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1 Introduction

The way in which light interacts with material objects is determined by the optical

properties of the materials. Why might you want to think about these optical properties?

There are at least two reasons. First, you can make use of known optical materials to design

and build devices to manipulate light: mirrors, lenses, filters, polarizers, and a host of other

gadgets. Second, you can measure the optical properties of some new material and obtain a

wealth of information about the low energy excitations that govern the material’s physics.

Figure 1.1 is a chart that identifies some of these excitations and indicates the part of the

spectrum where they might be expected to appear.

In common parlance, “optical” can be a synonym of “visual,” and hence related

to human eyesight. This interpretation would restrict discussion to the visible part of

the electromagnetic spectrum, light with wavelengths of 390–780 nm, indicated by the

little rainbow in Fig. 1.1. (I will need to introduce the variety of measures used for

the wavelength or the frequency or the photon energy of electromagnetic waves. Four are

shown in Fig. 1.1: λ in µm, f in THz, E in meV, and another frequency unit, wavenumbers

or cm−1. The latter may be unfamiliar to persons who have not worked in the field of

optical effects in solids; it is the inverse of the wavelength in cm. The visible spectrum

spans 385–770 THz, 1.59–3.18 eV, and 12,800–25,600 cm−1. Units used in papers about

the optical properties of solids are discussed in Appendix A.)

Of course I will not in this book make the interpretation that optical means visible;

instead, materials properties will be considered over a wide range of frequencies or

wavelengths.∗ Plausible ranges are discussed toward the end of this chapter.

Even if you were constrained to the use of your own eyes, you would see that solids

have a wide range of optical properties. Silver is a lustrous metal used for centuries in

coins and fine tableware, with a high reflectance over the whole visible range. Silicon is a

crystalline semiconductor and the foundation of modern electronics. With its surface oxide

freshly etched off, silicon is also rather reflective, although not as good a mirror as silver.†

Salt (sodium chloride) is a transparent ionic insulator, is necessary for life, and makes up

about 3.5% (by weight) of seawater. A crystal of salt is transparent over the entire visible

spectrum; because the refractive index is about 1.5, the reflectance is everywhere about 4%.

If you had ultraviolet eyes, you would see these materials differently. Silver would

be a poor reflector, with at most 20% reflectance and trailing off to zero at the shortest

wavelengths. In contrast, the reflectance of silicon would be better than in the visible,

∗ I like the notion of “DC to daylight,” used widely in the amateur radio community and also as the name of a

symposium honoring Professor A.J. Sievers, at Cornell University, June 14, 2003.
† Silver reflects about 98% of red light and about 80% of violet light; silicon reflects about 33% of red and 50%

of violet.
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2 Introduction

Fig. 1.1 Chart showing optical processes in solids, with an indication of the wavelengths or frequencies where these processes

typically may be studied. The uppermost scale shows the vacuumwavelength inµm, 10−6 m. Frequencies (or

energies) are given on three scales. Top to bottom they are: THz, 1012 cycles/s; photon energies, meV; and

wavenumbers, ν̃ (in cm−1), deined by ν̃ = 1/λwithλ the wavelength measured in cm.

reaching up to 75%. Sodium chloride would be opaque over much of the spectrum, with

a reflectance a bit higher than in the visible. Those with infrared eyes would also see

things differently from visible or UV-sensitive individuals. Silver would have a reflectance

above 99%. Silicon would appear opaque at the shortest infrared wavelengths but would

then become transparent, so that you could see through even meter-thick crystals.∗

Sodium chloride remains transparent over much of the infrared, but an opaque and highly

reflecting “reststrahlen” (German for residual ray) region occurs at long wavelengths. In

the reststrahlen band, NaCl has a reflectivity not much below that of a metal.

