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1

Quaternion algebras

As a prelude to the book, we present here our main objects of study in the

simplest case, that of quaternion algebras. Many concepts that will be ubiqui-

tous in what follows, such as division algebras, splitting fields or norms appear

here in a concrete and elementary context. Another important notion we shall

introduce is that of the conic associated with a quaternion algebra; these are the

simplest examples of Severi–Brauer varieties, objects to which a whole chap-

ter will be devoted later. In the second part of the chapter two classic theorems

from the 1930s are proven: a theorem of Witt asserting that the associated conic

determines a quaternion algebra up to isomorphism, and a theorem of Albert

that gives a criterion for the tensor product of two quaternion algebras to be

a division algebra. The discussion following Albert’s theorem will lead us to

the statement of one of the main theorems proven later in the book, that of

Merkurjev concerning division algebras of period 2.

The basic theory of quaternion algebras goes back to the nineteenth century.

The original references for the main theorems of the last two sections are Witt

[1] and Albert [1], [5], respectively.

1.1 Basic properties

In this book we shall study finite-dimensional algebras over a field. Here by an

algebra over a field k we mean a k-vector space equipped with a not necessar-

ily commutative but associative k-linear multiplication. All k-algebras will be

tacitly assumed to have a unit element.

Historically the first example of a finite-dimensional noncommutative alge-

bra over a field was discovered by W. R. Hamilton during a walk with his

wife (presumably doomed to silence) on 16 October 1843. It is the algebra of

quaternions, a 4-dimensional algebra with basis 1, i, j, k over the field R of

real numbers, the multiplication being determined by the rules
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2 Quaternion algebras

i2 = −1, j2 = −1, ij = −ji = k.

This is in fact a division algebra over R, which means that each nonzero ele-

ment x has a two-sided multiplicative inverse, i.e. an element y with xy =

yx = 1. Hamilton proved this as follows.

For a quaternion q = x + yi + zj + wk, introduce its conjugate

q = x − yi − zj − wk

and its norm N(q) = qq. A computation gives N(q) = x2 + y2 + z2 + w2, so

if q �= 0, the quaternion q/N(q) is an inverse for q.

We now come to an easy generalization of the above construction. Hence-

forth in this chapter, unless otherwise stated, k will denote a field of

characteristic not 2.

Definition 1.1.1 For any two elements a, b ∈ k× define the (generalized)

quaternion algebra (a, b) as the 4-dimensional k-algebra with basis 1, i, j, ij,

multiplication being determined by

i2 = a, j2 = b, ij = −ji.

One calls the set {1, i, j, ij} a quaternion basis of (a, b).

Remark 1.1.2 The isomorphism class of the algebra (a, b) depends only on

the classes of a and b in k×/k×2, because the substitution i �→ ui, j �→ vj

induces an isomorphism

(a, b)
∼→ (u2a, v2b)

for all u, v ∈ k×. This implies in particular that the algebra (a, b) is isomorphic

to (b, a); indeed, mapping i �→ abj, j �→ abi we get

(a, b) ∼= (a2b3, a3b2) ∼= (b, a).

Given an element q = x + yi + zj + wij of the quaternion algebra (a, b),

we define its conjugate by

q = x − yi − zj − wij.

The map (a, b) → (a, b) given by q �→ q is an anti-automorphism of the

k-algebra (a, b), i.e. it is a k-vector space automorphism of (a, b) satisfying

(q1q2) = q
2
q
1
. Moreover, we have q = q; an anti-automorphism with this

property is called an involution in ring theory.
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1.1 Basic properties 3

We define the norm of q = x + yi + zj + wij by N(q) = qq. A calculation

yields

N(q) = x2 − ay2 − bz2 + abw2 ∈ k, (1.1)

so N : (a, b) → k is a nondegenerate quadratic form. The computation

N(q1q2) = q1q2q2
q
1

= q1N(q2)q1
= N(q1)N(q2)

shows that the norm is a multiplicative function, and the same argument as for

Hamilton’s quaternions yields:

Lemma 1.1.3 An element q of the quaternion algebra (a, b) is invertible if

and only if it has nonzero norm. Hence (a, b) is a division algebra if and only

if the norm N : (a, b) → k does not vanish outside 0.

