An Introduction to Vectors, Vector Operators and Vector Analysis

Conceived as s a supplementary text and reference book for undergraduate and graduate students of science and engineering, this book intends communicating the fundamental concepts of vectors and their applications. It is divided into three units. The first unit deals with basic formulation: both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation and curvilinear coordinate systems like spherical polar and parabolic systems. Structures and analytical geometry of curves and surfaces is covered in detail.

The second unit discusses algebra of operators and their types. It explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigenvectors and eigenvalues of a linear vector operator are discussed using vector algebra. Topics including Mohr's algorithm, Hamilton's theorem and Euler's theorem are discussed in detail. The unit ends with a discussion on transformation groups, rotation group, group of isometries and the Euclidean group, with applications to rigid displacements.

The third unit deals with vector analysis. It discusses important topics including vector valued functions of a scalar variable, functions of vector argument (both scalar valued and vector valued): thus covering both the scalar and vector fields and vector integration

Pramod S. Joag is presently working as CSIR Emeritus Scientist at the Savitribai Phule University of Pune, India. For over 30 years he has been teaching classical mechanics, quantum mechanics, electrodynamics, solid state physics, thermodynamics and statistical mechanics at undergraduate and graduate levels. His research interests include quantum information, and more specifically measures of quantum entanglement and quantum discord, production of multipartite entangled states, entangled Fermion systems, models of quantum nonlocality etc.

Cambridge University Press 978-1-107-15443-8 - An Introduction to Vectors, Vector Operators and Vector Analysis Pramod S. Joag Frontmatter More information

An Introduction to Vectors, Vector Operators and Vector Analysis

Pramod S. Joag

CAMBRIDGE UNIVERSITY PRESS

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107154438

© Pramod S. Joag 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Joag, Pramod S., 1951- author.
Title: An introduction to vectors, vector operators and vector analysis / Pramod S. Joag.
Description: Daryaganj, Delhi, India : Cambridge University Press, 2016. | Includes bibliographical references and index.
Identifiers: LCCN 2016019490| ISBN 9781107154438 (hardback) | ISBN 110715443X (hardback)

Subjects: LCSH: Vector analysis. | Mathematical physics. Classification:LCC QC20.7.V4 J63 2016 | DDC 512/.5–dc23 LC record available at https://lccn.loc.gov/2016019490

ISBN 978-1-107-15443-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-15443-8 - An Introduction to Vectors, Vector Operators and Vector Analysis Pramod S. Joag Frontmatter More information

> To Ela and Ninad who made me write this document

Cambridge University Press 978-1-107-15443-8 - An Introduction to Vectors, Vector Operators and Vector Analysis Pramod S. Joag Frontmatter More information

Contents

Figures Tables Preface Nomenclature	xiii xx xxi xxi xxv
I Basic Formulation	
1 Getting Concepts and Gathering Tools	3
1.1 Vectors and Scalars	3
1.2 Space and Direction	4
1.3 Representing Vectors in Space	6
1.4 Addition and its Properties	8
1.4.1 Decomposition and resolution of vectors	13
1.4.2 Examples of vector addition	16
1.5 Coordinate Systems	18
1.5.1 Right-handed (dextral) and left-handed coordinate systems	18
1.6 Linear Independence, Basis	19
1.7 Scalar and Vector Products	22
1.7.1 Scalar product	22
1.7.2 Physical applications of the scalar product	30
1.7.3 Vector product	32
1.7.4 Generalizing the geometric interpretation of the vector product	36
1.7.5 Physical applications of the vector product	38
1.8 Products of Three or More Vectors	39
1.8.1 The scalar triple product	39
1.8.2 Physical applications of the scalar triple product	43
1.8.3 The vector triple product	45
1.9 Homomorphism and Isomorphism	45