If you put on your solid-state-physics hat, you can understand the optical properties

of these materials, at least qualitatively. Silver is a nearly free-electron metal, with one

electron per atom in the metallic Fermi surface. These mobile electrons give the high

electrical conductivity; they form a plasma that makes silver opaque and highly reflective

∗ Here ultra-high-purity is assumed. Moreover, in the middle infrared region there is a band caused by lattice

vibrational effects – multiphonons in this case – where silicon is opaque unless rather thin.
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3 Introduction

below the plasma frequency.∗ Silicon is a semiconductor with a gap between the filled

valence band and the empty conduction band. Photons with energies below the gap can

propagate without loss in silicon. Photons with energies above the gap are absorbed,

generating electron–hole pairs. This absorption renders silicon opaque and, as mentioned,

increases the reflectance. Sodium chloride is an insulating crystal, with a band gap in the

ultraviolet. Similar to silicon, photons with energy larger than the gap are absorbed. Sodium

chloride has two atoms per unit cell; these occur as ions, Na+ and Cl−; an electric field

displaces these ions, producing induced dipoles in the solid. With a two-atom basis, the

lattice vibrations have an optical branch, and the reststrahlen band is a result of the light

exciting this optical branch.

Now let me return to the question of the range of wavelengths (or the range of light

frequencies or of photon energies) over which I can discuss the optical properties of

solids. The electromagnetic spectrum extends over a huge range; a representative cartoon

illustrating the “electromagnetic spectrum” is shown in Fig. 1.2.

This chart shows wavelengths from km to pm along with corresponding frequencies and

photon energies. So the question is: What part of this spectrum might be used to study the

optics of solids?

To start, I’ll want to use continuum electrodynamics, so the short wavelength limit is

set by a requirement that the wavelength be larger than the spacing between atoms. When

the wavelength is less than the interatomic distances, diffraction effects dominate. X-ray

diffraction is essential for determining crystal structure but beyond my scope. At somewhat

longer wavelengths, continuum electrodynamics is fine, but the materials properties are

essentially a superposition of atomic transitions. Solid-state effects contribute of course but

minimally for wavelengths shorter than something on the order of 50 nm.†

As wavelengths get longer and longer, there is of course no problem with continuum

electrodynamics. However, practically speaking, the physics that govern the electromag-

netic response at dc and audio frequencies is the same as the physics at ultra-high radio

frequencies and even microwaves. So the lowest frequencies that I will consider are around

a few GHz.

There is a second reason for setting a long-wavelength limit. One GHz (4 µeV photon

energy) corresponds to 30 cm wavelength, and this large scale raises an experimental issue:

to shine light on a solid, one sends a beam that one would like to consider to be composed

of plane electromagnetic waves. Cartoons of typical experimental setups are shown in

Fig. 1.3. The left panel shows a reflectance (R) experiment and the right a transmittance

(T ) experiment. Light comes from a source (of known properties) that can emit a range

of wavelengths, encounters the sample, and goes to a detector where it is converted to

∗ The connection between high absorption, high conductivity, and high reflectance is not intuitive. For the

moment, I’ll just assert that all three go together. So at wavelengths where a material is opaque, it also has

increased reflectance. The more intense is the absorption, the higher the conductivity and also the higher the

reflectance. A hand-waving argument says that high conductivity means large currents in response to applied

electric fields; the power loss or absorption goes as j · E = σE2. See Section 4.5 for further discussion.
† Using λf = c, ν̃ = 1/λ, and E = hf with λ the wavelength, f the frequency in Hz, ν̃ the frequency in cm−1,

or wavenumber, E the photon energy, c the speed of light, and h Planck’s constant, 50 nm corresponds to a

frequency of 6 PHz (petaHertz), a wavenumber of 200,000 cm−1, and photon energies of 25 eV.
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4 Introduction

Fig. 1.2 The electromagnetic spectrum over a broad range of wavelengths. Things of various sizes are placed where their

dimension equals the wavelength. Spectral ranges are identiied and example sources are shown. (“IR” is short for

infrared.)

