Cognitive Neuroscience

Updated fully, this accessible and comprehensive text highlights the most important theoretical, conceptual, and methodological issues in cognitive neuroscience. Written by two experienced teachers, the consistent narrative ensures that students link concepts across chapters, and the careful selection of topics enables them to grasp the big picture without getting distracted by details. Clinical applications such as developmental disorders, brain injuries, and dementias are highlighted. In addition, analogies and examples within the text, opening case studies, and “In Focus” boxes engage students and demonstrate the relevance of the material to real-world concerns. Students are encouraged to develop the critical thinking skills that will enable them to evaluate future developments in this fast-moving field. A new chapter on Cognitive Neuroscience and Society considers how cognitive neuroscience issues relate to the law, education, and ethics, highlighting the clinical and real-world relevance. An expanded online package includes a test bank.

Marie T. Banich uses brain imaging techniques to understand the neural systems that enable us to direct actions and thoughts in a goal-oriented manner, often referred to as executive function. Her research findings have been published in leading journals, including Science. Among her professional experiences, Professor Banich has been a member of the MacArthur Foundation on Adolescent Development and Juvenile Justice, a Fulbright Senior Scholar in Verona, Italy, and a recipient of a James Cattell sabbatical award. Currently she serves as the co-Principal Investigator for the Colorado site of the Adolescent Brain Cognitive Development study, an unprecedented 10-year longitudinal study that uses neuroimaging to provide an unrivaled window on development of the adolescent brain and its influences on cognitive and emotional development.

Rebecca J. Compton has taught at Haverford College since 1999 and in 2012 she received Haverford’s prestigious Lindback Award for Distinguished Teaching. She received her BA from Vassar College and her PhD in biological psychology from University of Chicago. She is the recipient of several NSF and NIH grants for research in primarily undergraduate institutions and has served on the Education and Training Committee of the Society for Psychophysiological Research.
Cognitive Neuroscience
Marie T. Banich
University of Colorado Boulder
Rebecca J. Compton
Haverford College, Pennsylvania
CONTENTS

Preface xv
Acknowledgments xviii
Dedication xx

Part I Fundamentals 1
Chapter 1 Introduction to the Nervous System 2
Chapter 2 Historical Perspectives 41
Chapter 3 Methods 68

Part II Neural Bases of Mental Functions 99
Chapter 4 Motor Control 100
Chapter 5 Sensation and Perception 136
Chapter 6 Object Recognition 167
Chapter 7 Spatial Cognition 198
Chapter 8 Language 223
Chapter 9 Memory and Learning 256
Chapter 10 Attention 296
Chapter 11 Executive Function and Higher-Order Thinking 332
Chapter 12 Emotion 367
Chapter 13 Social Cognition 394

Part III Broader Applications 421
Chapter 14 Psychopathology 422
Chapter 15 Brain Development and Plasticity 455
Chapter 16 Generalized Cognitive Disorders 491
Chapter 17 Cognitive Neuroscience and Society 522

Glossary 543
References 557
Index 647
CONTENTS

Preface xv
Acknowledgments xviii
Dedication xx

Part I Fundamentals 1
Chapter 1 Introduction to the Nervous System 2
WHAT IS COGNITIVE NEUROSCIENCE? 3
BASIC BUILDING BLOCKS OF THE NERVOUS SYSTEM: NEURONS AND GLIA 4
NEUROANATOMICAL TERMS AND BRAIN "GEOGRAPHY" 4
MAJOR SUBDIVISIONS OF THE CENTRAL NERVOUS SYSTEM 7
Spinal Cord 7
Medulla: Control of Basic Functions 8
Cerebellum: Fluid Movement 9
Pons: A Connective Bridge 10
Midbrain: Orienting by Sound and Sight 10
Hypothalamus: Maintaining the Body’s Equilibrium 11
Thalamus: Gateway to the Cortex 12
Major Subcortical Systems: The Basal Ganglia and the Limbic System 12
Cerebral Cortex 12
A CLOSER LOOK AT NEURONS 14
Electrochemical Signaling in the Nervous System 14
Neurotransmitters 19
In Focus: Can Herbs Really Improve Your Memory, Attention, and Mood? 24
Myelination 25
A CLOSER LOOK AT THE CEREBRAL CORTEX 26
Cytoarchitectonic Divisions 26
Primary Sensory and Motor Cortices 27
Association Areas 33
White-Matter Tracts 36
SUMMARY 39