viii Contents

1.10	Isomorphism with \mathbb{R}^3	45
1.11	A New Notation: Levi-Civita Symbols	48
1.12	Vector Identities	52
1.13	Vector Equations	54
1.14	Coordinate Systems Revisited: Curvilinear Coordinates	57
	1.14.1 Spherical polar coordinates	57
	1.14.2 Parabolic coordinates	60
1.15	Vector Fields	67
1.16	Orientation of a Triplet of Non-coplanar Vectors	68
	1.16.1 Orientation of a plane	72
Vec	tors and Analytic Geometry	74
2.1	Straight Lines	74
2.2	Planes	83
2.3	Spheres	89
2.4	Conic Sections	90
Pla	nar Vectors and Complex Numbers	94
3.1	Planar Curves on the Complex Plane	94
3.2	Comparison of Angles Between Vectors	99
3.3	Anharmonic Ratio: Parametric Equation to a Circle	100
3.4	Conformal Transforms, Inversion	101
3.5	Circle: Constant Angle and Constant Power Theorems	103
3.6	General Circle Formula	105
3.7	Circuit Impedance and Admittance	106
3.8	The Circle Transformation	107
	 1.10 1.11 1.12 1.13 1.14 1.15 1.16 Vec: 2.1 2.2 2.3 2.4 Plan 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	 1.10 Isomorphism with R³ 1.11 A New Notation: Levi-Civita Symbols 1.12 Vector Identities 1.13 Vector Equations 1.14 Coordinate Systems Revisited: Curvilinear Coordinates 1.14.1 Spherical polar coordinates 1.14.2 Parabolic coordinates 1.14.2 Parabolic coordinates 1.15 Vector Fields 1.16 Orientation of a Triplet of Non-coplanar Vectors 1.16.1 Orientation of a plane Vectors and Analytic Geometry 2.1 Straight Lines 2.2 Planes 2.3 Spheres 2.4 Conic Sections Planar Vectors and Complex Numbers 3.1 Planar Curves on the Complex Plane 3.2 Comparison of Angles Between Vectors 3.3 Anharmonic Ratio: Parametric Equation to a Circle 3.4 Conformal Transforms, Inversion 3.5 Circle: Constant Angle and Constant Power Theorems 3.6 General Circle Formula 3.7 Circuit Impedance and Admittance 3.8 The Circle Transformation

II Vector Operators

4 Linear Operators	115
4.1 Linear Operators on \mathscr{E}_3	115
4.1.1 Adjoint operators	117
4.1.2 Inverse of an operator	117
4.1.3 Determinant of an invertible linear operator	119
4.1.4 Non-singular operators	121
4.1.5 Examples	121
4.2 Frames and Reciprocal Frames	124
4.3 Symmetric and Skewsymmetric Operators	126
4.3.1 Vector product as a skewsymmetric operator	128

CAMBRIDGE

		Contents	ix
	4.4 Linear Operators and Matrices	1	129
	4.5 An Equivalence Between Algebras	ر آ	130
	4.6 Change of Basis	ر آ	130
	+.0 Change of Dasis		152
5	Eigenvalues and Eigenvectors	1	34
	5.1 Eigenvalues and Eigenvectors of a Linear Operator]	134
	5.1.1 Examples	1	138
	5.2 Spectrum of a Symmetric Operator	1	141
	5.3 Mohr's Algorithm	1	147
	5.3.1 Examples	1	151
	5.4 Spectrum of a 2×2 Symmetric Matrix	1	155
	5.5 Spectrum of S^n]	156
6	Rotations and Reflections	1	58
	6.1 Orthogonal Transformations: Rotations and Reflections	J	158
	6.1.1 The canonical form of the orthogonal operator for refl	ection 1	161
	6.1.2 Hamilton's theorem	J	164
	6.2 Canonical Form for Linear Operators	1	165
	6.2.1 Examples	1	168
	6.3 Rotations	1	170
	6.3.1 Matrices representing rotations	1	176
	6.4 Active and Passive Transformations: Symmetries]	180
	6.5 Euler Angles]	184
	6.6 Euler's Theorem	1	188
7	Transformation Groups	1	91
	7.1 Definition and Examples	J	191
	7.2 The Rotation Group $\mathscr{O}^+(3)$	j	196
	7.3 The Group of Isometries and the Euclidean Group	J	199
	7.3.1 Chasles theorem	2	204
	7.4 Similarities and Collineations	2	205
	III Vector Analysis		
8	Preliminaries	2	215
Ũ	8.1 Fundamental Notions	-	215
	8.2. Sats and Mannings	-	215