Fig. 1.3 Cartoon of an experiment where one measures relectance (left) or transmittance (right).

an electrical signal, is amplified, and recorded, yielding a spectrum of R or T vs. the

wavelength or the frequency. These ideas are only a good approximation to experiment

when the wavelength is small compared to the size of the sample or of the experimental

apparatus. When this condition is no longer the case, diffraction effects (by the sample not

by the atomic lattice) as well as waveguide effects in the surrounding apparatus become

important.∗

∗ One may of course measure materials properties all the way to zero frequency (infinite wavelength) by

electrical means: apply contacts and measure resistance, capacitance, etc. I will discuss the connection of optical

measurements to dc electrical properties a number of times.

www.cambridge.org/9781107160149
www.cambridge.org


Cambridge University Press
978-1-107-16014-9 — Optical Effects in Solids
David B. Tanner 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

5 Introduction

It makes little sense to be very precise in specifying the wavelength or frequency limits

over which optical concepts are important for the physics of solids. So I’ll say that I will

consider the wavelength range to be several cm to several tens of nm, the frequency range

to be a few GHz to a few PHz, and the photon energy range to be tens of µeV to tens of eV.

This range covers the bands labeled microwaves, far infrared, midinfrared, near infrared,

visible, and ultraviolet in Fig. 1.2. There is a factor of a million between one end and the

other; that should be enough for everybody.∗

In the following chapters, I’ll remind you a little bit about electromagnetism, including

Maxwell’s equations and their plane-wave solutions. I’ll then restrict myself for some

time to local, nonmagnetic, isotropic, homogeneous, and linear solids.† The motivations

for these restrictions are that the materials should be local, so that the current at point r

is a function only of the fields at r; nonmagnetic, because most solids are nonmagnetic

and because even magnetic materials only show themselves to be magnetic at rather low

frequencies; isotropic, so that the properties do not depend on the direction or polarization

of the light; homogeneous, so that the response functions do not depend on spatial position;

and linear, so that I may make a Fourier decomposition of the fields and treat each

component independently. With these approximations, I’ll introduce the idea of a complex

dielectric function, discuss classical theories of free carrier response in metals, interband

absorption in semiconductors and insulators, and lattice vibrations (phonons). Next, I will

show data from the literature to illustrate some of the concepts of these theories.

I return to electromagnetism to calculate the reflection and transmission by a thin film or

slab as a way to link experimental measurements to the optical properties of the material

making up the film. The next step is to introduce simple quantum mechanics, leading to a

discussion of free-electron metals, followed by a presentation of the quantum-mechanical

perturbation-theory of optical absorption, culminating in an important sum rule for the

conductivity. The sum rule result motivates an interlude about causality where I obtain

the Kramers–Kronig relations between the absorptive and dispersive parts of the response

function, discuss the analysis of reflectivity by Kramers–Kronig methods, and derive other

sum rules. My focus shifts back to materials, with a simple treatment of the optics of

superconductivity, a distinctly quantum-mechanical phenomenon. Next comes the band

structure of simple solids and the interband absorption edge in semiconductors, followed

by materials with strong correlations and interactions.

After this, it will be time to relax the initial conditions and discuss (one at a time!)

nonlocal properties, mostly the anomalous skin effect in a pure metal, wave propagation in

anisotropic materials, magneto-optics, and randomly inhomogeneous materials.‡ Several

appendices discuss units, some mathematics, and other things “optical.”

∗ In fact there are few materials that have been studied over the entire range. A much more typical range is in

wavelength from, say, 0.3 mm to 300 nm, far infrared to ultraviolet, a range of 103.
† Much of this discussion can apply to liquids as well, and even to a dilute gas, but the physics discussion will

rely on solid-state physics ideas: Fermi surfaces, band structure, etc.
‡ I’ll leave the huge subjects of quantum optics and nonlinear optics to others; I think it is better to say nothing

than to make short and probably superficial treatments.
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2 Maxwell’s Equations and PlaneWaves in Matter

2.1 Optical Constants

The response of materials to light is described by a number of quantities, often called

“optical constants.” Among these are:

• ǫ, the dielectric constant.

