Contents

Preface	xv
Acknowledgments to First Edition	xviii
Acknowledgments to Second Edition	xix

1 Introduction

1.1 Formation of Earth's Chemical Elements in Supernovae 2
1.2 Birth of the Solar System and Earth 2
1.3 Accretion and Early History of the Earth 5
1.4 Internal Structure of the Earth 5
1.5 Cooling of the Planet and Plate Tectonics 6
1.6 Plate Tectonics and the Formation of Rocks 7
 1.6.1 Divergent Plate Boundaries 8
 1.6.2 Convergent Plate Boundaries 9
 1.6.3 Transform Boundaries 9
 1.6.4 Mantle Plumes and Hot Spots 9
1.7 Outline of Subsequent Chapters 9
 Summary 10
 Review Questions 11
 Online Resources 11
 Further Reading 11

2 Materials of the Solid Earth

2.1 Definition of a Mineral 14
 2.1.1 Examples of Some Familiar Minerals 15
2.2 How Are Minerals Classified? 18
2.3 How Are Minerals Named? 19
2.4 What Is a Crystal, and What Is the Crystalline State? 20
2.5 What Is a Rock? 21
2.6 How Do Rocks Form? Classification into Igneous, Sedimentary, and Metamorphic 23
2.7 Examples of Some Familiar Rocks 25
2.8 Plate Tectonics and the Generation of Rocks 30
 2.8.1 Mid-ocean-ridge Rock Factory 30
 2.8.2 Convergent-plate-boundary Rock Factory 30
 2.8.3 Continental Divergent-plate-boundary Rock Factory (Rift Valley) 33
 2.8.4 Mantle Plume Hot-spot Rock Factory 32
 2.8.5 Passive-margin Rock Factories 32
 2.8.6 Epeiric-sea Rock Factories 32
 2.8.7 Metamorphic Rock Factories 33
 Summary 33
 Review Questions 34
 Online Resources 35
 Further Reading 35

3 How Are Minerals Identified?

3.1 Habit 38
3.2 State of Aggregation 39
3.3 Color and Luster 40
 3.3.1 Reasons for Color 43
3.4 Cleavage 47
3.5 Hardness 49
3.6 Specific Gravity (Relative Density) 50
 3.6.1 Specific Gravity and Atomic Structure 51
3.7 Magnetism, Solubility in Acid, and Radioactivity 51
3.8 Instrumental Methods for the Quantitative Characterization of Minerals 52
 3.8.1 X-Ray Powder Diffraction 53
 Summary 58
 Review Questions 58
 Further Reading 59
Contents

4 Fundamentals of Crystal Structures

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Naturally Occurring Chemical Elements</td>
<td>62</td>
</tr>
<tr>
<td>4.2 Atomic and Ionic Radii</td>
<td>62</td>
</tr>
<tr>
<td>4.3 What Factors Control the Packing of Ions (and Atoms) in Mineral Structures?</td>
<td>65</td>
</tr>
<tr>
<td>4.4 Pauling’s Rules</td>
<td>66</td>
</tr>
<tr>
<td>4.5 What Forces Hold Crystal Structures Together?</td>
<td>73</td>
</tr>
<tr>
<td>4.5.1 Electronic Configuration of Atoms and Ions</td>
<td>74</td>
</tr>
<tr>
<td>4.5.2 Chemical Bonding</td>
<td>75</td>
</tr>
<tr>
<td>4.6 Atomic Substitutions</td>
<td>79</td>
</tr>
<tr>
<td>4.6.1 Factors Responsible for the Extent of Atomic Substitution (Solid Solution)</td>
<td>79</td>
</tr>
<tr>
<td>4.6.2 Types of Solid Solution</td>
<td>82</td>
</tr>
<tr>
<td>Summary</td>
<td>82</td>
</tr>
<tr>
<td>Review Questions</td>
<td>84</td>
</tr>
<tr>
<td>Further Reading</td>
<td>85</td>
</tr>
</tbody>
</table>