8.2 Sets and Mappings	216
8.3 Convergence of a Sequence	217
8.4 Continuous Functions	220

х	Contents

9 Vec	tor Valued Functions of a Scalar Variable	221
9.1	Continuity and Differentiation	221
9.2	Geometry and Kinematics: Space Curves and Frenet–Seret Formulae	225
	9.2.1 Normal, rectifying and osculating planes	236
	9.2.2 Order of contact	238
	9.2.3 The osculating circle	239
	9.2.4 Natural equations of a space curve	240
	9.2.5 Evolutes and involutes	243
9.3	Plane Curves	248
	9.3.1 Three different parameterizations of an ellipse	248
	9.3.2 Cycloids, epicycloids and trochoids	253
	9.3.3 Orientation of curves	258
9.4	Chain Rule	263
9.5	Scalar Integration	263
9.6	Taylor Series	264
10 Fun	ctions with Vector Arguments	266
10.1	Need for the Directional Derivative	266
10.2	Partial Derivatives	266
10.3	Chain Rule	269
10.4	Directional Derivative and the Grad Operator	271
10.5	Taylor series	278
10.6	The Differential	279
10.7	Variation on a Curve	281
10.8	Gradient of a Potential	282
10.9	Inverse Maps and Implicit Functions	283
	10.9.1 Inverse mapping theorem	284
	10.9.2 Implicit function theorem	285
	10.9.3 Algorithm to construct the inverse of a map	287
10.10	Differentiating Inverse Functions	291
10.11	Jacobian for the Composition of Maps	294
10.12	Surfaces	297
10.13	The Divergence and the Curl of a Vector Field	304
10.14	Differential Operators in Curvilinear Coordinates	313
11 Vec	tor Integration	323
11.1	Line Integrals and Potential Functions	323
	11.1.1 Curl of a vector field and the line integral	341

11.2	Applications of the Potential Functions	344
11.3	Area Integral	357
11.4	Multiple Integrals	360
	11.4.1 Area of a planar region: Jordan measure	361
	11.4.2 Double integral	363
	11.4.3 Integral estimates	369
	11.4.4 Triple integrals	371
	11.4.5 Multiple integrals as successive single integrals	372
	11.4.6 Changing variables of integration	378
	11.4.7 Geometrical applications	382
	11.4.8 Physical applications of multiple integrals	390
11.5	Integral Theorems of Gauss and Stokes in Two-dimensions	395
	11.5.1 Integration by parts in two dimensions: Green's theorem	400
11.6	Applications to Two-dimensional Flows	402
11.7	Orientation of a Surface	406
11.8	Surface Integrals	414
	11.8.1 Divergence of a vector field and the surface integral	419
11.9	Diveregence Theorem in Three-dimensions	421
11.10	Applications of the Gauss's Theorem	423
	11.10.1 Exercises on the divergence theorem	427
11.11	Integration by Parts and Green's Theorem in Three-dimensions	429
	11.11.1 Transformation of ΔU to spherical coordinates	430
11.12	Helmoltz Theorem	432
11.13	Stokes Theorem in Three-dimensions	434
	11.13.1 Physical interpretation of Stokes theorem	436
	11.13.2 Exercises on Stoke's theorem	437
12 Odd	ls and Ends	444
12 0 40	Rotational Velocity of a Rigid Body	111
12.1	3-D Harmonic Oscillator	149
12.2	12.2.1 Anisotronic oscillator	449
123	Projectiles and Terestrial Effects	454
12.5	12.3.1 Optimum initial conditions for petting a basket ball	456
	12.3.1 Optimum initial conditions for ficturing a basket ball	450
	12.3.2 Optimum angle of surking a gon bail	437
12 /	Satellites and Orbits	402
12.4	12.4.1 Geometry and dynamics: Circular motion	400
	12.7.1 Ocomeny and dynamics. Circular motion	400