• σ , the electrical conductivity.

• χ , the susceptibility.∗

• n, the refractive index.

• κ , the extinction coefficient.

• δ, the electromagnetic skin depth.

• Z, the surface impedance.

and many others. See Appendix F for a longer but still incomplete list.

These quantities are neither constant nor independent. They are functions of the

frequency, temperature, pressure, external magnetic field, and many other things. By

knowing two of these, one that describes the absorption in the solid (such as the electrical

conductivity or the extinction coefficient) and one that describes dispersion (such as the

dielectric constant or the refractive index), all of the others can be calculated.

2.2 Maxwell’s Equations

In my initial Electricity and Magnetism course, the professor said that the subject is

governed by equations written in the nineteenth century by Maxwell [1] and that some

day a teacher would come in, write these equations on the blackboard on the first day of

the class and then proceed to develop a theory based on these equations. Of course in a

junior-level class, he did not do this, but I can do it here.

There are two versions: Maxwell’s microscopic equations and Maxwell’s macroscopic

equations. The first are more fundamental, because they describe the microscopic fields

arising from every charge in the Universe and from the motion of these charges as well.

∗ Electric and magnetic.
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7 2.2 Maxwell’s Equations

The second are more fun, because they average over the charges in macroscopic media∗

and allow great simplification of the subject.

After restricting myself to macroscopic charges and currents, I have ρext, the external

charge density, and j free, the free current density as sources in Maxwell’s equations. The

external charge density is essentially the charge imbalance in the medium; it is zero for

electrically neutral objects.† The free current density is the result of the motion of free

charges in the metal. The standard example of these mobile charges is the free electrons in

a metal, but could also be doped or thermally excited free carriers in a semiconductor or

the diffusion of ions in an electrolyte. Note that the free carriers are compensated by bound

ions in the electrically neutral material so these charges do not generate any external charge

density.

So let me begin by writing Maxwell’s equations for macroscopic media [2–8]. I’ll use

cgs-Gaussian units; the translation to SI units appears in Appendix B.

∇ · D = 4πρext (2.1a)

∇ · B = 0 (2.1b)

∇ × E = −1

c

∂B

∂t
(2.1c)

∇ × H = 4π

c
j free + 1

c

∂D

∂t
, (2.1d)

I must add a connection to classical mechanics to these equations. The force F on a

particle with electric charge q satisfies the Lorentz force law,

F = q
(

E + v

c
× B

)

, (2.2)

where v is the particle’s velocity vector.

The definitions of the auxiliary fields are

D = E + 4πP

H = B − 4πM. (2.3)

The quantities in Eqs. 2.1, 2.2, and 2.3 are all functions of space and time. The vector E

is called the “electric field” and the vector D is called the “electric displacement field.”

In vacuum, D and E are proportional to each other, with the multiplicative constant

ǫ0 depending on the physical units.‡ Inside a material they are different on account of

the polarization of the material. The vector P is the “polarization field,” also known as

the “electric polarization,” “electric polarization density,” or “electric dipole moment/unit

volume.” The vector B is called the “magnetic field,” and it and E are defined as the vector