5 Introduction to Crystallography

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Symmetry Elements and Operations</td>
<td>89</td>
</tr>
<tr>
<td>5.2 Combinations of Symmetry Elements</td>
<td>90</td>
</tr>
<tr>
<td>5.3 The Six Crystal Systems</td>
<td>91</td>
</tr>
<tr>
<td>5.3.1 Crystallographic Axes</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2 Hermann–Mauguin Symmetry Notation</td>
<td>91</td>
</tr>
<tr>
<td>5.3.3 Crystallographic Notation for Planes in Crystals</td>
<td>93</td>
</tr>
<tr>
<td>5.3.4 Definition of Crystal Form</td>
<td>96</td>
</tr>
<tr>
<td>5.3.5 Crystallographic Notation for Directions in Crystals</td>
<td>98</td>
</tr>
<tr>
<td>5.4 Crystal Projections</td>
<td>98</td>
</tr>
<tr>
<td>5.5 Seven of the Thirty-two Point Groups</td>
<td>101</td>
</tr>
<tr>
<td>5.6 Twins</td>
<td>112</td>
</tr>
<tr>
<td>5.7 Some Aspects of Space Groups</td>
<td>115</td>
</tr>
<tr>
<td>5.7.1 Space Groups</td>
<td>119</td>
</tr>
<tr>
<td>5.8 Polymorphism</td>
<td>122</td>
</tr>
<tr>
<td>Summary</td>
<td>131</td>
</tr>
<tr>
<td>Review Questions</td>
<td>132</td>
</tr>
<tr>
<td>Further Reading</td>
<td>133</td>
</tr>
</tbody>
</table>

6 Minerals and Rocks Observed under the Polarizing Optical Microscope

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Light and the Polarizing Microscope</td>
<td>136</td>
</tr>
<tr>
<td>6.2 Passage of Light through a Crystal: Refractive Index and Angle of Refraction</td>
<td>138</td>
</tr>
<tr>
<td>6.3 Passage of Polarized Light through Minerals</td>
<td>139</td>
</tr>
<tr>
<td>6.4 Accessory Plates and Determination of Fast and Slow Vibration Directions</td>
<td>143</td>
</tr>
<tr>
<td>6.5 Extinction Positions and the Sign of Elongation</td>
<td>144</td>
</tr>
<tr>
<td>6.6 Anomalous Interference Colors, Pleochroism, and Absorption</td>
<td>144</td>
</tr>
<tr>
<td>6.7 Mineral Identification Chart</td>
<td>145</td>
</tr>
<tr>
<td>6.8 Uniaxial Optical Indicatrix</td>
<td>146</td>
</tr>
<tr>
<td>6.9 Biaxial Optical Indicatrix</td>
<td>148</td>
</tr>
<tr>
<td>6.10 Uniaxial Interference Figures</td>
<td>149</td>
</tr>
<tr>
<td>6.11 Determination of Optic Sign from Uniaxial Optic Axis Figure</td>
<td>151</td>
</tr>
<tr>
<td>6.12 Biaxial Interference Figures, Optic Sign, and Optic Angle (2V)</td>
<td>151</td>
</tr>
<tr>
<td>6.13 Modal analysis</td>
<td>153</td>
</tr>
<tr>
<td>Summary</td>
<td>154</td>
</tr>
<tr>
<td>Review Questions</td>
<td>156</td>
</tr>
<tr>
<td>Online Resources</td>
<td>157</td>
</tr>
<tr>
<td>Further Reading</td>
<td>157</td>
</tr>
</tbody>
</table>

