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interesting methods and techniques that appear to have been overlooked or are not

generally well known. Of particular note are Jacobi’s derivation of the ininite prod-
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Preface

Modular function theory has developed a great deal during the past two hundred years,

and its foundations have been reworked several times. During the course of this process,

some earlier approaches andmethods have naturally fallen into disuse or obscurity. The

purpose of this work is to present the fundamental results of modular function theory

as developed during the nineteenth and early twentieth centuries, focusing particularly

on those interesting methods and techniques that appear to have been overlooked or are

not generally well known. While the study of these methods has intrinsic value, it may

also be useful to contemporary researchers in modular function theory. The study of

nineteenth-century mathematics is often believed to be quite cumbersome, but a little

familiarity with its mode of presentation and context readily dissolves much of this

obstacle. To illustrate this point, I have remained very close to the original expositions

and have provided some details about the creators of modular function theory. It is my

hope that substantial portions of this book will be accessible to beginning graduate

students, and to undergraduates with a solid knowledge of complex analysis.

The triple product identity is the expression of a theta series as an ininite product,

and by 1808 this identity was known to Gauss; Chapter 2 is devoted to Gauss’s work

on theta functions. A special case of the triple product identity, known as the pentag-

onal number theorem, was conjectured by Euler in 1741 and proved by him in 1750.

This theorem is so named because the powers of the variable in the series are pentag-

onal numbers. Euler proved this result by a very interesting and fruitful method, and

Gauss, perhaps around 1796–97, showed that the method could also be applied to the

situation in which the powers were squares or triangular numbers. This work of Gauss

has received hardly any attention. In 1882, Cayley applied this method to reprove an

important identity of Sylvester. Again, in 1919, Ramanujan employed it to prove the

Rogers-Ramanujan identity. More recently, Andrews has shown that Euler’s method

can be applied to verify several signiicant q-series identities.

Jacobi’s fundamental results on ininite products for the Jacobi elliptic functions

are discussed in Chapter 3. These ininite products may be obtained in several ways,

one due to Abel; most expositions use the method of theta functions, found by Jacobi.

However, we present Jacobi’s irst method, given in his Fundamenta Nova of 1829.

This method employs the transformation of elliptic functions, a method that has hardly

ix
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x Preface

appeared in textbooks since 1900. We also present Jacobi’s three proofs of the triple

product identity, especially Jacobi’s little-known and ingenious irst proof.

Eisenstein’s method of constructing elliptic and modular functions and his proofs

of important basic results have been given in Chapter 4, closely following Eisenstein’s

1847 monograph in some detail. We remark that Weil’s excellent book1 gives a concise

presentation of this material. Chapter 4 also contains Hurwitz’s irst 1881 proof of the

fact that Weierstrass’s discriminant function �(ω) is expressible as an ininite product

in q = eiπ ω, Im ω > 0. Hurwitz’s elegant and more familiar second proof is presented

in Chapter 12.

Hermite’s noteworthy and useful 1858 work on the transformation of theta functions,

dealt with in Chapter 5, led him to his most signiicant contributions to modular func-

tion theory. Hermite employed a powerful new theta functions notation, depending

upon two indices. We also discuss Smith’s 1866 paper, in which he used this help-

ful notation to prove Jacobi’s formula for the product of four theta functions, a for-

mula from which many other results in elliptic and theta function theory can be easily

derived. Jacobi brielymentioned this formula without any details in a letter to Hermite,

included by Jacobi in his 1847 Opuscula Mathematica. He wrote that he had derived

this formula in his lectures on theta series, delivered in the mid-1830s. These lectures

were not available at the time Smith read the Opuscula, though they were later pub-

lished by Borchardt. These lectures have been treated in textbooks, including Stalker’s

outstanding 1998 book,2 but Smith’s work, initiated by Jacobi’s passing remark, has

received little attention.

After the initial work by Abel and Jacobi on elliptic and modular functions, mathe-

maticians realized that further advances in this theory required the use of the then-novel

methods of complex analysis; we discuss these matters in Chapter 6. Also included is

a treatment of the much earlier work of Cotes, of about 1715, and de Moivre, of the

1720s, on the factorization of xn − an, and Simpson’s 1759 dissection of an ininite

series, since these results were applied by Sohnke in 1837 and others to determine

the modular equation. Hermite’s method of 1848 for construction of elliptic functions,

also included in Chapter 6, is a topic now fallen into some obscurity. He started with

the observation that a periodic entire function could not have a second period without

becoming a constant. He then considered the ratio of two periodic entire functions,

each with the same period, and enquired as to the conditions under which this func-

tion could have a second period. A particular case of his solution produced the Jacobi

elliptic functions as the ratios of theta functions.

