
Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

chapter one

Events and Probability

This chapter introduces the notion of randomized algorithms and reviews some basic

concepts of probability theory in the context of analyzing the performance of simple

randomized algorithms for verifying algebraic identities and finding a minimum cut-set

in a graph.

1.1. Application: Verifying Polynomial Identities

Computers can sometimes make mistakes, due for example to incorrect programming

or hardware failure. It would be useful to have simple ways to double-check the results

of computations. For some problems, we can use randomness to efficiently verify the

correctness of an output.

Suppose we have a program that multiplies together monomials. Consider the prob-

lem of verifying the following identity, which might be output by our program:

(x+ 1)(x− 2)(x+ 3)(x− 4)(x+ 5)(x− 6)
?
≡ x6 − 7x3 + 25.

There is an easy way to verify whether the identity is correct: multiply together the

terms on the left-hand side and see if the resulting polynomial matches the right-hand

side. In this example, when we multiply all the constant terms on the left, the result

does not match the constant term on the right, so the identity cannot be valid. More

generally, given two polynomials F (x) and G(x), we can verify the identity

F (x)
?
≡ G(x)

by converting the two polynomials to their canonical forms
(
∑d

i=0 cix
i
)

; two polynomi-

als are equivalent if and only if all the coefficients in their canonical forms are equal.

From this point on let us assume that, as in our example, F (x) is given as a product

F (x) =
∏d

i=1(x− ai) and G(x) is given in its canonical form. Transforming F (x) to

its canonical form by consecutively multiplying the ith monomial with the product of

1

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

events and probability

the first i− 1 monomials requires �(d2) multiplications of coefficients. We assume in

what follows that each multiplication can be performed in constant time, although if

the products of the coefficients grow large then it could conceivably require more than

constant time to add and multiply numbers together.

So far, we have not said anything particularly interesting. To check whether the

computer program has multiplied monomials together correctly, we have suggested

multiplying the monomials together again to check the result. Our approach for check-

ing the program is to write another program that does essentially the same thing we

expect the first program to do. This is certainly one way to double-check a program:

write a second program that does the same thing, and make sure they agree. There

are at least two problems with this approach, both stemming from the idea that there

should be a difference between checking a given answer and recomputing it. First, if

there is a bug in the program that multiplies monomials, the same bug may occur in

the checking program. (Suppose that the checking program was written by the same

person who wrote the original program!) Second, it stands to reason that we would like

to check the answer in less time than it takes to try to solve the original problem all over

again.

Let us instead utilize randomness to obtain a faster method to verify the identity. We

informally explain the algorithm and then set up the formal mathematical framework

for analyzing the algorithm.

Assume that the maximum degree, or the largest exponent of x, in F (x) and G(x) is

d. The algorithm chooses an integer r uniformly at random in the range {1, . . . , 100d},

where by “uniformly at random” we mean that all integers are equally likely to be

chosen. The algorithm then computes the values F (r) and G(r). If F (r) �= G(r) the

algorithm decides that the two polynomials are not equivalent, and if F (r) = G(r) the

algorithm decides that the two polynomials are equivalent.

Suppose that in one computation step the algorithm can generate an integer chosen

uniformly at random in the range {1, . . . , 100d}. Computing the values of F (r) and

G(r) can be done in O(d) time, which is faster than computing the canonical form of

F (r). The randomized algorithm, however, may give a wrong answer.

How can the algorithm give the wrong answer?

If F (x) ≡ G(x), then the algorithm gives the correct answer, since it will find that

F (r) = G(r) for any value of r.

If F (x) �≡ G(x) and F (r) �= G(r), then the algorithm gives the correct answer since

it has found a case where F (x) and G(x) disagree. Thus, when the algorithm decides

that the two polynomials are not the same, the answer is always correct.

If F (x) �≡ G(x) and F (r) = G(r), the algorithm gives the wrong answer. In other

words, it is possible that the algorithm decides that the two polynomials are the

same when they are not. For this error to occur, r must be a root of the equation

F (x) − G(x) = 0. The degree of the polynomial F (x) − G(x) is no larger than d and,

by the fundamental theorem of algebra, a polynomial of degree up to d has no more

than d roots. Thus, if F (x) �≡ G(x), then there are no more than d values in the

range {1, . . . , 100d} for which F (r) = G(r). Since there are 100d values in the range

{1, . . . , 100d}, the chance that the algorithm chooses such a value and returns a wrong

answer is no more than 1/100.