7 Igneous Rock-forming Minerals

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Common Chemical Elements in the Earth’s Crust and in Mineral and Rock Analyses</td>
<td>160</td>
</tr>
<tr>
<td>7.2 Calculation of Mineral Formulas</td>
<td>161</td>
</tr>
<tr>
<td>7.3 Triangular Diagrams</td>
<td>163</td>
</tr>
<tr>
<td>7.4 Systematic Mineralogical Descriptions of Common Igneous Minerals</td>
<td>164</td>
</tr>
<tr>
<td>7.5 Plagioclase Feldspar</td>
<td>166</td>
</tr>
<tr>
<td>7.6 K-Feldspar</td>
<td>168</td>
</tr>
<tr>
<td>7.7 Quartz and Silica Polymorphs</td>
<td>169</td>
</tr>
<tr>
<td>7.8 Nepheline</td>
<td>170</td>
</tr>
<tr>
<td>7.9 Leucite</td>
<td>171</td>
</tr>
<tr>
<td>7.10 Sodalite</td>
<td>172</td>
</tr>
<tr>
<td>7.11 Enstatite</td>
<td>173</td>
</tr>
<tr>
<td>7.12 Pigeonite</td>
<td>173</td>
</tr>
<tr>
<td>7.13 Augite</td>
<td>175</td>
</tr>
<tr>
<td>7.14 Aegirine</td>
<td>176</td>
</tr>
<tr>
<td>7.15 Hornblende</td>
<td>177</td>
</tr>
<tr>
<td>7.16 Muscovite</td>
<td>178</td>
</tr>
<tr>
<td>7.17 Phlogopite</td>
<td>179</td>
</tr>
<tr>
<td>7.18 Biotite</td>
<td>180</td>
</tr>
<tr>
<td>7.19 Olivine</td>
<td>182</td>
</tr>
<tr>
<td>7.20 Zircon</td>
<td>182</td>
</tr>
<tr>
<td>7.21 Tourmaline</td>
<td>183</td>
</tr>
<tr>
<td>7.22 Allanite</td>
<td>184</td>
</tr>
</tbody>
</table>
Contents

8.10 Rates of Geologic Processes 225
8.10.1 Transport Laws 226
8.10.2 Rates of Activated Processes and the Arrhenius Relation 227
8.11 Radioactive Decay 229
8.11.1 Rate of Radioactive Decay 230
8.11.2 Calculation of Absolute Age Based on Radioactive Decay 230
8.11.3 Absolute Dating by the 87Rb to 87Sr Decay 231
8.11.4 Absolute Dating by the 40K to 40Ar Decay 232
8.11.5 Absolute Dating Using Uranium and Lead 233
8.11.6 Absolute Dating by the 147Sm to 143Nd Decay 234
8.11.7 Blocking Temperature 234
8.11.8 Absolute Dating by the Fission-track Method 234

Summary 235
Review Questions 237
Online Resources 238
Further Reading 238

9

The Direction and Rate of Natural Processes: An Introduction to Thermodynamics and Kinetics

8.1 Basic Thermodynamic Terms 198
8.2 Heat, Work, and the First Law of Thermodynamics 200
8.3 Entropy and the Second and Third Laws of Thermodynamics 202
8.4 Gibbs Free Energy 203
8.5 Variation of Gibbs Free Energy with Temperature and Pressure 205
8.6 Variation of Gibbs Free Energy with Composition 206
8.7 Thermodynamic Equilibrium 207
8.8 Thermodynamic Phase Diagrams 207
8.9 Multicomponent Phase Diagrams 208
8.9.1 A Simple Two-component System H_2O–NaCl 208
8.9.2 Melting of a Pair of Minerals: the Eutectic 210
8.9.3 Congruent Melting and the Granite and Nepheline Syenite Eutectics 214
8.9.4 Incongruent Melting and the Peritectic 214
8.9.5 Melting Relations of Solid Solutions 217
8.9.6 A Simple Ternary Phase Diagram 220
8.9.7 The Ternary Quartz–Albite–Orthoclase “Granite” System 223
8.9.8 A Simple Ternary Basalt System: Diopside–Albite–Anorthite 224
8.9.9 More Complex Phase Diagrams 225