Remark 1.1.4 In fact, one can give an intrinsic definition of the conjugation

involution (and hence of the norm) on a quaternion algebra (a, b) which does

not depend on the choice of the basis (1, i, j, ij). Indeed, call an element q of

(a, b) a pure quaternion if q2 ∈ k but q /∈ k. A straightforward computation

shows that a nonzero q = x + yi + zj + wij is a pure quaternion if and only

if x = 0. Hence a general q can be written uniquely as q = q1 + q2 with

q1 ∈ k and q2 pure, and conjugation is given by q = q1 − q2. Moreover, a pure

quaternion q satisfies N(q) = −q2.

Example 1.1.5 (The matrix algebra M2(k)) Besides the classical Hamilton

quaternions, the other basic example of a quaternion algebra is the k-algebra

M2(k) of 2 × 2 matrices. Indeed, the assignment

i �→ I :=

[

1 0

0 −1

]

, j �→ J :=

[

0 b

1 0

]

defines an isomorphism (1, b) ∼= M2(k), because the matrices

Id =

[

1 0

0 1

]

, I =

[

1 0

0 −1

]

, J =

[

0 b

1 0

]

and IJ =

[

0 b

−1 0

]

(1.2)

generate M2(k) as a k-vector space, and they satisfy the relations

I2 = Id, J2 = b Id, IJ = −JI.

Definition 1.1.6 A quaternion algebra over k is called split if it is isomorphic

to M2(k) as a k-algebra.
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4 Quaternion algebras

Proposition 1.1.7 For a quaternion algebra (a, b) the following statements

are equivalent.

1. The algebra (a, b) is split.

2. The algebra (a, b) is not a division algebra.

3. The norm map N : (a, b) → k has a nontrivial zero.

4. The element b is a norm from the field extension k(
√

a)|k.

Of course, instead of (4) another equivalent condition is that a is a norm

from the field extension k(
√

b)|k.

Proof The implication (1) ⇒ (2) is obvious and (2) ⇒ (3) was proven

in Lemma 1.1.3. For (3) ⇒ (4) we may assume a is not a square in k, for

otherwise the claim is obvious. Take a nonzero quaternion q = x+yi+zj+wij

with norm 0. Then equation (1.1) implies (z2 − aw2)b = x2 − ay2, and so in

particular z2 − aw2 = (z +
√

aw)(z −√
aw) �= 0, for otherwise a would be

a square in k. Denoting by NK|k the field norm from K = k(
√

a) we get

b = NK|k(x +
√

ay)NK|k(z +
√

aw)−1,

whence (4) by multiplicativity of NK|k. Finally, we shall show assuming (4)

that (a, b) ∼= (1, 4a2), whence (1) by the isomorphism in Example 1.1.5. To

see this, we may again assume that a is not a square in k. If b is a norm from K,

then so is b−1, so by (4) and our assumption on a we find r, s ∈ k satisfying

b−1 = r2 − as2. Putting u = rj + sij thus yields u2 = br2 − abs2 = 1.

Moreover, one verifies that ui = −iu, which implies that the element

v = (1 + a)i + (1 − a)ui satisfies uv = (1 + a)ui + (1 − a)i = −vu and

v2 = (1 + a)2a − (1 − a)2a = 4a2. Passing to the basis (1, u, v, uv) thus

gives the required isomorphism (a, b) ∼= (1, 4a2).

Remark 1.1.8 Over a field of characteristic 2 one defines the generalized

quaternion algebra [a, b) by the presentation

[a, b) = 〈i, j | i2 + i = a, j2 = b, ij = ji + j〉

where a ∈ k and b ∈ k×. This algebra has properties analogous to those in the

above proposition (see Exercise 4).

1.2 Splitting over a quadratic extension

We now prove a structure theorem for division algebras of dimension 4. Recall

first that the centre Z(A) of a k-algebra A is the k-subalgebra consisting of
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1.2 Splitting over a quadratic extension 5

elements x ∈ A satisfying xy = yx for all y ∈ A. By assumption we have

k ⊂ Z(A); if this inclusion is an equality, one says that A is central over k. If

A is a division algebra, then Z(A) is a field. We then have:

Proposition 1.2.1 A 4-dimensional central division algebra D over k is

isomorphic to a quaternion algebra.

We first prove:

Lemma 1.2.2 If D contains a commutative k-subalgebra isomorphic to a

nontrivial quadratic field extension k(
√

a) of k, then D is isomorphic to a

quaternion algebra (a, b) for suitable b ∈ k×.