12.4.2 Hodograph of an orbit

470

Contents xi

xii Contents

12.4.3 Orbit after an impulse	473
12.5 A charged Particle in Uniform Electric and Magnetic Fields	475
12.5.1 Uniform magnetic field	475
12.5.2 Uniform electric and magnetic fields	478
12.6 Two-dimensional Steady and Irrotational Flow of an Incompressible Fluid	483

Appendices

A Matrices and Determinants	489
A.1 Matrices and Operations on them	489
A.2 Square Matrices, Inverse of a Matrix, Orthogonal Matrices	494
A.3 Linear and Multilinear Forms of Vectors	497
A.4 Alternating Multilinear Forms: Determinants	499
A.5 Principal Properties of Determinants	502
A.5.1 Determinants and systems of linear equations	505
A.5.2 Geometrical interpretation of determinants	506
B Dirac Delta Function	510
Bibliography	515
Index	517

Figures

1.1	(a) A line indicates two possible directions. A line with an arrow specifies a unique direction. (b) The angle between two directions is the amount by which one line is to be rotated so as to coincide with the other along with the arrows. Note the counterclockwise and clockwise rotations. (c) The angle between two directions is measured by the arc of the unit circle swept by the	
	rotating direction.	5
1.2	We can choose the angle between directions $\leq \pi$ by choosing which direction is to be rotated (counterclockwise) towards which.	5
1.3	Different representations of the same vector in space	7
1.4	Shifting origin makes (a) two different vectors correspond to the same point	
	and (b) two different points correspond to the same vector	8
1.5	Vector addition is commutative	9
1.6	(a) Addition of two vectors (see text). (b) Vector \overline{AE} equals $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}$. Draw different figures, adding \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} in different orders to check that this	
	vector addition is associative.	10
1.7	$\alpha \mathbf{a} + \alpha \mathbf{b} = \alpha (\mathbf{a} + \mathbf{b})$	10
1.8	Subtraction of vectors	11
1.9	a , b , α a + β b are in the same plane	11
1.10	An arbitrary triangle <i>ABC</i> formed by addition of vectors \mathbf{a} , \mathbf{b} ; $\mathbf{c} = \mathbf{a} + \mathbf{b}$. The angles at the respective vertices <i>A</i> , <i>B</i> , <i>C</i> are denoted by the same symbols.	12
1.11	Dividing <i>PQ</i> in the ratio $\lambda : (1 - \lambda)$	13
1.12	Addition of forces to get the resultant.	17
1.13	(a) The velocity of a shell fired from a moving tank relative to the ground. (b) The southward angle θ at which the shell will fire from a moving tank so that its resulting velocity is due west.	17
1.14	(a) Left handed screw motion and (b) Left handed coordinate system.(c) Right handed screw motion and (d) Right handed (dextral) coordinate	