∗ In the absence of external fields, the positive charges (the nuclei) in a uniform medium are perfectly screened

by the negative charges (the electrons) so that both may be omitted completely from the charges and currents

in Maxwell’s equations. External fields may polarize these charges (pushing + in one direction and − in the

opposite direction); the effects of such currents and dipole moments are the subject of our optical properties

studies.
† And it does not include any charge imbalance caused by external fields. This polarization gets included in the

dipole moment/unit volume P.
‡ Unity in cgs-Gaussian units.
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8 Maxwell’s Equations and Plane Waves in Matter

fields necessary to make the Lorentz law correctly describe the forces on a moving charged

particle. B is also called the “magnetic flux density,” or the “magnetic induction.” The

vector H is also sometimes called the “magnetic field.” Other names include the “magnetic

field intensity,” the “magnetic field strength,” and the “magnetizing field.” In vacuum, B

and H are proportional to each other, with the multiplicative constant μ0 depending on the

physical units.∗ Inside a material they are different on account of the magnetization of the

material. The scalar ρext is the “free volume charge density” and the vector j free is the “free

electric current density.” The vector M is the “magnetization field” or the “magnetic dipole

moment/unit volume.”

Three of the four Maxwell equations have names: Equation 2.1a is Gauss’ Law; Eq. 2.1c

is Faraday’s law of induction; and Eq. 2.1d is Ampère’s law with Maxwell’s correction.

I’ll just call it Ampère’s law. Eq. 2.1b is sometimes called Gauss’ law for magnetism but

is sometimes called the no-magnetic-monopole law. Others say that it has no name. I like

“the no-monopole law.”

2.3 Total, Free, and Bound Charges and Currents

If I view charges as being small point-like particles moving here and there in space, then a

classical-physics-style definition of the microscopic charge density in a solid might be

ρmicro(r,t) =
∑

i

qiδ(r − ri(t)),

whereas the current would be written

j micro(r,t) =
∑

i

qivi(t)δ(r − ri(t)).

Here, the sum i runs over all charged particles, qi is the charge of the ith particle, located

at (time-dependent) coordinate ri and moving with (time-dependent) velocity vi .

There are quantum mechanical versions of the charge density and current density also.

To use them requires a solution of Schrödinger’s equation in the solid. With the solution

in hand, I could then find the contribution of the electrons† (with charge −e) to the total

charge density to be ρe = −e�∗
e �e where �e is some total wave function of the electrons,

and, similarly je = −(h̄e/2mi) [�∗
e ∇�e − (∇�∗

e )�e].

Accounting for all the particles in a material with 1022 particles per cubic centimeter is

of course too hard, so I’ll average over some volume V . The scale of V is taken to be

large with respect to the interatomic spacing a and small with respect to the electromagnetic

wavelength λ, or

a3 ≪ V ≪ λ3.

∗ Unity in cgs-Gaussian units.
† Because of a choice made by Franklin, the electron is negative. I’ll take e to be a positive number and put the

sign in explicitly as needed.
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9 2.4 Maxwell’s Equations for Solids

The inequalities are easy to satisfy because a ∼ 0.1 nm and, according to the discussion

in Chapter 1, λ is bigger than 10 nm, so there is a factor of 106 between their cubes. The

charge and current then are written as averaged quantities, ρ(r,t) = qn(r,t) and j(r,t) =
ρ(r,t)vd(r,t), where q is the average charge of the particles, n is their number density, and

vd the average velocity in the volume V , known as the “drift velocity.”

The electrons and nuclei do not know that I would like to average them out, so they

still respond to applied fields, producing dipole moments in the material, P and M. These

bound or polarization charges, electric polarization currents, and magnetization currents are

determined by the physics of the solid. Then, the macroscopic polarization charge density

ρpol, the polarization current density j pol, and the magnetization current density j mag are

defined in terms of polarization P and magnetization M as ρpol = −∇ · P, j pol = ∂P/∂t ,

and j mag = c∇ × M.

Maxwell’s macroscopic equations reduce to the microscopic equations if one recog-

nizes that the microscopic, free, and bound charge and current density are related by

ρmicro = ρext + ρpol, and j micro = j free + j pol + j mag, and then uses Eq. 2.3 to eliminate D

and H.

2.4 Maxwell’s Equations for Solids

I am almost to a point where I can begin to address optical effects in solids. But there

are two things still to do. First, the world is in general electrically neutral,∗ so I will take

ρext = 0. For notational convenience, I will drop the “free” subscript on the current, with

the understanding that it is the free current that is meant.† Thus, j free → j.