Proof A k-subalgebra as in the lemma contains an element q with q2 =

a ∈ k. By assumption, q is not in the centre k of D and hence the inner

automorphism of D given by x �→ q−1xq has exact order 2. As a k-linear

automorphism of D, it thus has −1 as an eigenvalue, which means that there

exists r ∈ D such that qr + rq = 0. This relation shows that r /∈ k(q) (for

otherwise r and q would commute), and therefore 1 and r form a basis of D

as a 2-dimensional k(q)-vector space. It follows that the elements 1, q, r, qr

form a k-basis of D and moreover they are fixed by the k-linear automorphism

x �→ r−2xr2. Thus r2 belongs to the centre of D, which is k by assumption.

The lemma follows by setting r2 = b ∈ k×.

Proof of Proposition 1.2.1 Let d be an element of D\k. As D is finite dimen-

sional over k, the powers {1, d, d2, . . . } are linearly dependent, so there is a

polynomial f ∈ k[x] with f(d) = 0. As D is a division algebra, it has no zero

divisors and we may assume f irreducible. This means there is a k-algebra

homomorphism k[x]/(f) → D which realizes the field k(d) as a k-subalgebra

of D. Now the degree [k(d) : k] cannot be 1 as d /∈ k, and it cannot be 4 as D

is not commutative. Hence [k(d) : k] = 2, and the lemma applies.

The crucial ingredient in the above proof was the existence of a quadratic

extension k(
√

a) contained in D. Observe that the algebra D ⊗k k(
√

a)

then splits over k(
√

a). In fact, it follows from basic structural results to be

proven in the next chapter (Lemma 2.2.2 and Wedderburn’s theorem) that any

4-dimensional central k-algebra for which there exists a quadratic extension of

k with this splitting property is a division algebra or a matrix algebra.

It is therefore interesting to characterize those quadratic extensions of k over

which a quaternion algebra splits.
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6 Quaternion algebras

Proposition 1.2.3 Consider a quaternion algebra A over k, and fix an

element a ∈ k× \ k×2. The following statements are equivalent:

1. A is isomorphic to the quaternion algebra (a, b) for some b ∈ k×.

2. The k(
√

a)-algebra A ⊗k k(
√

a) is split.

3. A contains a commutative k-subalgebra isomorphic to k(
√

a).

Proof To show (1) ⇒ (2), note that (a, b) ⊗k k(
√

a) is none but the quater-

nion algebra (a, b) defined over the field k(
√

a). But a is a square in k(
√

a), so

(a, b) ∼= (1, b), and the latter algebra is isomorphic to M2(k(
√

a)) by Example

1.1.5. Next, if A is split, the same argument shows that (1) always holds, so to

prove (3) ⇒ (1) one may assume A is nonsplit, in which case Lemma 1.2.2

applies.

The implication (2) ⇒ (3) is easy in the case when A ∼= M2(k): one

chooses an isomorphism M2(k) ∼= (1, a) as in Example 1.1.5 and takes the

subfield k(J), where J is the basis element with J2 = a. We now assume A

is nonsplit, and extend the quaternion norm N on A to A ⊗k k(
√

a) by base

change. Applying part (3) of Proposition 1.1.7 to A ⊗k k(
√

a) one gets that

there exist elements q0, q1 ∈ A, not both 0, with N(q0 +
√

aq1) = 0. Denote

by B : A ⊗k k(
√

a) × A ⊗k k(
√

a) → k(
√

a) the symmetric bilinear form

associated with N (recall that B(x, y) = (N(x + y) − N(x) − N(y))/2 by

definition, hence B(x, x) = N(x)). We get

0 = B(q0 +
√

aq1, q0 +
√

aq1) = N(q0) + aN(q1) + 2
√

aB(q0, q1).

Now note that since q0, q1 ∈ A, the elements B(q0, q1) and N(q0) + aN(q1)

both lie in k. So it follows from the above equality that

N(q0) = −aN(q1) and 2B(q0, q1) = q0q1
+ q1q0

= 0.

Here N(q0), N(q1) �= 0 as A is nonsplit. The element q2 := q0q1
∈ A satisfies

q2

2
= q0q1

q0q1
= −q0q0

q1q1
= −N(q0)N(q1) = aN(q1)

2.

The square of the element q := q2N(q1)
−1 is then precisely a, so mapping

√
a

to q embeds k(
√

a) into A.

We conclude this section by another characterization of the quaternion norm.

