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Chapter

1
Introduction to Digital Image Processing

1.1 Digital Images
Visible light is essentially electromagnetic radiation
with wavelengths between 400 and 700 nm. Each
wavelength corresponds to a different color. On the
other hand, a particular color does not necessarily
correspond to a single wavelength. Purple light, for
example, is a combination of red and blue light. In
general, a color is characterized by a spectrum of
different wavelengths.

The human retina contains three types of pho-
toreceptor cone cells, which transform the incident
light with different color filters. Because there are
three types of cone receptors, three numbers are nec-
essary and sufficient to describe any perceptible color.
Hence, it is possible to produce an arbitrary color
by superimposing appropriate amounts of three pri-
mary colors, each with its specific spectral curve. In
an additive color reproduction system, such as a color
monitor, these three primaries are red, green, and blue
light. The color is then specified by the amounts of
red, green, and blue (RGB). Equal amounts of red,
green, and blue yield white (see Figure 1.1(a)). Ideal
white light has a flat spectrum in which all wave-
lengths are present. In practice, white light sources
approximate this property. In a subtractive color
reproduction system, such as printing or painting,
these three primaries typically are cyan, magenta, and
yellow (CMY). Cyan is the color of a material, seen
in white light, that absorbs red and reflects green and
blue, and can thus be obtained by additive mixing
of equal amounts of green and blue light. Similarly,
magenta is the result of the absorption of green light
and consists of equal amounts of red and blue light,
and yellow is the result of the absorption of blue
and consists of equal amounts of red and green light.
Therefore, painting a white wall with a mixture of
cyan and magenta yields a blue color; using cyan and
yellow gives green, and yellow with magenta gives
red. Mixing yellow, cyan, and magenta paint pro-
duces black (i.e., only absorption and no reflection)

(b)(a)

Figure 1.1 Color mixing: (a) additive color mixing (b) subtractive
color mixing.

(see Figure 1.1(b)). Nevertheless, in print applications
black ink is typically added as a separate fourth basic
color for a variety of practical and quality reasons.
Black is abbreviated to “K,” yielding the CMYK color
model.

Note that equal distances in physical intensity are
not perceived as equal distances in brightness. Inten-
sity levels should rather be spaced logarithmically
instead of linearly to achieve equal steps in perceived
brightness. Hue refers to the dominant wavelength in
the spectrum and represents the different colors. Sat-
uration describes the amount of white light present in
the spectrum. If no white light is present, the satura-
tion is 100%. Saturation distinguishes colorful tones
from pastel tones at the same hue. In the color cone
of Figure 1.2, equal distances between colors by no
means correspond to equal perceptual differences.
The Commission Internationale de l’Eclairage (CIE)
has defined perceptually more uniform color spaces
like L∗u∗v∗ and L∗a∗b∗. A discussion of pros and cons
of different color spaces is beyond the scope of this
textbook.

While chromatic light needs three descriptors or
numbers to characterize its color, achromatic light, as
produced by a black-and-white monitor, has only one
descriptor, its brightness or gray value. Achromatic
light is light with a saturation of 0%. It contains only
white light.
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Chapter 1: Introduction to Digital Image Processing

Given a set of possible gray levels or colors and
a (rectangular) grid, a digital image attributes a gray
value (i.e., brightness) or a color (i.e., hue, saturation,
and brightness) to each of the grid points or pixels. In
a digital image, the gray levels are integers. Although
brightness values are continuous in real life, in a dig-
ital image we have only a limited number of gray
levels at our disposal. The conversion from analog
samples to discrete-valued samples is called quanti-
zation. Figure 1.3 shows the same image using two
different quantizations. When too few gray values are
used, contouring appears. The image is reduced to
an artificial looking height map. In order not to lose
information by quantizing the detected signal, many
more gray values are needed than what is strictly
necessary to avoid contouring artifacts. Most digi-
tal medical images today use 4096 gray values (12
bpp). The problem with so many gray values is that

Hue

Brightness

Saturation

Figure 1.2 Hue, brightness, and saturation. (Reprinted with
permission of The MathWorks Inc.)

subsequent values are not distinguishable anymore on
the display. One way to overcome this problem is by
expanding a small gray value interval into a larger one
with a suitable gray value transformation, as discussed
in Section 1.3.1 below.