Hypergeometric functions, the topic of Chapter 7, encompass many important func-

tions as special or limiting cases. As such, they were a major focus of nineteenth-

century mathematical research, on which Gauss, Kummer, and Riemann wrote impor-

tant papers. Gauss’s early interest in hypergeometric functions was aroused by his

observation that the complete elliptic integral K could be expressed as a hypergeomet-

ric function of k2. Then Riemann, in his 1856–57 lectures on hypergeometric functions,

was able to express them as contour integrals; this insight led him to a proof that the

1 Weil (1976). 2 Stalker (1998).
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Preface xi

modulus k2 was invariant with respect to the principal congruence subgroup of level 2.

Although it is a striking example of the way an integral changes as the contour moves

around singular points, Riemann’s fascinating proof of this theorem does not seem to

have made its way into our textbooks or discussions.

Dedekind’s impressive effort to provide a foundation for the theory of modular func-

tions independent of elliptic functions is the main topic of Chapters 8 and 9. He

described the fundamental domain of the modular group and deined the modular

invariant by means of a conformal mapping of the fundamental domain onto the com-

plex plane. He denoted this mapping function by v; a year later, Klein named it J, so

that it has since been called Klein’s J invariant. Dedekind also introduced his famous

η function, deined as

η(ω) = cv− 1
6 (ω) (1 − v)−

1
8

(

dv

d ω

)
1
4

,

where c denotes a constant. He then deined the elliptic modular functions k2, K, k′2,

and K′ in terms of the η function. Dedekind regretted the fact that, in the end, he was

forced to employ theta functions to show that the η function could be expressed as an

ininite product. Hurwitz used Eisenstein series to overcome this dificulty.

Modern mathematicians deine the η function immediately as an ininite product,

and, in fact, Dedekind himself had taken this step in his comments on some frag-

mentary results of Riemann. In these remarks, Dedekind proved, without the use of

integrals, that the modular transformation of the η function was expressible in terms

of a inite arithmetical sum. Rademacher called this a Dedekind sum and developed

its properties independent of its η function origins. For example, he proved that the

Dedekind sum could be expressed as a inite sum of values of the cotangent func-

tion. Chapter 9 includes Rademacher’s irst proof of this result, utilizing integrals; the

proof given by Rademacher in his well-known book on Dedekind sums avoids this

device.

Weierstrass and Klein elucidated the relationship of algebraic invariants and modular

forms, the topic of Chapter 10. Klein gave the modern deinition of the J invariant:

J(ω) =
g32(ω)

�(ω)
.

He then showed that his invariant-theoretic approach allowed him to apply Jacobi’s

results to obtain the ininite product for � and the Lambert series expansion for g2.

Chapter 11 discusses modular and multiplier equations, connecting up Jacobi’s

work with that of Dedekind, Klein, Kiepert, and Hurwitz, and leading to Mordell’s

resolution of Ramanujan’s conjectures. Even before he discovered elliptic functions,

Jacobi used a trial-and-error method to ind modular equations of orders 3 and 5.

Upon discovering elliptic functions, Jacobi was able to establish the p+ 1 roots of

the modular equation of prime order p. A few years later, Sohnke made use of these

roots to construct modular equations of orders 7, 11, 13, 17, and 19. Jacobi also found

the ifth-order multiplier equation. Three decades later, Joubert showed that methods

analogous to those of Sohnke could be employed to develop multiplier equations of
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small prime order. Chapter 11 gives an expanded treatment of the methods of Sohnke

and Joubert, who were mentioned briely by Borwein and Borwein.3

Kiepert and Klein saw that 12
√

�(ω) could be interpreted as a multiplier in the trans-

formation of an elliptic integral. Klein came to this conclusion by way of his invariant-

theoretic approach, whereas Kiepert arrived at this idea through his use of Weierstrass

elliptic functions to solve algebraic equations of the ifth degree. As Kiepert’s teacher,

Weierstrass had suggested that such amethodmight lead to a solution of a general equa-

tion of the ifth degree without its reduction to an equation of a special form. Although

this suggestion did not pan out, it led Kiepert to the consideration of the transformation

equation satisied by 12
√

�(pω) . Klein gave the roots of the general equation of order p

up to a factor of a twelfth root of unity. His student, Hurwitz, determined these twelfth

roots exactly in his 1881 thesis. It was this work of Hurwitz that Mordell employed

to resolve the conjectures of Ramanujan on Euler products associated with modular

forms.

The ideas of Hurwitz’s innovative 1904 paper are well known and have appeared in

many textbooks, perhaps because Serre discussed them in a 1957 seminar and soon

thereafter presented them in his Cours d’arithmétique. Previous chapters concentrated

primarily onmethods now little known; by contrast, Chapter 12 presents familiar results

and methods within modular function theory, but as Hurwitz irst thought them out.