2

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 axioms of probability

1.2. Axioms of Probability

We turn now to a formal mathematical setting for analyzing the randomized algorithm.

Any probabilistic statement must refer to the underlying probability space.

Definition 1.1: A probability space has three components:

1. a sample space �, which is the set of all possible outcomes of the random process

modeled by the probability space;

2. a family of setsF representing the allowable events, where each set inF is a subset1

of the sample space �; and

3. a probability function Pr : F → R satisfying Definition 1.2.

An element of � is called a simple or elementary event.

In the randomized algorithm for verifying polynomial identities, the sample space

is the set of integers {1, . . . , 100d}. Each choice of an integer r in this range is a simple

event.

Definition 1.2: A probability function is any function Pr : F → R that satisfies the

following conditions:

1. for any event E, 0 ≤ Pr(E) ≤ 1;

2. Pr(�) = 1; and

3. for any finite or countably infinite sequence of pairwise mutually disjoint events

E1,E2,E3, . . . ,

Pr

(

⋃

i≥1

Ei

)

=
∑

i≥1

Pr(Ei).

In most of this book we will use discrete probability spaces. In a discrete probability

space the sample space � is finite or countably infinite, and the family F of allow-

able events consists of all subsets of �. In a discrete probability space, the probability

function is uniquely defined by the probabilities of the simple events.

Again, in the randomized algorithm for verifying polynomial identities, each choice

of an integer r is a simple event. Since the algorithm chooses the integer uniformly at

random, all simple events have equal probability. The sample space has 100d simple

events, and the sum of the probabilities of all simple events must be 1. Therefore each

simple event has probability 1/100d.

Because events are sets, we use standard set theory notation to express combinations

of events. We write E1 ∩ E2 for the occurrence of both E1 and E2 and write E1 ∪ E2 for

the occurrence of either E1 or E2 (or both). For example, suppose we roll two dice. If

E1 is the event that the first die is a 1 and E2 is the event that the second die is a 1, then

E1 ∩ E2 denotes the event that both dice are 1 while E1 ∪ E2 denotes the event that at

least one of the two dice lands on 1. Similarly, we write E1 − E2 for the occurrence

1 In a discrete probability spaceF = 2�. Otherwise, and introductory readers may skip this point, since the events

need to bemeasurable,F must include the empty set and be closed under complement and union and intersection

of countably many sets (a σ -algebra).

3

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

events and probability

of an event that is in E1 but not in E2. With the same dice example, E1 − E2 consists

of the event where the first die is a 1 and the second die is not. We use the notation Ē

as shorthand for � − E; for example, if E is the event that we obtain an even number

when rolling a die, then Ē is the event that we obtain an odd number.

Definition 1.2 yields the following obvious lemma.

Lemma 1.1: For any two events E1 and E2,

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2).

Proof: From the definition,

Pr(E1) = Pr(E1 − (E1 ∩ E2)) + Pr(E1 ∩ E2),

Pr(E2) = Pr(E2 − (E1 ∩ E2)) + Pr(E1 ∩ E2),

Pr(E1 ∪ E2) = Pr(E1 − (E1 ∩ E2)) + Pr(E2 − (E1 ∩ E2)) + Pr(E1 ∩ E2).

The lemma easily follows. �

A consequence of Definition 1.2 is known as the union bound. Although it is very

simple, it is tremendously useful.

Lemma 1.2: For any finite or countably infinite sequence of events E1,E2, . . . ,

Pr

(

⋃

i≥1

Ei

)

≤
∑

i≥1

Pr(Ei).

Notice that Lemma 1.2 differs from the third part of Definition 1.2 in that Definition

1.2 is an equality and requires the events to be pairwise mutually disjoint.

Lemma 1.1 can be generalized to the following equality, often referred to as the

inclusion–exclusion principle.