Chapter 2 Historical Perspectives 41
ANCIENT TIMES UNTIL THE 1800S 42
THE TWENTIETH CENTURY: HEYDAY OF THE LESION METHOD 43
Single-Case Versus Group Studies 44
Inferences That Can Be Drawn From the Lesion Method 45
Limitations of the Lesion Method 46
THE 1960S, 70S, AND 80S 46
Studies With Nonhuman Animals 46
In Focus: Discovery of the “Homunculus” 48
Electrophysiological Methods 49
Disconnection Syndromes 51
Split-Brain Studies 53
Hemispheric Specialization: Left Brain, Right Brain 54
In Focus: Left Out? Lateralization in Non-Right-Handers 59
THE 1980S AND 90S: THE ADVENT OF BRAIN IMAGING 62
Contents

Chapter 3 Methods 68

INTRODUCTION 69
PARTICIPANT POPULATIONS 70
Clinical Populations 70
Neurologically Intact Individuals 70
TECHNIQUES FOR ANALYZING BEHAVIOR 71
The Role of Cognitive Theories 71
Assessment of Behavior in Brain-Damaged Populations 71
TECHNIQUES FOR ASSESSING BRAIN ANATOMY: STRUCTURAL MAGNETIC RESONANCE IMAGING (SMRI) 74
The Basics of Magnetic Resonance Imaging (MRI) 74
Regional Brain Structure 76
Anatomical Connectivity 76
TECHNIQUES FOR REVEALING WHERE IN THE BRAIN ACTIVITY IS OCCURRING 77
Neurochemical Methods: Positron Emission Tomography and Magnetic Resonance Spectroscopy 78
Oxygen-Related Methods: Functional Magnetic Resonance Imaging (fMRI) 79
In Focus: Participating in a Functional Magnetic Resonance Imaging Study 83
ELECTROMAGNETIC RECORDING METHODS 85
Electroencephalography 85
Event-Related Potentials 86
Magnetoencephalography 88
OPTICAL RECORDING METHODS 89
TECHNIQUES FOR MODULATING BRAIN ACTIVITY 90
Transcranial Magnetic Stimulation (TMS) 90
Transcranial Direct Current Stimulation (tDCS) 91
MULTILEVEL AND MULTI-MODAL APPROACHES 92
COMBINING COMPUTATIONAL AND NEUROIMAGING APPROACHES 95
SUMMARY 97

Part II Neural Bases of Mental Functions 99
Chapter 4 Motor Control 100

INTRODUCTION 102
PERIPHERAL CONTROL OF MOVEMENT 102
Motor Tracts 102
BRAIN STRUCTURES INVOLVED IN MOTOR CONTROL 104
Subcortical Regions 104
Cortical Regions 110
Integrated Models of the Motor System 123
In Focus: Using Brain Activation to Control Prosthetic Limbs 125
MOTOR DISORDERS 126
Subcortical Motor Disorders 127
Cortical Motor Disorders 132
SUMMARY 135
Chapter 5 Sensation and Perception 136

THE RETINA 138
Photoreceptors 138
Ganglion Cells 139
Receptive Fields 140

PATHWAYS FROM THE RETINA TO THE BRAIN 141
The Tectopulvinar Pathway 141
The Geniculostriate Pathway 142
LATERAL GENICULATE NUCLEUS 143
Layers of the LGN 143
Retinotopic Mapping in the LGN 143
Feedback Connections to the LGN 144

PRIMARY VISUAL CORTEX (STRIATE CORTEX) 144
Organization of Striate Cortex 145
Binocular Integration in Striate Cortex 146
Contextual Modulation of Cells in Striate Cortex 148

In Focus: Seeing What's Not There: Visual Illusions and the Striate Cortex 149

VISUAL AREAS BEYOND THE STRIATE CORTEX 150
Multiple Maps of the Visual World 150
Area V4: A Special Module for Coding Color? 151
Blindsight and the Visual Pathways 152
Divergence into the "What" and "Where" Pathways 153

AUDITORY PROCESSING 155
Computational Problems in Audition 156
Organization of the Auditory Pathways 156
Brainstem Computation of Spatial Location 159
Organization of Auditory Cortex 161
Auditory–Visual Interactions 163

CONCLUSIONS 164

SUMMARY 165

Chapter 6 Object Recognition 167

THE "WHAT" VENTRAL VISUAL SYSTEM 169

DEFICITS IN VISUAL OBJECT RECOGNITION 171
Apperceptive and Associative Agnosias 171
Prosopagnosia: Agnosia for Faces 174
Category-Specific Deficits in Object Recognition 175

THEORETICAL ISSUES IN VISUAL OBJECT RECOGNITION 176
Sparse Versus Population Coding for Objects 176
The Problem of Invariance in Recognition 179