In the process of digital imaging, the continuous
looking world has to be captured onto the finite num-
ber of pixels of the image grid. The conversion from a
continuous function to a discrete function, retaining
only the values at the grid points, is called sampling
and is discussed in detail in Appendix A.

Much information about an image is contained in
its histogram. The histogram h of an image is a prob-
ability distribution on the set of possible gray levels.
The probability of a gray value v is given by its relative
frequency in the image, that is,

h(v) =
Number of pixels having gray value v

Total number of pixels
. (1.1)

1.2 Image Quality
The resolution of a digital image is sometimes wrongly
defined as the linear pixel density (expressed in dots
per inch). This is, however, only an upper bound for
the resolution. Resolution is also determined by the
imaging process. The more blurring, the lower is the
resolution. Factors that contribute to the unsharp-
ness of a perceived image are the characteristics of the
imaging system, such as the focal spot, the amount of
detector blur, and the viewing conditions.

Resolution can be defined as follows. When imag-
ing a very small, bright point on a dark background,
this dot will normally not appear as sharp in the image
as it actually is. It will be smoothed, and the obtained

(c)(b)(a)

Figure 1.3 Image quantized with (a) 8 bpp, (b) 4 bpp, and (c) 3 bpp.
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(b)(a)

Figure 1.4 (a) Sharp bright spot on a dark background.
(b) Typical image of (a). The smoothed blob is called the point
spread function (PSF) of the imaging system.

blob is called the point spread function (PSF) (see Fig-
ure 1.4). An indicative measure of the resolution is
the full width at half maximum (FWHM) of the point
spread function. When two such smoothed blobs are
placed at this or a shorter distance from each other,
they will no longer be distinguishable as two separate
objects. If the resolution is the same in all directions,
the line spread function (LSF), i.e., the actual image of
a thin line, may be more practical than the PSF.

Instead of using the PSF or LSF it is also possible
to use the optical transfer function (OTF) (see Fig-
ure 1.5). The OTF expresses the relative amplitude
and phase shift of a sinusoidal target as a function of
frequency. The modulation transfer function (MTF)
is the amplitude (i.e., MTF = |OTF|) and the phase
transfer function (PTF) is the phase component of the
OTF. For small amplitudes, the lines may no longer
be distinguishable. An indication of the resolution is
the number of line pairs per millimeter (lp/mm) at a
specified small amplitude (e.g., 10%).

As explained in Appendix A, the OTF is the
Fourier transform (FT) of the PSF or LSF.

Contrast is the difference in signal intensity of
adjacent regions of the image. The contrast is defined
by (1) the imaging process, such as the source inten-
sity and the absorption efficiency or sensitivity of the

|OTF|

lp/mm

1

(a) (b)

Figure 1.5 (a) Point spread function (PSF). (b) Corresponding
modulation transfer function (MTF). The MTF is the amplitude of the
optical transfer function (OTF), which is the Fourier transform (FT) of
the PSF.

capturing device, (2) the scene characteristics, such
as the physical properties, size of the object, and the
use of contrast agents, and (3) the viewing conditions,
such as the room illumination and display equipment.
Remember that the OTF expresses the loss of contrast
for increasing frequencies. Because the OTF drops
off for larger frequencies, the contrast of very small
objects will be influenced by the resolution as well.

A third quality factor is image noise. The emission
and detection of light and all other types of elec-
tromagnetic waves are stochastic processes. Because
of the statistical nature of imaging, noise is always
present. It is the random component in the image. If
the noise level is high compared with the image inten-
sity of an object, the meaningful information is lost in
the noise. An important measure, obtained from sig-
nal theory, is therefore the signal-to-noise ratio (SNR
or S/N). For images the contrast-to-noise ratio (CNR)
is often used, where contrast corresponds to signal
difference between adjacent regions. Both contrast
and noise are frequency dependent. An estimate of
the noise can be obtained bymaking a flat-field image,
i.e., an image without an object between the source
and the detector.

∗

Artifacts are artificial image features such as dust
or scratches in photographs. Examples in medical
images are metal streak artifacts in computed tomog-
raphy (CT) images and geometric distortions in mag-
netic resonance (MR) images. Artifacts may also
be introduced by digital image processing, such as
edge enhancement. Because artifacts may hamper
the diagnosis or yield incorrect measurements, it is

∗ The noise amplitude as a function of spatial frequency
can be calculated from the square root of the noise power
spectrum (NPS), also called the Wiener spectrum, which is
the Fourier transform of the autocorrelation of a flat-field
image.
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Chapter 1: Introduction to Digital Image Processing

important to avoid them or at least understand their
origin.