Lemma 1.3: Let E1, . . . ,En be any n events. Then

Pr

(

n
⋃

i=1

Ei

)

=

n
∑

i=1

Pr(Ei) −
∑

i< j

Pr(Ei ∩ E j) +
∑

i< j<k

Pr(Ei ∩ E j ∩ Ek)

− · · · + (−1)ℓ+1
∑

i1<i2<···<iℓ

Pr

(

ℓ
⋂

r=1

Eir

)

+ · · · .

The proof of the inclusion–exclusion principle is left as Exercise 1.7.

We showed before that the only case in which the algorithm may fail to give the

correct answer is when the two input polynomials F (x) and G(x) are not equivalent;

the algorithm then gives an incorrect answer if the random number it chooses is a root

of the polynomial F (x) − G(x). Let E represent the event that the algorithm failed to

give the correct answer. The elements of the set corresponding to E are the roots of

the polynomial F (x) − G(x) that are in the set of integers {1, . . . , 100d}. Since the

polynomial has no more than d roots it follows that the event E includes no more than

4

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 axioms of probability

d simple events, and therefore

Pr(algorithm fails) = Pr(E) ≤
d

100d
=

1

100
.

It may seem unusual to have an algorithm that can return the wrong answer. It may

help to think of the correctness of an algorithm as a goal that we seek to optimize in

conjunction with other goals. In designing an algorithm, we generally seek to minimize

the number of computational steps and the memory required. Sometimes there is a

trade-off; there may be a faster algorithm that uses more memory or a slower algorithm

that uses less memory. The randomized algorithm we have presented gives a trade-off

between correctness and speed. Allowing algorithms that may give an incorrect answer

(but in a systematic way) expands the trade-off space available in designing algorithms.

Rest assured, however, that not all randomized algorithms give incorrect answers, as

we shall see.

For the algorithm just described, the algorithm gives the correct answer 99% of

the time even when the polynomials are not equivalent. Can we improve this prob-

ability? One way is to choose the random number r from a larger range of integers.

If our sample space is the set of integers {1, . . . , 1000d}, then the probability of a

wrong answer is at most 1/1000. At some point, however, the range of values we

can use is limited by the precision available on the machine on which we run the

algorithm.

Another approach is to repeat the algorithm multiple times, using different random

values to test the identity. The property we use here is that the algorithm has a one-sided

error. The algorithm may be wrong only when it outputs that the two polynomials are

equivalent. If any run yields a number r such thatF (r) �= G(r), then the polynomials are

not equivalent. Thus, if we repeat the algorithm a number of times and findF (r) �= G(r)

in at least one round of the algorithm, we know that F (x) and G(x) are not equivalent.

The algorithm outputs that the two polynomials are equivalent only if there is equality

for all runs.

In repeating the algorithm we repeatedly choose a random number in the range

{1, . . . , 100d}. Repeatedly choosing random numbers according to a given distribution

is generally referred to as sampling. In this case, we can repeatedly choose random

numbers in the range {1, . . . , 100d} in two ways: we can sample either with replace-

ment orwithout replacement. Sampling with replacement means that we do not remem-

ber which numbers we have already tested; each time we run the algorithm, we choose

a number uniformly at random from the range {1, . . . , 100d} regardless of previous

choices, so there is some chance we will choose an r that we have chosen on a previous

run. Sampling without replacement means that, once we have chosen a number r, we

do not allow the number to be chosen on subsequent runs; the number chosen at a given

iteration is uniform over all previously unselected numbers.

Let us first consider the case where sampling is done with replacement. Assume

that we repeat the algorithm k times, and that the input polynomials are not equiva-

lent. What is the probability that in all k iterations our random sampling from the set

{1, . . . , 100d} yields roots of the polynomial F (x) − G(x), resulting in a wrong output

by the algorithm? If k = 1, we know that this probability is at most d/100d = 1/100.

5

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

events and probability

If k = 2, it seems that the probability that the first iteration finds a root is at most 1/100

and the probability that the second iteration finds a root is at most 1/100, so the prob-

ability that both iterations find a root is at most (1/100)2. Generalizing, for any k, the

probability of choosing roots for k iterations would be at most (1/100)k.