Henceforth, I’ll use the form of Maxwell’s macroscopic equations written just below. I’ll

claim that these cover the most general cases that occur in the studies of optical effects in

solids. I’ll make further simplifications in the next several pages, but can always return to

these as a starting point.

∇ · D = 0 (2.4a)

∇ · B = 0 (2.4b)

∇ × E = −1

c

∂B

∂t
(2.4c)

∇ × H = 4π

c
j + 1

c

∂D

∂t
(2.4d)

The four parts of Eq. 2.4 have a certain pleasing symmetry. After I’ve defined and used the

complex dielectric function, this symmetry will become more perfect.

∗ Anyone who has been shocked by a static discharge after crossing a rug on a dry day or who has seen a lightning

strike from a thunderstorm knows (1) that this statement is not always true but (2) that the charge imbalance

does not last.
† And see the discussion in Section 3.1 where the distinction between free and bound currents will be blurred as

well.
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10 Maxwell’s Equations and Plane Waves in Matter

2.5 Plane-Wave Solutions

I write the electric field as a complex exponential

E(r,t) = E0e
i(q·r−ωt) (2.5)

and also the magnetic field

H(r,t) = H0e
i(q·r−ωt), (2.6)

where E0 and H0 are constant vectors giving the amplitudes of the fields (complex

quantities in the most general case) and their directions,∗ q is the wave vector of the field

(measured in cm−1 in cgs), and ω is the angular frequency (in radians/s or s−1). I choose

to use H rather than B, as does Jackson [2].

The quantity i =
√

−1 does not appear in Eqs. 2.1–2.4. Hence the only mechanism

to have equations that contain real and imaginary quantities is through writing the fields

as complex quantities, as in Eqs. 2.5 and 2.6. It would be perfectly valid to write

E = E0 cos(q · r − ωt + φe) and H = H0 cos(q · r − ωt + φm), where the phases φe and

φm allow for differing phases in electric and magnetic fields.† In this case, all quantities

in electromagnetism would be purely real quantities. I could do this; at a minimum it

would give fine training in the use of trigonometric identities, because as soon as I take

a derivative, there will be both sines and cosines in the math.

It is conventional to say that one writes the fields as complex quantities but when one

wants to evaluate the observable fields, the real part should be taken. This statement is

basically true, though one has to be careful in cases where two complex fields are multiplied

together.

I know from freshman physics that the crests and valleys of the wave repeat in space

(at fixed time) by a translation of the wavelength λ. From this assertion I get |q|λ = 2π

or |q| = 2π/λ. At a point in space, the wave repeats every time the time advances by the

period T ; hence ω = 2π/T = 2πf with f the frequency. Moreover, λf = v and ω = qv

with v the wave speed (= c in vacuum). See Appendix A for a discussion of units used for

length, time, frequency, energy, fields, and many other quantities used in optical studies.

The use of plane-wave fields may seem arbitrary or restrictive, but Fourier tells us that

E(r,t) =
∫

d3q

∫

dω E0(q,ω)ei(q·r−ωt),

with

E0(q,ω) =
∫

d3r

∫

dt E(r,t)e−i(q·r−ωt).

I can write an arbitrary field in terms of the Fourier integral, do the usual trick of exchanging

order of integration and differentiation, and find (for linear, local materials) that Maxwell’s

equations apply to each Fourier component.

∗ Hence, to be explicit I could write E0 = êE0eiφ0 , where ê is a unit vector pointing in the field direction, E0 is

the field magnitude, and φ0 is a constant phase which, when combined with (q · r − ωt), specifies where the

zeros, crests, and valleys of the wave occur.
† Alternatively, write E = Ec cos(q · r − ωt) + Es sin(q · r − ωt) and a similar equation for H.
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