Proposition 1.2.4 Let (a, b) be a quaternion algebra over a field k, and let

K = k(
√

a) be a quadratic splitting field for (a, b). Then for all q ∈ (a, b) and

all K-isomorphisms φ : (a, b) ⊗k K
∼→ M2(K) we have N(q) = det(φ(q)).
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1.3 The associated conic 7

Proof First note that det(φ(q)) does not depend on the choice of φ. Indeed,

if ψ : (a, b) ⊗k K
∼→ M2(K) is a second isomorphism, then φ ◦ ψ−1 is an

automorphism of M2(K). But it is well known that all K-automorphisms of

M2(K) are of the form M → CMC−1 for some invertible matrix C (check

this by hand or see Lemma 2.4.1 for a proof in any dimension), and that the

determinant map is invariant under such automorphisms.

Now observe that by definition the quaternion norm on (a, b)⊗k K restricts

to that on (a, b). Therefore to prove the proposition it is enough to embed (a, b)

into M2(K) via φ and check that on M2(K) the quaternion norm (which is

intrinsic by Remark 1.1.4) is given by the determinant. For this, consider a

basis of M2(K) as in (1.2) with b = 1 and write

[

a1 a2

a3 a4

]

=

(

a1 + a4

2

)

[

1 0

0 1

]

+

(

a1 − a4

2

)

[

1 0

0 −1

]

+

+

(

a2 + a3

2

)

[

0 1

1 0

]

+

(

a2 − a3

2

)

[

0 1

−1 0

]

.

Then equation (1.1) yields

N

⎛

⎝

⎡

⎣

a1 a2

a3 a4

⎤

⎦

⎞

⎠ =

(

a1 + a4

2

)2

−

(

a1 − a4

2

)2

−

(

a2 + a3

2

)2

+

(

a2 − a3

2

)2

= a1a4 − a2a3 = det

⎛

⎝

⎡

⎣

a1 a2

a3 a4

⎤

⎦

⎞

⎠ .

1.3 The associated conic

We now introduce another important invariant of a quaternion algebra (a, b),

the associated conic C(a, b). By definition, this is the projective plane curve

defined by the homogeneous equation

ax2 + by2 = z2 (1.3)

where x, y, z are the homogeneous coordinates in the projective plane P
2. In

the case of (1, 1)
∼→ M2(k) we get the usual circle

x2 + y2 = z2.
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8 Quaternion algebras

Remark 1.3.1 In fact, the conic C(a, b) is canonically attached to the algebra

(a, b) and does not depend on the choice of a basis. To see why, note first

that the conic C(a, b) is isomorphic to the conic ax2 + by2 = abz2 via the

substitution x �→ by, y �→ ax, z �→ abz (after substituting, divide the equation

by ab). But ax2 + by2 − abz2 is exactly the square of the pure quaternion

xi + yj + zij and hence is intrinsically defined by Remark 1.1.4.

This observation also shows that if two quaternion algebras (a, b) and (c, d)

are isomorphic as k-algebras, then the conics C(a, b) and C(c, d) are also

isomorphic over k. Indeed, constructing an isomorphism (a, b) ∼= (c, d) is

equivalent to finding a k-basis in (a, b) that satisfies the multiplicative rule

in (c, d).

Recall from algebraic geometry that the conic C(a, b) is said to have a k-

rational point if there exist x0, y0, z0 ∈ k, not all zero, that satisfy equation

(1.3) above.

We can now give a complement to Proposition 1.1.7.

Proposition 1.3.2 The quaternion algebra (a, b) is split if and only if the

conic C(a, b) has a k-rational point.

Proof If (x0, y0, z0) is a k-rational point on C(a, b) with y0 �= 0, then

b = (z0/y0)
2 − a(x0/y0)

2 and part (4) of Proposition 1.1.7 is satisfied. If

y0 happens to be 0, then x0 must be nonzero and we get similarly that a is

a norm from the extension k(
√

b)|k. Conversely, if b = r2 − as2 for some

r, s ∈ k, then (s, 1, r) is a k-rational point on C(a, b).

Remark 1.3.3 Again, the proposition has a counterpart in characteristic 2;

see Exercise 4.

Example 1.3.4 For a �= 1, the projective conic ax2 + (1 − a)y2 = z2 has

the k-rational point (1, 1, 1), hence the quaternion algebra (a, 1 − a) splits by

the proposition. This innocent-looking fact is a special case of the so-called

Steinberg relation for symbols that we shall encounter later.

Remark 1.3.5 It is a well-known fact from algebraic geometry that a smooth

projective conic defined over a field k is isomorphic to the projective line P
1

over k if and only if it has a k-rational point. The isomorphism is given by

taking the line joining a point P of the conic to some fixed k-rational point O

and then taking the intersection of this line with P
1 embedded as, say, some

coordinate axis in P
2. In such a way we get another equivalent condition for
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1.3 The associated conic 9

the splitting of a quaternion algebra, which will be substantially generalized

later.