In the following chapters, image resolution, con-
trast, noise, and artifacts are discussed for each of the
imaging modalities.

1.3 Basic Image Operations
In this section, a number of basic mathematical oper-
ations on images are described. They can be employed
for image enhancement, analysis, and visualization.

The aim ofmedical image enhancement is to allow
the clinician to better perceive all the relevant diag-
nostic information present in the image. In digital
radiography, for example, 12-bit images with 4096
possible gray levels are available. As discussed above,
it is physically impossible for the human eye to dis-
tinguish all these gray values at once in a single
image. Consequently, not all the diagnostic informa-
tion encoded in the image may be perceived. Mean-
ingful details must have a sufficiently high contrast to
allow the clinician to detect them easily.

The larger the number of gray values in the image,
the more important this issue becomes, as lower con-
trast features may become available in the image data.
Therefore, image enhancement will not become less
important as the quality of digital image capturing
systems improves. On the contrary, it will gain impor-
tance.

1.3.1 Gray Level Transformations
Given a digital image I that attributes a gray value
(i.e., brightness) to each of the pixels (i, j), a gray level

transformation is a function g that transforms each
gray level I(i, j) to another value I′(i, j) independent
of the position (i, j). Hence, for all pixels (i, j)

I′(i, j) = g(I(i, j)). (1.2)

In practice, g is an increasing function. Instead of
transforming gray values, it is also possible to oper-
ate on color (i.e., hue, saturation, and brightness). In
that case, three of these transformations are needed to
transform colors to colors.

Note that, in this textbook, the notation I is used
not only for the physical intensity but also for the
gray value (or color), which are usually not identical.
The gray value can represent brightness (logarithm
of the intensity, see Section 1.1), relative signal inten-
sity, or any other derived quantity. Nevertheless, the
terms intensity and intensity image are loosely used as
synonyms for gray value and gray value image.

If pixel (i1, j1) appears brighter than pixel (i2, j2)
in the original image, this relation holds after the
gray level transformation. The main use of such a
gray level transformation is to increase the contrast
in some regions of the image. The price to be paid
is a decreased contrast in other parts of the image.
Indeed, in a region containing pixels with gray val-
ues in the range where the slope of g is larger than
1, the difference between these gray values increases.
In regions with gray values in the range with slope
smaller than 1, gray values come closer together and
different values may even become identical after the
transformation. Figure 1.6 shows an example of such
a transformation.

(c)(b)(a)

Black

WhiteBlack

White

Figure 1.6 (a) A gray level transformation that increases the contrast in dark areas and decreases it in bright regions. It can be used when
the clinically relevant information is situated in the dark areas, such as the lungs in this example: (b) the original image, (c) the transformed
image.
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A particular and popular transformation is the
window/level operation (see Figure 1.7(a)). In this
operation, an interval or window is selected, deter-
mined by the window center or level l and the window
width w. Explicitly

gl,w(t) = 0 for t < l −
w

2

=
M

w

(

t − l +
w

2

)

for l −
w

2
≤ t ≤ l +

w

2

= M for t > l +
w

2
,

(1.3)

where M is the maximal available gray value. Con-
trast outside the window is lost completely, whereas
the portion of the range lying inside the window
is stretched to the complete gray value range. This
operation is very useful for images with a bimodal
histogram (see Figure 1.8).

An even simpler operation is thresholding (Fig-
ure 1.7(b)). Here all gray levels up to a certain thresh-
old tr are set to zero, and all gray levels above the
threshold equal the maximal gray value

gtr(t) = 0 for t ≤ tr

gtr(t) = M for t > tr.
(1.4)

This operation can be applied to CT images for the
segmentation of bony structures, which can subse-
quently be visualized in three dimensions or printed
with a 3D printer.