To formalize this, we introduce the notion of independence.

Definition 1.3: Two events E and F are independent if and only if

Pr(E ∩ F) = Pr(E) · Pr(F).

More generally, events E1,E2, . . . ,Ek are mutually independent if and only if, for any

subset I ⊆ [1, k],

Pr

(

⋂

i∈I

Ei

)

=
∏

i∈I

Pr(Ei).

If our algorithm samples with replacement then in each iteration the algorithm chooses

a random number uniformly at random from the set {1, . . . , 100d}, and thus the choice

in one iteration is independent of the choices in previous iterations. For the case where

the polynomials are not equivalent, let Ei be the event that, on the ith run of the algo-

rithm, we choose a root ri such that F (ri) − G(ri) = 0. The probability that the algo-

rithm returns the wrong answer is given by

Pr(E1 ∩ E2 ∩ · · · ∩ Ek).

Since Pr(Ei) is at most d/100d and since the events E1,E2, . . . ,Ek are independent,

the probability that the algorithm gives the wrong answer after k iterations is

Pr(E1 ∩ E2 ∩ · · · ∩ Ek) =

k
∏

i=1

Pr(Ei) ≤

k
∏

i=1

d

100d
=

(

1

100

)k

.

The probability of making an error is therefore at most exponentially small in the num-

ber of trials.

Now let us consider the case where sampling is done without replacement. In this

case the probability of choosing a given number is conditioned on the events of the

previous iterations.

Definition 1.4: The conditional probability that event E occurs given that event F

occurs is

Pr(E | F) =
Pr(E ∩ F)

Pr(F)
.

The conditional probability is well-defined only if Pr(F) > 0.

Intuitively, we are looking for the probability of E ∩ F within the set of events defined

by F . Because F defines our restricted sample space, we normalize the probabilities

by dividing by Pr(F), so that the sum of the probabilities of all events is 1. When

Pr(F) > 0, the definition can also be written in the useful form

Pr(E | F) Pr(F) = Pr(E ∩ F).

6

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 axioms of probability

Notice that, when E and F are independent and Pr(F) �= 0, we have

Pr(E | F) =
Pr(E ∩ F)

Pr(F)
=

Pr(E) Pr(F)

Pr(F)
= Pr(E).

This is a property that conditional probability should have; intuitively, if two events are

independent, then information about one event should not affect the probability of the

second event.

Again assume that we repeat the algorithm k times and that the input polynomials are

not equivalent. What is the probability that in all the k iterations our random sampling

from the set {1, . . . , 100d} yields roots of the polynomial F (x) − G(x), resulting in a

wrong output by the algorithm?

As in the analysis with replacement, we let Ei be the event that the random num-

ber ri chosen in the ith iteration of the algorithm is a root of F (x) − G(x); again, the

probability that the algorithm returns the wrong answer is given by

Pr(E1 ∩ E2 ∩ · · · ∩ Ek).

Applying the definition of conditional probability, we obtain

Pr(E1 ∩ E2 ∩ · · · ∩ Ek) = Pr(Ek | E1 ∩ E2 ∩ · · · ∩ Ek−1) · Pr(E1 ∩ E2 ∩ · · · ∩ Ek−1),

and repeating this argument gives

Pr(E1 ∩ E2 ∩ · · · ∩ Ek)

= Pr(E1) · Pr(E2 | E1) · Pr(E3 | E1 ∩ E2) · · ·Pr(Ek | E1 ∩ E2 ∩ · · · ∩ Ek−1).

Can we bound Pr(E j | E1 ∩ E2 ∩ · · · ∩ E j−1)? Recall that there are at most d values

r for which F (r) − G(r) = 0; if trials 1 through j − 1 < d have found j − 1 of them,

then when sampling without replacement there are only d − (j − 1) values out of the

100d − (j − 1) remaining choices for which F (r) − G(r) = 0. Hence

Pr(E j | E1 ∩ E2 ∩ · · · ∩ E j−1) ≤
d − (j − 1)

100d − (j − 1)
,

and the probability that the algorithm gives the wrong answer after k ≤ d iterations is

bounded by

Pr(E1 ∩ E2 ∩ · · · ∩ Ek) ≤

k
∏

j=1

d − (j − 1)

100d − (j − 1)
≤

(

1

100

)k

.