Such mathematical results, as originally conceived and presented even one hundred

or more years ago, may well reveal completely new or lost insights and avenues. A

translation of Hurwitz’s original 1904 paper is included as an appendix to this book,

by which the reader may see that the ideas contained in old mathematical papers are

often very accessible.

Ramanujan may be seen as the founder of an essential aspect of the theory of mod-

ular forms: the theory of Euler products, the topic of Chapter 13. It is generally well

known that Ramanujan conjectured that the Dirichlet series associated with �(ω) had

an Euler product. However, his work in this area was much more extensive, includ-

ing his statement that similar Euler products must exist for
√

�, g2 �, g3 �, g22 �,

g2 g3 �, g22 g3 �. Moreover, he correctly surmised that linear combinations of modular

forms of a given level had Euler products even when the original modular forms did

not. This led Birch to remark in 19754 that Ramanujan’s insight into the arithmetic of

modular forms was greater than initially realized. It is often mentioned that Mordell

proved Ramanujan’s conjecture on �(ω), usually in the context of Hecke’s work. But

again, as we discuss in Chapter 13, Mordell also proved Ramanujan’s conjectures that

other related modular forms had Euler products.

Hecke’s work on Dirichlet series and modular forms, that is, series and functions of

signature {λ, k, γ }, has been thoroughly treated in Berndt and Knopp’s recent book.5

Consequently, I have conined Chapter 14 to the background to and foundation for

Hecke’s work and a key result of Hecke on the dimension of the space of functions of

signature {2, k, 1}. Chapter 15 is devoted to Hecke’s little-known work on representa-

tions of integers as sums of squares, with additional mention of Glaisher’s contribu-

tions in this area. In lectures at Princeton and Michigan in 1938, Hecke showed how

3 Borwein and Borwein (1987). 4 Birch (1975). 5 Berndt and Knopp (2008).
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Dirichlet series of signature {2, k, 1}, with k a positive integer, could be applied to the

problem of the number of representations of an integer as a sum of an even number of

squares. Hecke is not mentioned in Grosswald’s encyclopedic work of 19836 on sums

of squares; Berndt and Knopp mention this work of Hecke without too much detail.

Hecke operators on modular forms for the full modular group is the topic of

Chapter 16, with the exposition closely following Hecke’s own treatment of the topic.

Thus, this chapter completes the narrative of the previous three chapters on the connec-

tion between modular forms and Dirichlet series. Because Hecke was unaware that his

operators were Hermitian, his work is somewhat labored and incomplete; still, it is of

interest to note how much he could do under this constraint. Hecke’s student Petersson

showed that the operators were Hermitian, thus greatly simplifying the theory.

In this book we can see in some detail that a study of the relevant works of past

centuries can greatly expand one’s mathematical perspective and tool box. In addition,

as one studies the development of the theory of modular functions, one encounters

acknowledged masters, such as Gauss, Dedekind, Hecke, and others. Yet neglecting

the work of lesser-knownmathematicians, such as Joubert, Kiepert, and Sohnke, would

be regrettable, since they added signiicant insights and advances. Clearly, the rate of

mathematical output has increased at least thirty- or forty-fold since the early twentieth

century. Thus, there is a relatively small body of work dating from the nineteenth or

earlier centuries, and of this body, very few papers are of lasting interest within a given

topic. Reading those few papers is not excessively demanding, and the beneits of so

doing, especially for one’s teaching, far outweigh any inconvenience. With increasing

electronic availability, study of the old works has been made even easier.

My next volume will focus on the developments in modular forms after Hecke’s

1935–37 papers, discussing connections with topics such as quadratic forms, ellip-

tic curves, and Ramanujan’s conjectures on partitions. There exist many introductory

works on such topics, so I will attempt to elucidate important and interesting aspects

of the more advanced topics within a manageable number of pages.

I irst thank my wife for typesetting and editing this work and for her valuable help

in translating; note here that unattributed translations are mine. I am indebted to NFN

Kalyan for creating the wonderful portrait of Gauss for the cover. Kalyan’s work is

constructed of ten layers of etched glass, illuminated by colored LED light. I also owe

a great debt to Kieran Donaghue for his expert assistance in German translations. I

am grateful for Bruce Atwood’s and Zhitai Li’s skillful construction and corrections

of diagrams. Cindy Cooley and Chris Nelson provided indispensable help with library

materials; Sarah Arnsmeier assisted me with secretarial work. Thanks to Paul Camp-

bell for guidance on making the bibliography. Finally, I thank Ann Davies and Beloit

College for supporting me during the process of preparing this book.

6 Grosswald (1983).
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