Feature-Based Versus Configural Coding of Objects 182
Category Specificity: Are Some Types of Stimuli More Special Than Others? 185

OBJECT RECOGNITION IN TACTILE AND AUDITORY MODALITIES 193

Agnosias in Other Modalities 193
Tactile Object Recognition 193
Auditory Object Recognition 194
What Versus Where Across Modalities 194

In Focus: Visual Imagery: Seeing Objects With the Mind's Eye 195

SUMMARY 196
Chapter 7 Spatial Cognition

THE DORSAL VISUAL SYSTEM FOR SPATIAL COGNITION

- Anatomy of the Dorsal Stream
- Cellular Properties in the Dorsal Stream
- CODING FOR THE THREE DIMENSIONS OF SPACE
- Distinguishing Left from Right
- Depth Perception
- SPATIAL FRAMES OF REFERENCE
- Neural Coding of Reference Frames
- Dissociability of Reference Frames
- Categorical Versus Coordinate Spatial Relations
- MOTION PERCEPTION
- Specific Neural Regions for Motion Perception
- Incorporating Knowledge of Self-Motion
- SPACE AND ACTION
- Constructional Abilities
- Optic Ataxia
- Neural Mechanisms for Sensory-Motor Integration
- SPATIAL NAVIGATION
- In Focus: Are Numbers Spatial?
- Navigational Skills
- Neural Coding of Spatial Environments
- CHALLENGES TO THE DORSAL–VENTRAL STREAM DICHOTOMY

SUMMARY

Chapter 8 Language

BRAIN SYSTEMS FOR AUDITORY LANGUAGE

- Classic Neurological Conceptions
- Psycholinguistic Perspectives
- Evidence From Double Dissociations
- Language Processing From a Network Perspective
- VISUAL “SPOKEN” LANGUAGE
- Basic Structure of American Sign Language (ASL)
- Neural Organization of ASL

In Focus: Brain Organization in Bilinguals

NEUROLOGICAL BASES FOR VISUAL LANGUAGE PROCESSING

- Evidence From Studies of Patients With Brain Damage
- Converging Evidence from Other Research Methods

PROCESSING OF NON-INDO-EUROPEAN LANGUAGES AND OTHER SYMBOLIC SYSTEMS

- Kana and Kanji
- Music

RIGHT-HEMISPHERE CONTRIBUTIONS TO LANGUAGE PROCESSING

- Prosody
- Semantics
- Narrative, Inference, and Metaphor

SUMMARY
Chapter 9 Memory and Learning

WHAT IS MEMORY? 258
HIPPOCAMPAL DAMAGE CAUSES AMNESIA, A DISORDER OF LONG-TERM MEMORY 259
Global Nature of the Deficit 260
Temporal Profile of Affected Memories 261
Spared Abilities 263
MULTIPLE MEMORY AND LEARNING SYSTEMS 267
What Distinguishes Memory Systems? 267
Memory and Consciousness 269
NONHIPPOCAMPAL REGIONS INVOLVED IN MEMORY AND LEARNING 272
Domain-Specific Neocortical Regions: Initial Processing and Subsequent Access 272
The Basal Ganglia: Skill Learning 273
The Amygdala: An Interface Between Memory and Emotion 275
Anterior Temporal Regions: Amodal Storage of Semantic Information 277
BRAIN SYSTEMS FOR DIFFERENT STAGES OF MEMORY 278
Encoding: The Medial Temporal Lobe and Prefrontal Regions 278
Consolidation and Storage: How Critical Is the Hippocampus? 280
Retrieval: Hippocampal, Prefrontal, and Parietal Mechanisms 282
In Focus: Does Sleep Help You to Remember? 286
WORKING MEMORY: THE ABILITY TO HOLD AND MANIPULATE INFORMATION ON-LINE 287
Patients With Deficits in Working Memory 288
Studies With Nonhuman Animals: A Role for Prefrontal Cortex? 288
Insights From Neurologically Intact Individuals 289
THE RELATIONSHIPS BETWEEN MEMORY SYSTEMS 292
Theoretical and Computational Reasons for Distinct Memory Systems 292
Interacting Memory Systems for Different Types and Stages of Learning 293
SUMMARY 294