9.1 Why, and How, Does Solid Rock Become Molten? 242
9.1.1 Composition of the Upper Mantle 243
9.1.2 Melting Range of Upper Mantle Peridotite 244
9.1.3 Latent Heat of Fusion 245
9.1.4 Geothermal Gradient and the Geotherm 245
9.2 Three Primary Causes of Melting and their Plate Tectonic Settings 245
9.2.1 Raising the Temperature of Mantle Peridotite to the Melting Range over Hot Spots 246
9.2.2 Decompression Melting at Divergent Plate Boundaries 246
9.2.3 Fluxing with Water at Convergent Plate Boundaries (Subduction Zones) 246
9.3 Effect of Pressure on Melting 248
9.3.1 Pressure in the Earth 249
9.3.2 Effect of Pressure on the Anhydrous Melting of Rock 249
Table of Contents

9.3.3 Hydrous Melting of Rock and the Solubility of Water in Magma 250
9.3.4 Effect of Water Undersaturation on the Melting of Rocks 251
9.3.5 Solubility of Other Gases in Magma 251
9.3.6 Exsolution of Magmatic Gases and Explosive Volcanism 251

9.4 Physical Properties of Magma 256
9.4.1 Magma Density 256
9.4.2 Magma Viscosity 256
9.4.3 Diffusion in Magma, Crystal Growth, and Grain Size of Igneous Rocks 258

9.5 Magma Ascent 260
9.5.1 Buoyancy 260
9.5.2 Buoyant Rise of Magma 261

9.6 Processes Associated with the Solidification of Magma in the Crust 262
9.6.1 Cooling of Bodies of Magma by Heat Conduction 262
9.6.2 Cooling of Bodies of Magma by Convection and Radiation 266
9.6.3 Magmatic Differentiation by Crystal Settling 266
9.6.4 Compaction of Crystal Mush 270
9.6.5 Assimilation and Fractional Crystallization 270
9.6.6 Liquid Immiscibility 271

9.7 Evolution of Isotopic Reservoirs in the Earth and the Source of Magma 272
9.7.1 Evolution of 143Nd/144Nd Reservoirs in the Bulk Earth, Mantle, and Crust 272
9.7.2 Evolution of 87Sr/86Sr Reservoirs in the Bulk Earth, Mantle, and Crust 273

Summary 274
Review Questions 275
Online Resources 276
Further Reading 277

10

Igneous Rocks: Their Mode of Occurrence, Classification, and Plate Tectonic Setting 279

10.1 Why an Igneous Rock Classification Is Necessary 280
10.2 Mode of Occurrence of Igneous Rocks 280
10.2.1 Shallow Intrusive Igneous Bodies: Dikes, Sills, Laccoliths, Cone Sheets, Ring Dikes, and Diatremes 280

10.2.2 Plutonic Igneous Bodies: Lopoliths, Batholiths, and Stocks 284
10.2.3 Extrusive Igneous Bodies: Flood Basalts, Shield Volcanoes, Composite Volcanoes, Domes, Calderas, Ash-fall and Ash-flow Deposits 288

10.3 International Union of Geological Sciences Classification of Igneous Rocks 301
10.3.1 Mode and Norm 301
10.3.2 IUGS Classification of Igneous Rocks 301
10.3.3 Composition of Common Plutonic Igneous Rocks 305
10.3.4 IUGS Classification of Volcanic Igneous Rocks 308
10.3.5 Irvine–Baragar Classification of Volcanic Rocks 308

10.4 Igneous Rocks and their Plate Tectonic Setting 310
10.4.1 Igneous Rocks Formed at Mid-ocean-ridge Divergent Plate Boundaries 310
10.4.2 Igneous Rocks of Oceanic Islands Formed above Hot Spots 313
10.4.3 Continental Flood Basalts and Large Igneous Provinces 314
10.4.4 Alkaline Igneous Rocks Associated with Continental Rift Valleys 315
10.4.5 Igneous Rocks Formed near Convergent Plate Boundaries 318