1.3.2 Multi-image Operations
A simple operation is adding or subtracting images in
a pixelwise way. For two images I1 and I2, the sum I+
and the difference I− are defined as

I+(i, j) = I1(i, j) + I2(i, j) (1.5)

I−(i, j) = I1(i, j) − I2(i, j). (1.6)

If these operations yield values outside the available
gray value range, the resulting image can be brought
back into that range by a linear transformation. The
average of n images is defined as

Iav(i, j) =
1

n
(I1(i, j) + · · · + In(i, j)). (1.7)

Averaging can be useful to decrease the noise in
a sequence of images of a motionless object (Fig-
ure 1.9). The random noise averages out, whereas
the object remains unchanged (if the images match
perfectly). This method can also be used for color
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Figure 1.7 (a)Window/leveling with
l = 1500,w = 1000. (b) Thresholding with
tr = 1000.
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(c)(b)(a)

Figure 1.8 (a) Bimodal histogram of the CT image shown in Figure 1.6(b). (b, c) Results of window/leveling with a bone window (dashed
line in (a)) and a lung window (solid line in (a)), respectively.
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(b)(a)

(d)(c)

Figure 1.9 Magnetic resonance image of a slice through the spine. Example of averaging to increase the CNR. (a) This image was obtained
with a T1-weighted turboSE sequence (see Section 4.5.8.2). (b) Same slice as in (a), obtained by repeating the sequence five times followed
by averaging. (c) Image obtained with a T2-weighted turboSE sequence. (d) Averaged image of five subsequent T2-weighted sequences.
(Courtesy of the Department of Radiology.)

images by averaging the different channels indepen-
dently like gray level images. Subtraction can be
used to get rid of the background in two similar
images. For example, in subtraction angiography, two
images are made, one with a contrast agent injected

in the blood vessels and one without a contrast agent.
Subtraction of these two images yields a pure image
of the blood vessels because the subtraction deletes
the other anatomical features. Figure 1.10 shows an
example.
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(c)(b)(a)

Figure 1.10 (a) Radiographic image showing a stent graft for endovascular aneurysm repair. (b) The same exposure after contrast
injection. (c) Subtraction of (b) and (a), followed by contrast enhancement. The subtraction image clearly shows an endoleak, that is, blood
flowing into the aneurysm sac via a branch vessel, a common complication after an endovascular aneurysm repair. (Courtesy of Professor
G. Maleux, Department of Radiology.)

1.3.3 Geometric Operations
It is often necessary to perform elementary geomet-
ric operations on an image, such as scaling (zoom-
ing), translation, rotation, and shear. Examples are the
registration of images (see Section 7.6.1.1) and image-
to-patient registration for image-guided surgery (see
Section 8.6.2). A spatial or geometric transformation
assigns each point (x, y) to a new location (x′, y′) =
S(x, y). The most common two-dimensional (2D)
transformations can be written using homogeneous
coordinates:

scaling

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

sx 0 0
0 sy 0
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠

translation

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

1 0 tx
0 1 ty
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠

shear

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

1 ux 0
uy 1 0
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠

rotation

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠

general affine

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

a11 a12 tx
a21 a22 ty
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠ .

(1.8)

Composition of two such transformations amounts to
multiplying the corresponding matrices.

A general affine 2D transformation depends on six
parameters and includes scaling, translation, shear,
and rotation as special cases. Affine transformations
preserve parallelism of lines but generally not lengths
and angles. Angles and lengths are preserved by
orthogonal transformations (e.g., rotations and trans-
lations)

orthogonal

⎛

⎝

x′

y′

1

⎞

⎠ =

⎛

⎝

r11 r12 tx
r21 r22 ty
0 0 1

⎞

⎠

⎛

⎝

x
y
1

⎞

⎠ ,

(1.9)

where the 2 × 2 matrix R = (r11 r12
r21 r22

) is subject to the

constraint RTR = 1.
A pixel (x, y) = (i, j) of image I(i, j) will be mapped

onto (x′, y′), and x′ and y′ are usually no longer integer
values. To obtain a new image I′(i′, j′) on a pixel grid,
interpolation is used. For each (i′, j′) the gray value
I′(i′, j′) can then be calculated by simple (e.g., bilinear)
interpolation between the gray values of the pixels of
I lying closest to the inverse transformation of (i′, j′),
i.e., S−1(i′, j′).

Today the majority of medical images are three
dimensional (3D). The above matrices can easily
be extended to three dimensions. For example, the
general affine 3D transformation can be written as

7

www.cambridge.org/9781107159785
www.cambridge.org


Cambridge University Press
978-1-107-15978-5 — Fundamentals of Medical Imaging
Paul Suetens 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Chapter 1: Introduction to Digital Image Processing

general affine

⎛

⎜

⎜

⎝

x′

y′

z′

1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
0 0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x
y
z
1

⎞

⎟

⎟

⎠

.