Chapter 10 Attention

WHAT IS “ATTENTION”? 297
BRAIN STRUCTURES MEDIATING AROUSAL 298
BRAIN STRUCTURES MEDIATING VIGILANCE AND SUSTAINED ATTENTION 300
SELECTIVE ATTENTION 300
The Time Course of Attentional Selection 301
Brain Regions Mediating Selective Attention 302
Sources and Sites of Attentional Control 308
Neural Mechanisms of Selection: Biased Competition 311
NEURAL BASES OF DIVIDED ATTENTION 313
In Focus: Pay Attention to the Road! 314
NETWORK MODELS OF ATTENTIONAL CONTROL 315
A Distributed but Overlapping Network 315
Altering, Orienting, and Executive Attention 315
Selection of Goals Versus Detection of Behaviorally Relevant Stimuli 317
The Default Network: The Lack of Attention or Internal Attention? 317
HEMINEGLIGENCE: CLINICAL ASPECTS 319
Clinical Features 319
Theories Regarding the Underlying Deficit 322
Treatment 325
Contents

HEMINEGLECT: IMPLICATIONS FOR UNDERSTANDING BRAIN–BEHAVIOR RELATIONSHIPS 326

Attention Based on Objects 326

Hemispheric Differences in Attentional Control 327

Processing of Unattended Stimuli 328

CONSCIOUSNESS 329

SUMMARY 330

Chapter 11 Executive Function and Higher-Order Thinking 332

THEORETICAL PERSPECTIVES 334

Controlled Versus Automatic Processes 334

Goal-Centered Processing 336

Multifactor Models 336

GOAL-DIRECTED BEHAVIORS 337

Initiation of Behavior 337

Creation and Maintenance of a Goal or Task Set 339

Sequencing and Planning 341

Shifting Set and Modifying Strategies 344

Self-Monitoring and Evaluation 347

Inhibition 350

In Focus: Can You Inhibit a Memory? 352

HIGHER-ORDER THINKING 354

Abstract and Conceptual Thinking 354

Rules and Inference 356

Response to Novelty 359

Judgment and Decision Making 360

ORGANIZATION OF THE BRAIN FOR EXECUTIVE FUNCTION 361

A CENTRAL ROLE FOR WORKING MEMORY IN EXECUTIVE FUNCTION 364

SUMMARY 365

Chapter 12 Emotion 367

SUBCORTICAL CONTRIBUTIONS TO EMOTION 369

Fight-or-Flight Response 369

Fear and Emotional Learning 371

Reward and Motivation 375

In Focus: The Pleasure of Music 376

CORTICAL CONTRIBUTIONS TO EMOTION 377

Representing Bodily Cues of Emotion 377

Integrating Emotion and Action 379

Incorporating Emotion into Decision Making 381

Regulating Emotion 383

Communicating and Interpreting Emotional Signals 385

Models of Emotional Experience 390

SUMMARY 393

Chapter 13 Social Cognition 394

SOCIAL INFLUENCE 396

Conformity 397

Social Norm Compliance 399
UNDERSTANDING OTHER MINDS 402
Imitation and Simulation 403
Theory of Mind 404
Empathy 407
Self Versus Other 409
AUTISM AND SOCIAL COGNITION 411
In Focus: The Pain of Rejection 414
PERCEIVING AND JUDGING SOCIAL GROUPS 414
In-group–Out-group Effects 415
Stereotyping and Prejudice 416
Stereotype Threat 417
SUMMARY 419
Part III Broader Applications 421
Chapter 14 Psychopathology 422
SCHIZOPHRENIA 424
Symptoms and Features 424
Frontal Lobe 426
Temporal Lobe 427
Disruption in Functional Connectivity 429
What Causes Schizophrenia? 430
Implications for Treatment 432
DEPRESSION 433
Symptoms and Features 433
Frontal Lobe 434
Posterior Cortical Regions 436
Functional Connectivity Among Cortical Regions 436
Subcortical Regions 437
Therapeutic Interventions 437
In Focus: Can Your Genes Make You Unhappy? 441
ANXIETY DISORDERS 444
Symptoms and Features 444
Amygdala and Hippocampus 445
Cortical Regions 446
Action Systems in Obsessive-Compulsive Disorder 448
SUBSTANCE ABUSE AND ADDICTION 449
Reward Pathways 450
Orbitofrontal Cortex 450
Other Brain Regions Implicated in Addiction 452
CONCLUSIONS AND CAVEATS 452
SUMMARY 453
Chapter 15 Brain Development and Plasticity 455
DEVELOPMENT OF THE BRAIN 456
Changes in the Brain During Childhood 457
Changes in the Brain During Adolescence 461
Influence of the Environment on the Developing Brain 464
DEVELOPMENTAL DISORDERS 468
Intellectual Disability 468
Dyslexia 470
Contents

