DECONSTRUCTING COSMOLOGY

The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model’s reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model’s two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow’s cosmologists.

ROBERT H. SANDERS is Professor Emeritus at the Kapteyn Astronomical Institute of the University of Groningen, the Netherlands. He received his Ph.D. in astrophysics from Princeton University under the supervision of Lyman Spitzer. After working at Columbia University and the National Radio Astronomy Observatory, he moved to Europe. He spent his career studying active galactic nuclei (in particular, the Galactic Center), on the hydrodynamics of gas in galaxies, and, for several decades, on the problem of the “missing mass” in astronomical systems. His previous books are The Dark Matter Problem: A Historical Perspective (2010) and Revealing the Heart of the Galaxy: The Milky Way and Its Black Hole (2013).
DECONSTRUCTING COSMOLOGY

ROBERT H. SANDERS

Kapteyn Astronomical Institute, The Netherlands
Contents

Acknowledgments
page vii

Introduction
1 Creation Mythology
2 Three Predictions of Physical Cosmology
 2.1 The Basis of Physical Cosmology
 2.2 The Expansion of the Universe
 2.3 The Background Radiation
 2.4 Anisotropies in the Background Radiation
3 The Very Early Universe: Inflation
 3.1 Fine-Tuning Dilemmas and the Initial Singularity
 3.2 An Early De Sitter Phase
 3.3 The Physical Basis of Inflation
4 Precision Cosmology
 4.1 Standard CDM Cosmology
 4.2 Primordial Sound Waves
 4.3 The ΛCDM Paradigm
5 The Concordance Model
 5.1 Consistency
 5.2 WMAP and Planck
 5.3 The Density of Baryons
 5.4 Supernova Cosmology
 5.5 Hubble Trouble?
 5.6 Baryon Acoustic Oscillations

© in this web service Cambridge University Press www.cambridge.org
Contents

5.7 The “Axis of Evil” 61
5.8 Summing Up: Absence of Discord 63

6 Dark Energy 66
6.1 The Evidence for Dark Energy 66
6.2 The Nature of Dark Energy 70
 6.2.1 Zero-Point Energy 70
 6.2.2 Dynamic Dark Energy 71
6.3 Dark Energy and Fundamental Physics 75

7 Dark Matter 77
7.1 Evidence for Dark Matter in Galaxies and Galaxy Systems 77
7.2 Cosmological Evidence for Dark Matter 81
7.3 The Nature of Dark Matter 82
7.4 The Science of Dark Matter Detection 85
 7.4.1 Indirect Detection of Dark Matter 85
 7.4.2 Direct Detection of Dark Matter 89
 7.4.3 The LHC and Dark Matter 91
7.5 The Sociology of Dark Matter Detection 93

8 MOND 96
8.1 Galaxy Phenomenology Reveals a Symmetry Principle 96
8.2 An Empirically Based Algorithm 101
 8.2.1 Galaxy Rotation Curves 101
 8.2.2 The Baryonic Tully–Fisher Relationship 104
 8.2.3 A Critical Surface Density 107
8.3 Cosmology and the Critical Acceleration 110
8.4 Problems with MOND 111

9 Dark Matter, MOND and Cosmology 115
9.1 The Puzzle 115
9.2 Particle Cosmic Dark Matter 117
 9.2.1 Neutrinos 117
 9.2.2 Soft Bosons 119
9.3 New Physics 120
9.4 Reflections 122

10 Plato’s Cave Revisited 126

Notes 130
Index 141
Acknowledgments

I express my gratitude first of all to my old friend Frank Heynick of Brooklyn, NY. Frank spent some time and effort in reading an initial draft of this book and giving me his very useful advice as an intelligent, interested non-expert. This led to considerable improvements to the content and readability. I also thank Phillip Helbig for a later reading of the complete manuscript. Not only did Phillip (with his eagle eyes) spot my many typographical and grammatical errors, but he also made substantial comments and criticisms on scientific and philosophical issues.

I have had numerous useful conversations with my colleague Saleem Zaroubi on a number of aspects of the cosmological paradigm. It was very beneficial to have the highly informed opinions of a thoughtful supporter of the standard model. Thanks to Saleem, I also benefited from a short but useful conversation with Naoshi Sugiyama on the phase focussing of primordial sound waves (the reason we see distinct acoustic peaks in the CMB angular power spectrum) and its consistency with the inflationary paradigm. I also gratefully acknowledge a helpful conversation with Alexi Starobinsky over the early history of the idea of cosmic inflation as it developed in the Soviet Union.

I thank Moti Milgrom for his extensive and very helpful comments on the MOND chapters. Moti’s characteristically deep and insightful criticisms greatly improved the presentation and gave me a new appreciation and understanding of the significant space–time scale invariance of the deep MOND limit.

I am very grateful to Stacy McGaugh for making figures available in legible form. Stacy deserves much credit for his persistent emphasis over the years on the beautiful simplicity and importance of the baryonic Tully–Fisher relation as a test of CDM and of MOND.

I wish to acknowledge the many conversations, letters and emails over 30 years with Jacob Bekenstein. Jacob did not have the chance to read over this manuscript but he certainly influenced the content and range of this book. His profound
Acknowledgments

understanding of physics in general and relativity in particular benefitted all who
had the privilege of knowing and interacting with him. His explanations were clear
and intuitive (in a subject that is not so intuitive), and with me he was always
patient and considerate. He will be greatly missed.

And finally I thank Vince Higgs of Cambridge University Press for his help,
guidance and advice throughout this project.