(1.10)

While most medical images are three dimensional,
interventional imaging is often still two dimensional.
To map 3D image data onto a 2D plane, a projective
transformation is needed. Assuming a pinhole cam-
era, such as an X-ray tube, with focal point (0, 0, 0),
any projection line through (x, y, z) intersects the pro-
jection plane z = f in the point (xp, yp) as follows

x

xp
=

z

f
y

yp
=

z

f
.

(1.11)

This projection can be written in matrix form as
follows:

⎛

⎝

λ.xp
λ.yp
λ

⎞

⎠ =

⎛

⎝

f 0 0 0
0 f 0 0
0 0 1 0

⎞

⎠

⎛

⎜

⎜

⎝

x
y
z
1

⎞

⎟

⎟

⎠

(1.12)

with λ being an arbitrary value.
Using homogeneous coordinates, the above geo-

metric transformations can all be represented by
matrices. In some cases, however, it can be necessary
to use more flexible transformations. For example,
the superposition of images in dynamic or follow-up
studies may be hampered by patient movement and
tissue deformation; the spatial alignment of images
of different patients in population studies has to
cope with intra-patient shape variability; and unde-
sired deviations of the magnetic field in magnetic
resonance imaging (see p. 107) can cause complex
geometric distortions.

1.3.4 Filters
1.3.4.1 Linear Filters

From linear system theory (see Eq. A.22), we know
that an image I(i, j) can be written as follows:

I(i, j) =
∑

k,l

I(k, l)δ(i − k, j − l). (1.13)

For a linear shift-invariant transformation L (see also
Eq. A.31),

L(I)(i, j) =
∑

k,l

I(k, l)L(δ)(i − k, j − l)

=
∑

k,l

I(k, l)f (i − k, j − l)

=
∑

k,l

f (k, l)I(i − k, j − l)

= f ∗ I(i, j), (1.14)

where f is called the kernel or filter, and the linear
transformation on the digital image I is the discrete
convolution with its kernel f = L(δ).

In practice, the flipped kernel h defined as h(i, j) =
f (−i,−j) is usually used. Hence, Eq.(1.14) can be
rewritten as

L(I)(i, j) = f ∗ I(i, j)

=
∑

k,l

f (k, l)I(i − k, j − l)

=
∑

k,l

h(k, l)I(i + k, j + l)

= h • I(i, j), (1.15)

where h • I is the cross-correlation of h and I. If the
filter is symmetric, which is often the case, cross-
correlation and convolution are identical.

A cross-correlation of an image I(i, j) with a ker-
nel h has the following physical meaning. The kernel
h is used as an image template or mask that is shifted
across the image. For every image pixel (i, j), the tem-
plate pixel h(0, 0), which typically lies in the center of
the mask, is superimposed onto this pixel (i, j), and
the values of the template and image that correspond
to the same positions are multiplied. Next, all these
values are summed. A cross-correlation emphasizes
patterns in the image similar to the template.

Often local filters with only a few pixels in diam-
eter are used. A simple example is the 3 × 3 mask
with values 1/9 at each position (Figure 1.11). This
filter performs an averaging on the image, making it
smoother and removing some noise. The filter gives
the same weight to the center pixel as to its neigh-
bors. A softer way of smoothing the image is to give
a high weight to the center pixel and less weight to
pixels further away from the central pixel. A suitable
filter for this operation is a sampled Gaussian kernel

g(�r) =
1

2πσ 2
exp

(

−r2

2σ 2

)

�r = (i, j). (1.16)8
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1/9

1/9 1/9 1/9

1/91/9 1/9

1/9 1/9

(a) (b)

Figure 1.11 (a) 3 × 3 averaging filter. (b) The filter as floating
image template or mask.

Small values are put to zero in order to produce a
local filter. The Fourier transform of the Gaussian is
again Gaussian. In the Fourier domain, convolution
with a filter becomesmultiplication (see Appendix A).
Taking this into account, it is clear that a Gaussian
filter attenuates the high frequencies in the image.
These averaging filters are therefore also called low-
pass filters. In contrast, filters that emphasize high
frequencies are called high-pass filters. A high-pass fil-
ter can be constructed simply from a low-pass one by
subtracting the low-pass filter g from the identity filter
δ. A high-pass filter enhances small-scale variations
in the image. It extracts edges and fine textures. An
example of low-pass and high-pass filtering is shown
in Figure 1.12.