Autism 472
Attention-Deficit/Hyperactivity Disorder 474
BRAIN PLASTICITY IN ADULTHOOD 476
RECOVERY OF FUNCTION FOLLOWING BRAIN DAMAGE 479
Neurophysiological Responses to Insult 479
Regional Mechanisms for Recovery of Function 480
Recovery of Function in Adults 482
Recovery of Function in Children 483
In Focus: Can Deprivation in One Sensory Modality Promote Extraordinary Abilities in Another? 484
CHANGES IN THE BRAIN WITH AGING 485
Cognitive Changes With Aging 485
Neural Changes With Aging 487
Slowing the Effects of Aging 488
SUMMARY 489

Chapter 16 Generalized Cognitive Disorders 491
CLOSED HEAD INJURY 493
Etiology 493
Neuropsychological Consequences 494
Intervention 497
In Focus: Closed Head Injury and Sports 497
DEMENTING DISEASES 500
Cortical Dementias 500
Subcortical Dementias 509
Mixed-Variety Dementias 513
MULTIPLE SCLEROSIS 514
EPILEPSY 516
DISORDERS OF CONSCIOUS AWARENESS 518
SUMMARY 521

Chapter 17 Cognitive Neuroscience and Society 522
PUBLIC PERCEPTIONS OF NEUROSCIENCE 524
NEUROSCIENCE AND EDUCATION 526
NEUROSCIENCE AND SOCIAL INEQUALITY 528
NEUROSCIENCE AND THE LAW 530
In Focus: Can Brain Imaging Detect Lies? 532
NEUROSCIENCE AND PERFORMANCE OPTIMIZATION 534
NEUROSCIENCE AND THE MARKETPLACE 536
THE NEUROSCIENCE OF MORALITY 537
SUMMARY 541

Glossary 543
References 557
Index 647
THE FOURTH EDITION of this book, although extensively revised, retains the spirit, organization, and many of the features of the first three editions. Like the earlier editions, it provides a systematic introduction to the neural basis of mental function. It includes state-of-the-art research from experimental work performed with humans and animals, as well as findings from clinical populations. The goal, as before, is to provide a balanced, synthesized, and integrated view of what we know both about the brain and about cognition. Simultaneously, the text aims to provide these views in accessible prose that will excite students to think critically about the potential of cognitive neuroscience to yield new insights.

While the entire text has been revised and updated, two sets of major changes are especially notable. First, the content of the book has been modified in line with the changing nature of the field. The introductory chapters have been reorganized to provide an integrated overview of the nervous system at both cellular and neuroanatomical levels in Chapter 1, followed by a new chapter on the historical development of cognitive neuroscience (Chapter 2). Two new chapters have been included, one on Social Cognition (Chapter 13) and another on Cognitive Neuroscience and Society (Chapter 17). The inclusion of these chapters reflects rapid expansions in new research in these subfields combined with awareness of the need for cognitive neuroscientists to address questions of societal interest. In addition, material on hemispheric specialization from prior editions has been integrated with coverage throughout the text, rather than parcelled into a separate chapter as in prior editions. Second, the book has been revised to make the content more accessible to students. It has been rewritten to focus on major concepts and to present them, and the experiments that support them, in a way that makes the critical ideas clear to students without bogging them down in detail. Finally, recognizing the importance of visual elements in learning, the four-color art program has been completely revised with an expanded set of figures in every chapter.

In addition to these major changes, every chapter has been thoroughly updated to reflect current findings in the fast-growing field of cognitive neuroscience. While the current edition still includes findings from traditional methods, such as the study of brain-damaged patients, which have provided foundational knowledge to the field, we pay special attention to the integration of findings from a variety of newer approaches, including transcranial magnetic stimulation, diffusion tensor imaging, multi-voxel pattern analysis, and studies examining functional connectivity. Throughout, our intention is to provide students with a thorough and solid grounding in the basic principles and findings of cognitive neuroscience, tools that they can then use to further understand applied and clinical problems.

Text Organization and Features

The book’s soul remains very much the same as in the first three editions, as the following major features have been retained.

The book provides a systematic survey of the neural bases of a wide variety of mental functions

The overall organization of the book is divided into three main sections: fundamentals (Chapters 1–3), neural bases of specific mental functions (Chapters 4–13), and broader applications (Chapters 14–17). The first part of the book, comprising the first three chapters, provides students with a basic foundation for the exploration of cognitive neuroscience. The first chapter provides information about the basic parts and divisions of the central nervous system and the fundamentals of neural transmission. This chapter may be unnecessary for students who have already completed a course in physiological psychology, but will be of use to students who have not. The second chapter outlines the historical milestones in the development of the field, with special attention to methodological and conceptual developments that advanced the field in different eras. The third chapter acquaints students with the myriad of burgeoning techniques, both standard and novel, that are available to scientists and clinicians in their quest to understand the neural bases of mental function.