Because (d − (j − 1))/(100d − (j − 1)) < d/100d when j > 1, our bounds on the

probability of making an error are actually slightly better without replacement. You

may also notice that, if we take d + 1 samples without replacement and the two poly-

nomials are not equivalent, then we are guaranteed to find an r such that F (r) − G(r) �=

0. Thus, in d + 1 iterations we are guaranteed to output the correct answer. However,

computing the value of the polynomial at d + 1 points takes �(d2) time using the stan-

dard approach, which is no faster than finding the canonical form deterministically.

Since sampling without replacement appears to give better bounds on the probability

of error, why would we ever want to consider sampling with replacement? In some

cases, sampling with replacement is significantly easier to analyze, so it may be worth

7

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

events and probability

considering for theoretical reasons. In practice, sampling with replacement is often

simpler to code and the effect on the probability of making an error is almost negligible,

making it a desirable alternative.

1.3. Application: Verifying Matrix Multiplication

We now consider another example where randomness can be used to verify an equality

more quickly than the known deterministic algorithms. Suppose we are given three

n× nmatrices A, B, andC. For convenience, assume we are working over the integers

modulo 2. We want to verify whether

AB = C.

Oneway to accomplish this is tomultiplyA andB and compare the result toC. The sim-

ple matrix multiplication algorithm takes �(n3) operations. There exist more sophisti-

cated algorithms that are known to take roughly �(n2.37) operations.

Once again, we use a randomized algorithm that allows for faster verification – at the

expense of possibly returning a wrong answer with small probability. The algorithm is

similar in spirit to our randomized algorithm for checking polynomial identities. The

algorithm chooses a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n. It then computesABr̄

by first computing Br̄ and then A(Br̄), and it also computes Cr̄. If A(Br̄) �= Cr̄, then

AB �= C. Otherwise, it returns that AB = C.

The algorithm requires three matrix-vector multiplications, which can be done in

time �(n2) in the obvious way. The probability that the algorithm returns thatAB = C

when they are actually not equal is bounded by the following theorem.

Theorem 1.4: If AB �= C and if r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤
1

2
.

Proof: Before beginning, we point out that the sample space for the vector r̄ is the set

{0, 1}n and that the event under consideration is ABr̄ = Cr̄. We also make note of the

following simple but useful lemma.

Lemma 1.5: Choosing r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n uniformly at random is equiva-

lent to choosing each ri independently and uniformly from {0, 1}.

Proof: If each ri is chosen independently and uniformly at random, then each of the

2n possible vectors r̄ is chosen with probability 2−n, giving the lemma. �

LetD = AB − C �= 0. ThenABr̄ = Cr̄ implies thatDr̄ = 0. SinceD �= 0 it must have

some nonzero entry; without loss of generality, let that entry be d11.

For Dr̄ = 0, it must be the case that

n
∑

j=1

d1 jr j = 0

8

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 application: verifying matrix multiplication

or, equivalently,

r1 = −

∑n
j=2 d1 jr j

d11
. (1.1)

Now we introduce a helpful idea. Instead of reasoning about the vector r̄, suppose

that we choose the rk independently and uniformly at random from {0, 1} in order,

from rn down to r1. Lemma 1.5 says that choosing the rk in this way is equivalent to

choosing a vector r̄ uniformly at random. Now consider the situation just before r1 is

chosen. At this point, the right-hand side of Eqn. (1.1) is determined, and there is at

most one choice for r1 that will make that equality hold. Since there are two choices

for r1, the equality holds with probability at most 1/2, and hence the probability that

ABr̄ = Cr̄ is at most 1/2. By considering all variables besides r1 as having been set, we

have reduced the sample space to the set of two values {0, 1} for r1 and have changed

the event being considered to whether Eqn. (1.1) holds. �

This idea is called the principle of deferred decisions.When there are several random

variables, such as the ri of the vector r̄, it often helps to think of some of them as being

set at one point in the algorithm with the rest of them being left random – or deferred –

until some further point in the analysis. Formally, this corresponds to conditioning on

the revealed values; when some of the random variables are revealed, wemust condition

on the revealed values for the rest of the analysis. We will see further examples of the

principle of deferred decisions later in the book.