In the remainder of this section we give examples of how Proposition 1.3.2

can be used to give easy proofs of splitting properties of quaternion algebras

over special fields.

Example 1.3.6 Let k be the finite field with q elements (q odd). Then any

quaternion algebra (a, b) over k is split.

To see this, it suffices by Proposition 1.3.2 to show that the conic C(a, b)

has a k-rational point. We shall find a point (x0, y0, z0) with z0 = 1. As the

multiplicative group of k is cyclic of order q−1, there are exactly 1+(q−1)/2

squares in k, including 0. Thus the sets {ax2 : x ∈ k} and {1 − by2 | y ∈ k}
both have cardinality 1 + (q − 1)/2, hence must have an element in common.

The next two examples concern the field k(t) of rational functions over a

field k, which is by definition the fraction field of the polynomial ring k[t].

Note that sending t to 0 induces a k-homomorphism k[t] → k; we call it the

specialization map attached to t.

Example 1.3.7 Let (a, b) be a quaternion algebra over k. Then (a, b) is split

over k if and only if (a, b) ⊗k k(t) is split over k(t).

Here necessity is obvious. For sufficiency, we assume given a point

(xt, yt, zt) of C(a, b) defined over k(t). As the equation (1.3) defining C(a, b)

is homogeneous, we may assume after multiplication by a suitable element of

k(t) that xt, yt, zt all lie in k[t] and one of them has a nonzero constant term.

Then specialization gives a k-point (xt(0), yt(0), zt(0)) of C(a, b).

Finally we give an example of a splitting criterion for a quaternion algebra

over k(t) that does not come from k.

Example 1.3.8 For a ∈ k× the k(t)-algebra (a, t) is split if and only if a is a

square in k.

Here sufficiency is contained in Example 1.1.5. For necessity, assume given

a k(t)-point (xt, yt, zt) of C(a, b) as above. Again we may assume xt, yt, zt

are all in k[t]. If xt and zt were both divisible by t, then equation (1.3) would

imply the same for yt, so after an eventual division we may assume they are

not. Then setting t = 0 gives ax2

t
(0) = zt(0)2 and so a = x2

t
(0)−1zt(0)2 is a

square.
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10 Quaternion algebras

1.4 A theorem of Witt

In this section we prove an elegant theorem which characterizes isomorphisms

of quaternion algebras by means of the function fields of the associated con-

ics. Recall that the function field of an algebraic curve C is the field k(C) of

rational functions defined over some Zariski open subset of C. In the concrete

case of a conic C(a, b) as in the previous section, the simplest way to define it

is to take the fraction field of the integral domain k[x, y]/(ax2 + by2 − 1) (this

is also the function field of the affine curve of equation ax2 + by2 = 1).

A crucial observation for the sequel is the following.

Remark 1.4.1 The quaternion algebra (a, b) ⊗k k(C(a, b)) is always split

over k(C(a, b)). Indeed, the conic C(a, b) always has a point over this field,

namely (x, y, 1) (where we also denote by x, y their images in k(C(a, b))).

This point is called the generic point of the conic.

Now we can state the theorem.

Theorem 1.4.2 (Witt) Let Q1 = (a1, b1), Q2 = (a2, b2) be quaternion

algebras, and let Ci = C(ai, bi) be the associated conics. The algebras Q1

and Q2 are isomorphic over k if and only if the function fields k(C1) and

k(C2) are isomorphic over k.

Remark 1.4.3 It is known from algebraic geometry that two smooth pro-

jective curves are isomorphic if and only if their function fields are. Thus the

theorem states that two quaternion algebras are isomorphic if and only if the

associated conics are isomorphic as algebraic curves.

In Chapter 5 we shall prove a broad generalization of the theorem, due to

Amitsur. We now begin the proof by the following easy lemma.

Lemma 1.4.4 If (a, b) is a quaternion algebra and c ∈ k× is a norm from

the field extension k(
√

a)|k), then (a, b) ∼= (a, bc).

Proof By hypothesis, we may write c = x2 − ay2 with x, y ∈ k. Hence we

may consider c as the norm of the quaternion q = x + yi + 0j + 0ij and set

J = qj = xj + yij. Then J is a pure quaternion satisfying

iJ + Ji = 0, J2 = −N(J) = −N(q)N(j) = bc,

and 1, i, J, iJ is a basis of (a, b) over k (by a similar argument as in the proof

of Lemma 1.2.1). The lemma follows.
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