The second part of the book, Chapters 4 through 13, provides a survey of the neural bases of mental function, with each chapter devoted to a distinct mental function. The chapter topics discussed are, in order, motor processes, early perceptual processing, object recognition, spatial cognition, language, memory, attention, executive function, emotion, and social cognition.

The last part of the book, comprising the last four chapters, examines broad-based applications in cognitive neuroscience, including development, aging, clinical syndromes, and the interface between neuroscience and society. Instructors may view these chapters as more discretionary than earlier ones, in the sense that they cover more advanced issues. In our teaching, we’ve found that these advanced, applied, and clinical issues are of special interest to many students, as they find it very rewarding to use the knowledge that they have gained earlier in the text to approach these broader applications. Chapter 14 examines mental conditions such as schizophrenia, depression, anxiety disorders, and substance abuse from a cognitive neuroscience perspective. Chapter 15 examines neural plasticity from a lifespan perspective, including developmental changes during childhood, adolescence, and aging. In addition, it discusses recovery of function in children and in adults, and the
neural bases of developmental disabilities. Chapter 16 examines syndromes that are characterized by generalized cognitive disorders (rather than the more localized and specific disorders discussed in Chapters 4 through 13), including closed head injury, dementia, demyelinating diseases, and epilepsy. Finally, the text ends with Chapter 17, Cognitive Neuroscience and Society, which critically examines the ways in which cognitive neuroscience knowledge can be applied to domains of broad societal concern such as education, social inequality, the law, and morality.

The sequence of the chapters is designed for progressive learning

The chapters have been carefully sequenced so that information in later chapters builds upon information in earlier ones. Notably, the processes most linked to motoric and sensory functions are presented earlier, and those that depend on more integrative aspects of brain function, such as executive function and emotion, are presented later. For example, the chapter on object recognition directly precedes that on spatial processing, so that the student is introduced to the ventral and dorsal visual processing streams in consecutive chapters. The chapter on memory is preceded by the language and object-recognition chapters so that the distinction between generalized memory disorders and the “memory” problems that are specific to certain domains (e.g., anomia in language or agnosia with regard to objects) is clear. Yet, despite the intentional progression of ideas across chapters, chapters are written to be self-contained so that instructors may alter the order of material depending on specific syllabus needs.

The book is designed to actively engage students in the process of learning

Most chapters begin with an opening case history to pique the students’ interest and preview issues that are discussed later in the chapter. For example, the opening case history in Chapter 4 discusses how Muhammad Ali’s boxing career led him to have a Parkinsonian disorder, and the opening case history in Chapter 16 discusses the mental decline of Marie’s maternal grandmother due to dementia. The text is written in a conversational tone rather than in a technical style, to grab the students’ interest and retain it. We use analogies extensively so that difficult conceptual issues can be presented in a tractable manner. Each chapter includes an “In Focus” box that explores in depth a specific applied issue in cognitive neuroscience, helping students to see the implications of research for everyday life.

To keep students oriented to terminology, key terms are introduced in boldface and defined in a glossary at the back of the book. Chapter summaries allow students to review the material learned or preview what is to be discussed, and outlines at the beginning of each chapter provide a clear conceptual structure of the contents. All these features are designed to make this book as user-friendly as possible.

State-of-the-art knowledge in the field is presented without sacrificing accuracy or oversimplifying the material

As researchers who maintain highly active and visible research programs, we are in a position to ensure that the book contains not only a discussion of the “classic” findings in the field, but also the cutting-edge portion of our knowledge. Never, however, are students overwhelmed with a laundry list of findings or with overly technical arcane issues. Rather, representative studies are used to highlight the nature of current debates, so that students can understand, and think critically about, the conceptual issues under consideration and how researchers attempt to reason based on experimental evidence. Our extensive work in both research and teaching in cognitive neuroscience allows us to present issues in a manner that is precise and sophisticated, yet also accessible and integrative.

WHAT’S NEW IN THIS EDITION

While the approach of the prior editions has been retained, this fourth edition has nevertheless been extensively revamped. The main new additions are as follows.

The use of an integrated four-color art program

With this edition, we have thoroughly revised the art program, emphasizing systematic depiction of information across the figures, so as to enhance students’ ability to understand the material. All figures from earlier editions have been redrawn, and many new figures have been added. Some figures highlight regions of the brain so the reader can quickly see “where” and “what” in the brain are important. Other figures present data from representative studies in the field, so that students can gain experience in viewing and interpreting data; still others depict important experimental paradigms so that students can quickly grasp how a key study was conducted.