10.5 Special Precambrian Associations 323
10.5.1 Komatiites 324
10.5.2 Massif-type Anorthosites 324
10.5.3 Rocks Associated with Large Meteorite Impacts 326

Summary 329
Review Questions 330
Online Resources 331
Further Reading 331

11

Sedimentary Rock-forming Minerals and Materials 333

11.1 The Interaction of the Earth's Atmosphere with Minerals 334
11.2 Ice 335
11.3 Goethite 336
11.4 Kaolinite 337
11.5 Calcite 338
11.6	Aragonite	339
11.7	Dolomite	341
11.8	Magnesite	341
11.9	Siderite	343
11.10	Rhodochrosite	343
11.11	Halite	343
11.12	Sylvite	344
11.13	Gypsum	344
11.14	Anhydrite	345
11.15	Chert and agate	346
11.16	Phosphorite	346
11.17	Soil	348
Summary	350	
Review Questions	351	
Further Reading	351	

12 Formation, Transport, and Lithification of Sediment 353

12.1 Importance of Sediments in Understanding the History of the Earth 354

12.2 Sediment Formed from Weathering of Rock 355

12.2.1 Role of Carbon Dioxide in Weathering 355

12.2.2 Weathering Products of Rock 356

12.2.3 Detrital Grain Size 358

12.2.4 Detrital Grain Roundness and Resistance to Abrasion 358

12.3 Organically Produced Sediment 360

12.3.1 Formation of Carbonate and Siliceous Sediment 360

12.3.2 Formation of Hydrocarbons in Sediment 363

12.4 Chemically Produced Sediment 363

12.5 Sediment Produced by Glacial Erosion 364

12.6 Transport of Sediment 366

12.6.1 Laminar and Turbulent Flow 366

12.6.2 Movement of Particles by Fluid Flow 367

12.6.3 Movement of Particles in Turbidity Currents 370

12.6.4 Movement of Sediment in Debris Flows 371

12.7 Layering in Sediments and Sedimentary Rocks 372

12.7.1 Law of Superposition 372

12.7.2 Milankovitch Cycles 373

12.7.3 Sediments Related to Tectonic Processes 374

12.8 Sites of Deposition and Tectonic Significance 375

12.8.1 Convergent Plate Boundaries 375

12.8.2 Passive Continental Margins 376

12.8.3 Rift and Pull-apart Basins 376

12.9 Conversion of Unconsolidated Sediment to Sedimentary Rock: Lithification 377

12.9.1 Porosity and Compaction 378

12.9.2 Cementation of Sediment 378

12.9.3 Pressure Solution 378

12.9.4 Recrystallization, Replacement, Dolomitization 380

Summary 380

Review Questions 381

Online Resources 382

Further Reading 383

13 Sedimentary Rock Classification, Occurrence, and Plate Tectonic Significance 385

13.1 Siliciclastic Sedimentary Rocks 386

13.1.1 Mudrocks (Includes Shales) 386

13.1.2 Sandstones 390

13.1.3 Conglomerates and Breccias 396

13.2 Carbonate Sedimentary Rocks 399

13.2.1 Limestones 399

13.2.2 Dolostones 407

13.2.3 Tectonic Settings of Carbonate Rocks 407

13.3 Coals 408

13.4 Oil and Natural Gas 409

13.5 Evaporites 410

13.6 Phosphorites 410

13.7 Iron-Formations 410

Summary 411

Review Questions 412

Online Resources 413

Further Reading 413

14 Metamorphic Rock-forming Minerals 415

14.1 Systematic Mineralogical Descriptions of Common Metamorphic Minerals 416

14.2 Garnet 416

14.3 Andalusite 418