Another type of linear filters are differential oper-
ators such as the gradient and the Laplacian. How-
ever, these operations are not defined on discrete
images. Because derivatives are defined on differen-
tiable functions, the computation is performed by first
fitting a differentiable function through the discrete
dataset. This can be obtained by convolving the dis-
crete image with a continuous function f . The deriva-
tive of this result is evaluated at the points (i, j) of
the original sampling grid. For the 1D partial deriva-
tive, this sequence of operations can be written as
follows:

∂

∂x
I(i, j)

≈

⎡

⎣

∂

∂x

⎛

⎝

∑

k,l

I(k, l)f (x − k, y − l)

⎞

⎠

⎤

⎦

x=i,y=j

=

⎡

⎣

∑

k,l

∂f

∂x
(i − k, j − l)I(k, l)

⎤

⎦ . (1.17)

Hence, the derivative is approximated by a convolu-
tion with a filter that is the sampled derivative of some
differentiable function f (�r). This procedure can now
be used further to approximate the gradient and the
Laplacian of a digital image:

∇I = ∇f ∗ I

∇2I = ∇2f ∗ I,
(1.18)

where it is understood that we use the discrete convo-
lution. If f is a Gaussian g, the following differential
convolution operators are obtained:

∇g(�r) = −
1

σ 2
g(�r) · �r

∇2g(�r) =
1

σ 4
(r2 − 2σ 2) · g(�r).

(1.19)

For σ = 0.5, this procedure yields approximately the
following 3 × 3 filters (see Figure 1.13):

gaussian

0.01 0.08 0.01

0.08 0.64 0.08

0.01 0.08 0.01

∂

∂x

0.05 0 –0.05

0.34 0 –0.34

0.05 0 –0.05

∂

∂y

0.05 0.34 0.05

0 0 0

–0.05 –0.34 –0.05

∇2
0.3 0.7 0.3

0.7 –4 0.7

0.3 0.7 0.3

Note that integration of a Gaussian over the whole
spatial domain must be 1, and for the gradient and
Laplacian this must be 0. To satisfy this condition, the
numbers in the templates above, which are spatially
limited, were adapted.

The Laplacian of a Gaussian (LoG) is often
approximated as a difference of Gaussians (DoG)
with different values of σ . This can be derived from
the partial derivative of a Gaussian function with
respect to σ , which can be written as

∂g(�r)

∂σ
= σ∇2g(�r). (1.20) 9
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(c)(b)(a)

Figure 1.12 (a) Chest radiography. (b) Low-pass filtered image with a Gaussian filter (σ = 2.2mm). (c) High-pass filtered image obtained
by subtracting (b) from (a).
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(d)(c)

Figure 1.13 (a) A Gaussian function. (b) Derivative of the
Gaussian in the x-direction. (c) Derivative of the Gaussian in the
y-direction. (d) Laplacian of the Gaussian.

Approximating this partial derivate as

∂g(�r)

∂σ
≈

g(�r, kσ ) − g(�r, σ )

kσ − σ
, (1.21)

for small-scale factors k, Eq. 1.20 becomes

g(�r, kσ ) − g(�r, σ ) ≈ (k − 1)σ∇2g(�r). (1.22)

Popular derivative filters are the Sobel operator
for the first derivative, and the average − δ for the
Laplacian, which use integer filter elements:

Sobel

1 0 − 1

2 0 − 2

1 0 − 1

average − δ

1 1 1

1 − 8 1

1 1 1

Note that if we compute the convolution of an
image with a filter, it is necessary to extend the image
at its boundaries because pixels lying outside the
image will be addressed by the convolution algorithm.
This is best done in a smooth way, for example, by
repeating the boundary pixels. If not, artifacts appear
at the boundaries after the convolution.

As an application of linear filtering, let us dis-
cuss edge enhancement using unsharp masking. Fig-
ure 1.14 shows an example. As already mentioned, a
low-pass filter g can be used to split an image I into
two parts: a smooth part g ∗ I and the remaining high-
frequency part I − g ∗ I, containing the edges in the
image or image details. Hence

I = g ∗ I + (I − g ∗ I). (1.23)

Note that I − g ∗ I is a crude approximation of the
Laplacian of I. Unsharp masking enhances the image
details by emphasizing the high-frequency part and
assigning it a higher weight. For some α > 0, the
output image I′ is then given by

10
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