Addition of two new chapters

Two chapters have been added to the text to reflect growing areas of research over the last decade. A new stand-alone chapter covering social cognitive neuroscience (Chapter 13) is now included due to the burgeoning growth of research in this area. In the previous edition of the text, this material was relegated to a relatively short section of the chapter on Emotion. The new Social Cognition chapter addresses how new knowledge from neuroscience expands our understanding of how we perceive
the mental states of other people, categorize people into social groups, and control our behavior to align with social norms.

In addition, completely new to this edition is Chapter 17, Cognitive Neuroscience and Society. This chapter, which concludes the book, covers issues of broader societal significance to which the field can speak. For example, the chapter addresses research on how laypeople view neuroscience research, what neuroscience may add to our understanding of the effects of social inequality on development, and how neuroscience knowledge is being used in criminal justice settings. As students of cognitive neuroscience enter a wide range of professions, such as law, education, and business, it is crucial for them to be able to critically evaluate what neuroscience can and cannot add to discussions of issues in these arenas.

- **Extensive updating of the material to incorporate the acceleration of knowledge in the field**

The field of cognitive neuroscience continues to explode with new discoveries. As a result, all of the chapters of the book were extensively rewritten to incorporate this vast amount of additional knowledge, which is reflected in hundreds of new references from studies using diverse methodologies.
This book has benefited greatly from the generous help of many colleagues who reviewed it. We were genuinely touched by the time and effort that these people, listed below, took to share their expert advice to improve the book for the fourth edition. Their enthusiasm for the project bolstered us and kept us on our toes. Although we may not have taken all of their advice, we thought carefully about every one of their suggestions. We are most appreciative of their input. We also thank Doug Bernstein and Phil Meneely for their insights and wisdom regarding the textbook publishing process, which spared us many headaches. In addition, we thank the reviewers of prior editions; although they are too numerous to be listed here, their contributions helped to build a solid foundation upon which this new edition could be built. We thank the following reviewers for their comments on both the content and presentation of the material in the book, which we found invaluable: David Badre, Brown University; Erin Bigler, Brigham Young University; Kyle Cave, University of Massachusetts; Rosie Cowell, University of Massachusetts; Laurie Cutting, Vanderbilt University; Erica Dixon, American University; Russ Epstein, University of Pennsylvania; Kelly Goedert, Seton Hall University; Elizabeth Heaton and Averi Gaines, Haverford College; Greg Hickok, University of California, Irvine; Tiffany Ito, University of Colorado; Sabine Kastner, Princeton University; Mary Ellen Kelly, Haverford College; Ben Levy, University of San Francisco; Jared Medina, University of Delaware; Eric Pakulak, University of Oregon; Ken Paller, Northwestern University; Cathy Reed, Claremont-McKenna College; Gretchen Reeves, Eastern Michigan University; Paige Scaf, Durham University; Rachael Seidler, University of Michigan; Penny Seymoure, Carthage College; Rebecca Silton, Loyola University.

Finally, we are most grateful to the superb editorial staff at Cambridge. Matthew Bennett inspired us and guided us through our conceptual approach to the revisions; Claire Eudall skillfully shepherded us through chapter revisions with impressive attention to detail as well as patience and good humor; Charles Howell supervised the production of the manuscript with impressive professionalism; and Simon Tegg brought our ideas for illustrations to life. It was wonderful to have our materials in the hands of such outstanding editors. As this is the fourth edition of the book, it builds on editorial advice we have received on previous editions from Jane Knetzger, Danielle Richardson, and Tali Beesley, respectively, and the support of Jane Potter, whom we thank as well.

In the end, we were able to write this book not only due to the professional contributions of all the people named above, but also due to those who personally inspired and supported us. Those include our families – Jeremy Meyer, Gwen Compton-Engle, David Compton, Laura Edwards – and, most importantly, our mothers, Serafina Banich and Judy Ellis, to whom we dedicate this book. We conclude here with words of dedication from each of us to the women who taught us to be who we are.

FROM MARIE
I have been incredibly fortunate to be my mother’s daughter. She was my first and best teacher, and through the decades someone whose perspective has enlivened my life immeasurably. If we are lucky in life, one’s path crosses with a mythic figure who teaches us and shapes us, but who more importantly shows us the magical possibilities that exist right under our noses in our seemingly very unmagical and everyday world. My mother has been that mythic figure to me. Countless times she has unmasked for me those treasures that I would have inadvertently trod over, such as pointing out the brush strokes in a painting used to convey the delicacy of a flower’s petals, or selecting the perfect word to convey the richness and complexity of an idea.

