

remaining after percolation is dp. If dp is “usually” less than 1, then one would not expect

that an infinite component would remain, whereas if dp is “usually” greater than 1, then

one might guess that an infinite component would be present somewhere. Theorem 1.8 says

that this intuition becomes correct when one replaces the “usual” d by br T . Both Theorems

1.5 and 1.8 say that the branching number of a tree is a single number that captures enough

of the complexity of a general tree to give the critical value for a stochastic process on the

tree. There are other examples as well of this striking phenomenon. Altogether, they make a

convincing case that the branching number is indeed the most important single number to

attach to an infinite tree.

1.6 Branching Processes

In the preceding section, we looked at existence of infinite components after percolation

on a tree. Although this event has probability 0 or 1, if we restrict attention to the connected

component of the root, its probability of being infinite is between 0 and 1. These are

equivalent ways to approach the issue, since, as we’ll see, there is an infinite component

somewhere with probability 1 iff the component of the root is infinite with positive probability.

But looking at the component of the root also suggests a different stochastic process.

Percolation on a fixed tree produces random trees by random pruning, but there is a way

to grow trees randomly that was invented by Bienaymé in 1845. Given probabilities pk
adding to 1 (k = 0, 1, 2, . . .), we begin with one individual, and let it reproduce according

to these probabilities, that is, it has k children with probability pk . Each of these children

(if there are any) then reproduce independently with the same law, and so on forever or

until some generation goes extinct. The family trees produced by such a process are called

(Bienaymé-)Galton-Watson trees. A fundamental theorem in the subject (Proposition 5.4)

is that extinction is a.s. iff m ≤ 1 and p1 < 1, where m :=
∑

k kpk is the mean number of

offspring per individual. This provides further justification for our intuitive understanding

of Theorem 1.8. It also raises a natural question: Given that a Galton-Watson family tree is

nonextinct (infinite), what is its branching number? All the intuition suggests that it is m

a.s., and indeed it is. This was first proved by Hawkes (1981). But here is the idea of a very

simple proof (Lyons, 1990).

According to Theorem 1.8, to determine br T , we may determine pc(T). Thus, let T grow

according to a Galton-Watson process, then perform percolation on T , that is, keep edges

with probability p. Focus on the component of the root. Looked at as a random tree in

itself, this component appears simply as some other Galton-Watson tree; its mean is mp by

independence of the growing and the “pruning” (percolation). Hence, the component of

the root is infinite with positive probability iff mp > 1. This implies that pc = 1/m a.s. on

nonextinction, thus br T = m a.s. on nonextinction. We’ll flesh out the details when we prove

Proposition 5.9.

* This will be proved as Theorem 5.15.

www.cambridge.org/9781107160156
www.cambridge.org


Cambridge University Press
978-1-107-16015-6 — Probability on Trees and Networks
Russell Lyons , Yuval Peres 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

§7. Random Spanning Trees 9

Now let’s consider another way to measure the size of Galton-Watson trees. Let Zn be the

size of the nth generation in a Galton-Watson process. How quickly does Zn grow? It will be

easy to calculate that E[Zn] = mn. Moreover, a martingale argument will show that the limit

W := limn→∞ Zn/m
n always exists (and is finite). When 1 < m < ∞, do we have that W > 0

a.s. on the event of nonextinction? When W > 0, the growth rate of the tree is asymptotically

W mn; this implies the cruder asymptotic gr T = m. It turns out that indeed W > 0 a.s. on the

event of nonextinction, under a very mild hypothesis:

The Kesten-Stigum Theorem (1966). When 1 < m < ∞, the following are equivalent:

(i) W > 0 a.s. on the event of nonextinction;

(ii)
∑∞

k=1 pk k log k < ∞.

This will be shown in Section 12.2. Although condition (ii) appears technical and suggests

some possibly unpleasant analysis, we will enjoy a conceptual proof of the theorem that uses

only extremely simple estimates.

1.7 Random Spanning Trees

The fertile and fascinating field

of random spanning trees is one of

Figure 1.6. A spanning tree in a graph, where

the edges of the graph not in the tree are dashed.

the oldest areas to be studied in this

book but one of the newest to be ex-

plored in depth. A spanning tree of

a (connected) graph is a subgraph

that is connected, contains every ver-

tex of the whole graph, and contains

no cycle: see Figure 1.6 for an ex-

ample. These trees are usually not

rooted. The subject of random span-

ning trees of a graph goes back to

Kirchhoff (1847), who showed its

surprising relation to electrical networks. (Actually, Kirch-

hoff did not think probabilistically; rather, he considered

quotients of the number of spanning trees with a certain

property divided by the total number of spanning trees.

See Kirchhoff’s effective resistance formula in Section 4.2

and Exercise 4.30.) One of Kirchhoff’s results expresses

the probability that a uniformly chosen spanning tree will

contain a given edge in terms of electrical current in the

graph.

To get our feet wet, let’s begin with a very simple finite

graph. Namely, consider the ladder graph of Figure 1.7.
1

2

3

n − 2

n − 1

n

Figure 1.7. A ladder graph.
Among all spanning trees of this graph, what proportion

contain the bottom rung (edge)? In other words, if we were
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10 Chap. 1: Some Highlights

to choose uniformly at random a spanning tree, what is the chance that it would contain the

bottom rung? We have illustrated in Figure 1.8 the entire probability spaces for the smallest

ladder graphs.

1/1

3/4

11/15

Figure 1.8. The ladder graphs of heights 0, 1, and 2, together with their spanning trees.

As shown, the probabilities in these cases are 1/1, 3/4, and 11/15. The next one is 41/56.

Do you see any pattern? One thing that is fairly evident is that these numbers are decreasing

but hardly changing. Amusingly, these numbers are every other term of the continued fraction

expansion of
√

3 − 1 = 0.73+ and, in particular, converge to
√

3 − 1. In the limit, then, the

probability of using the bottom rung is
√

3 − 1, and even before taking the limit, this gives an

excellent approximation to the probability. How can we easily calculate such numbers? In

this case, there is a rather easy recursion to set up and solve, but we will use this example to

illustrate the more general theorem of Kirchhoff that we mentioned earlier. In fact, Kirchhoff’s

theorem will show us why these probabilities are decreasing even before we calculate them.

For the next two paragraphs, we will assume some

e

Figure 1.9. A battery is hooked

up between the endpoints of e.

familiarity with electrical networks; those who do not

know these terms will find precise mathematical defini-

tions in Sections 2.1 and 2.2. Suppose that each edge of

our graph (any graph – say, the ladder graph) is an elec-

tric conductor of unit conductance. Hook up a battery

between the endpoints of any edge e – say, the bottom

rung (Figure 1.9). Kirchhoff (1847) showed that the

proportion of current that flows directly along e is then

equal to the probability that e belongs to a randomly

chosen spanning tree!

Now current flows in two ways: some flows directly

across e and some flows through the rest of the net-

work. It is intuitively clear (and justified by Rayleigh’s

monotonicity principle in Section 2.4) that the higher the ladder, the greater the effective

conductance of the ladder minus the bottom rung, hence the less current proportionally will
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