To formalize this argument, we first introduce a simple fact, known as the law of

total probability.

Theorem 1.6 [Law of Total Probability]: Let E1,E2, . . . ,En be mutually disjoint

events in the sample space �, and let
⋃n

i=1 Ei = �. Then

Pr(B) =

n
∑

i=1

Pr(B ∩ Ei) =

n
∑

i=1

Pr(B | Ei) Pr(Ei).

Proof: Since the events Ei (i = 1, . . . , n) are disjoint and cover the entire sample space

�, it follows that

Pr(B) =

n
∑

i=1

Pr(B ∩ Ei).

Further,

n
∑

i=1

Pr(B ∩ Ei) =

n
∑

i=1

Pr(B | Ei) Pr(Ei)

by the definition of conditional probability. �

9

www.cambridge.org/9781107154889
www.cambridge.org

Cambridge University Press & Assessment
978-1-107-15488-9 — Probability and Computing
2nd Edition
Michael Mitzenmacher , Eli Upfal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

events and probability

Now, using this law and summing over all collections of values (x2, x3, x4, . . . , xn) ∈

{0, 1}n−1 yields

Pr(ABr̄ = Cr̄)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr
(

(ABr̄ = Cr̄) ∩ ((r2, . . . , rn) = (x2, . . . , xn))
)

≤
∑

(x2,...,xn)∈{0,1}n−1

Pr

((

r1 = −

∑n
j=2 d1 jr j

d11

)

∩ ((r2, . . . , rn) = (x2, . . . , xn))

)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr

(

r1 = −

∑n
j=2 d1 jr j

d11

)

· Pr((r2, . . . , rn) = (x2, . . . , xn))

≤
∑

(x2,...,xn)∈{0,1}n−1

1

2
Pr((r2, . . . , rn) = (x2, . . . , xn))

=
1

2
.

Here we have used the independence of r1 and (r2, . . . , rn) in the fourth line. �

To improve on the error probability of Theorem 1.4, we can again use the fact that

the algorithm has a one-sided error and run the algorithm multiple times. If we ever

find an r̄ such that ABr̄ �= Cr̄, then the algorithm will correctly return that AB �= C. If

we always find ABr̄ = Cr̄, then the algorithm returns that AB = C and there is some

probability of a mistake. Choosing r̄ with replacement from {0, 1}n for each trial, we

obtain that, after k trials, the probability of error is at most 2−k. Repeated trials increase

the running time to �(kn2).

Suppose we attempt this verification 100 times. The running time of the random-

ized checking algorithm is still �(n2), which is faster than the known deterministic

algorithms for matrix multiplication for sufficiently large n. The probability that an

incorrect algorithm passes the verification test 100 times is at most 2−100, an astronom-

ically small number. In practice, the computer is much more likely to crash during the

execution of the algorithm than to return a wrong answer.

An interesting related problem is to evaluate the gradual change in our confidence in

the correctness of the matrix multiplication as we repeat the randomized test. Toward

that end we introduce Bayes’ law.

Theorem 1.7 [Bayes’ Law]: Assume that E1,E2, . . . ,En are mutually disjoint events

in the sample space � such that
⋃n

i=1 Ei = �. Then

Pr(E j | B) =
Pr(E j ∩ B)

Pr(B)
=

Pr(B | E j) Pr(E j)
∑n

i=1 Pr(B | Ei) Pr(Ei)
.

As a simple application of Bayes’ law, consider the following problem. We are given

three coins and are told that two of the coins are fair and the third coin is biased, landing

heads with probability 2/3. We are not told which of the three coins is biased. We

permute the coins randomly, and then flip each of the coins. The first and second coins

come up heads, and the third comes up tails. What is the probability that the first coin

is the biased one?

10

www.cambridge.org/9781107154889
www.cambridge.org