While my mother’s love of learning and expertise in education spurred, in part, my desire to write a textbook, it has been these last five years since her stroke during which she has taught me the most. Through her stroke, I was confronted in a very visceral and personal way with both the expanse and limits of my knowledge about the brain. Working with her to recover what abilities she could, and grieving with her in the abilities forever lost, has been a partnership unlike any other I have ever experienced.

I will always be grateful to her for her patience as I pushed and probed to understand the new and restricted landscape of her mind, even though at times it laid her deficiencies bare. And I appreciated her understanding and fortitude, especially during those times when I purposely steered her into mental waters that I knew, while once familiar, were now foreign. She was willing to be taken there to struggle through her sea of confusion, as she knew its purpose was to try and encourage her brain to reconnect to knowledge it once had. But mostly I am honored that she trusted me to try my best not to let her drift too long nor without aim or reason.

If I am lucky, my mother will be around for the next edition. Their enthusiasm for the project bolstered us and kept us on our toes. Although we may not have taken all of their advice, we thought carefully about every one of their suggestions. We are most appreciative of their input. We also thank Doug Bernstein and Phil Meneely for their insights and wisdom regarding the textbook publishing process, which spared us many headaches. In addition, we thank the reviewers of prior editions; although they are too numerous to be listed here, their contributions helped to build a solid foundation upon which this new edition could be built. We thank the following reviewers for their comments on both the content and presentation of the material in the book, which we found invaluable: David Badre, Brown University; Erin Bigler, Brigham Young University; Kyle Cave, University of Massachusetts; Rosie Cowell, University of Massachusetts; Laurie Cutting, Vanderbilt University; Erica Dixon, American University; Russ Epstein, University of Pennsylvania; Kelly Goedert, Seton Hall University; Elizabeth Heaton and Averi Gaines, Haverford College; Greg Hickok, University of California, Irvine; Tiffany Ito, University of Colorado; Sabine Kastner, Princeton University; Mary Ellen Kelly, Haverford College; Ben Levy, University of San Francisco; Jared Medina, University of Delaware; Eric Pakulak, University of Oregon; Ken Paller, Northwestern University; Cathy Reed, Claremont-McKenna College; Gretchen Reeves, Eastern Michigan University; Paige Scaf, Durham University; Rachael Seidler, University of Michigan; Penny Seymoure, Carthage College; Rebecca Silton, Loyola University.

Finally, we are most grateful to the superb editorial staff at Cambridge. Matthew Bennett inspired us and guided us through our conceptual approach to the revisions; Claire Eudall skillfully shepherded us through chapter revisions with impressive attention to detail as well as patience and good humor; Charles Howell supervised the production of the manuscript with impressive professionalism; and Simon Tegg brought our ideas for illustrations to life. It was wonderful to have our materials in the hands of such outstanding editors. As this is the fourth edition of the book, it builds on editorial advice we have received on previous editions from Jane Knetzger, Danielle Richardson, and Tali Beesley, respectively, and the support of Jane Potter, whom we thank as well.

In the end, we were able to write this book not only due to the professional contributions of all the people named above, but also due to those who personally inspired and supported us. Those include our families – Jeremy Meyer, Gwen Compton-Engle, David Compton, Laura Edwards – and, most importantly, our mothers, Serafina Banich and Judy Ellis, to whom we dedicate this book. We conclude here with words of dedication from each of us to the women who taught us to be who we are.

FROM REBECCA
My mother taught me how to use my brain. She taught me to look at the world with wonder and joy. A former high school chemistry teacher, social worker, university administrative
assistant, jack-of-all-trades – one who might have been an engineer in a different era of opportunity for women – she always conveyed a fascination with “how things work” that I later rediscovered in my own love affair with the brain. Through her example, she taught me that women can enjoy tinkering with mechanical things, that they can ride their bikes without worrying about mussing their hair, that they can have an excellent sense of direction, that they can make of themselves what they want to be. Most importantly, though, she continues to teach me that in the end, achievement isn’t measured in the number of pages published, grants obtained, or status acquired, but rather in a person’s compassionate actions in the world. I strive to live up to her example.

Marie T. Banich
Rebecca J. Compton
To my (left-handed) mom,

Who after her stroke displayed so much grace and grit,

And who in her brain-damaged state has taught me so much more than I ever could have imagined not only about the intricacies and resilience of the human brain, but also about the human spirit.

M.T.B.

To mom, who continues to teach me all of the important things in life.

R.J.C.