xiv	Figures
-----	---------

	system. Try to construct other examples of the left and right handed coordinate systems.	19
1.15	Scalar product is commutative. The projections of a on b and b on a give respectively $\mathbf{a} \cdot \hat{\mathbf{b}} = \mathbf{a} \cos \theta$ and $\mathbf{b} \cdot \hat{\mathbf{a}} = \mathbf{b} \cos \theta$. Multiplication on both sides of the first equation by $ \mathbf{b} $ and the second by $ \mathbf{a} $ results in the symmetrical form $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \mathbf{a} \cdot \hat{\mathbf{b}} = \mathbf{a} \mathbf{b} \cdot \hat{\mathbf{a}}$	23
1 16	The scalar product is distributive with respect to addition	25
1.17	Lines joining a point on a sphere with two diametrically opposite points are perpendicular	27
1.18	Getting coordinates of a vector v (see text)	27
1.19	Euclidean distance for vectors	28
1.20	Work done on an object as it is displaced by d under the action of force F	30
1.21	Potential energy of an electric dipole p in an electric field \mathcal{E}	31
1.22	Torque on a current carrying coil in a magnetic field	31
1.23	Vector product of a and b : $ \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$ is the area of the parallelogram as shown	32
1.24	Generalizing the geometric interpretation of vector product	36
1.25	Geometrical interpretation of coordinates of a vector product	37
1.26	Moment of a force	38
1.27	Geometric interpretation of the scalar triple product (see text)	40
1.28	The volume of a tetrahedron as the scalar triple product	41
1.29	See text	50
1.30	Spherical polar coordinates	58
1.31	Coordinate surfaces are $x^2 + y^2 + z^2 = r^2$ (spheres $r = \text{constant}$) $\tan \theta = (x^2 + y^2)^{1/2}/z$ (circular cones, $\theta = \text{constant}$) $\tan \phi = y/x$ (half planes $\phi = \text{constant}$)	60
1.32	Differential displacement corresponds to $ ds = d\mathbf{r} $ (see text)	62
1.33	Parabolic coordinates (μ, ν, ϕ) . Coordinate surfaces are paraboloids of revolution ($\mu = \text{constant}, \nu = \text{constant}$) and half-planes ($\phi = \text{constant}$)	63
1.34	Cylindrical coordinates (ρ, ϕ, z) . Coordinate surfaces are circular cylinders $(\rho = \text{constant})$, half-planes $(\phi = \text{constant})$ intersecting on the <i>z</i> -axis, and parallel planes $(z = \text{constant})$	64
1.35	Prolate spheroidal coordinates (η, θ, ϕ) . Coordinate surfaces are prolate spheroids $(\eta = \text{constant})$, hyperboloids $(\theta = \text{constant})$, and half-planes $(\phi = \text{constant})$	65
1.36	Oblate spheroidal coordinates (η, θ, ϕ) . Coordinate surfaces are oblate spheroids $(\eta = \text{constant})$, hyperboloids $(\theta = \text{constant})$, and half-planes $(\phi = \text{constant})$	66

1.37	(a) Positively and (b) negatively oriented triplets (a , b , c), (c) Triplet (b , a , c)	
	has orientation opposite to that of (a , b , c) in (a)	68
2.1	Line \mathscr{L} with directance $\mathbf{d} = \mathbf{x} - (\mathbf{\hat{u}} \cdot \mathbf{x})\mathbf{\hat{u}}$	76
2.2	$ \mathbf{m} = \mathbf{x} \times \hat{\mathbf{u}} = \mathbf{d} $ for all \mathbf{x} on the line \mathscr{L}	76
2.3	See text	77
2.4	See text	78
2.5	With A and B defined in Eq. (2.8) (a) $ \mathbf{a} \times \mathbf{b} = \mathbf{A} + \mathbf{B} $ and (b) $ \mathbf{a} \times \mathbf{b} = \mathbf{B} - \mathbf{A} $. These equations can be written in terms of the areas of the corresponding	
	triangles	80
2.6	$\mathbf{A}' = (\mathbf{x} - \mathbf{c}) \times (\mathbf{b} - \mathbf{c})$ and $\mathbf{B}' = (\mathbf{a} - \mathbf{c}) \times (\mathbf{x} - \mathbf{c})$ (see text)	81
2.7	Case of c parallel to x	82
2.8	See text	83
2.9	A plane positively oriented with respect to the frame $(\mathbf{\hat{i}}, \mathbf{\hat{j}}, \mathbf{\hat{k}})$	83
2.10	Every line in the plane is normal to a	85
2.11	As seen from the figure, for every point on the plane $\hat{\mathbf{k}} \cdot \mathbf{r} = ext{constant}$	86
2.12	Shortest distance between two skew lines	88
2.13	A spherical triangle	89
2.14	Depicting Eq. (2.22)	91
2.15	Conics with a common focus and pericenter	92
3.1	Isomorphism between the complex plane $\mathbb Z$ and $\mathscr E_2$	95
3.2	Finding evolute of a unit circle	95
3.3	Finding \sqrt{i}	96
3.4	Finding <i>n</i> th roots of unity	97
3.5	$z, z^*, z \pm z^*$	97
3.6	Depicting Eq. (3.3)	99
3.7	If <i>D</i> is real, z_1, z_2, z_3, z_4 lie on a circle	100
3.8	The argument Δ of ω defined by Eq. (3.9)	102
3.9	Constant angle property of the circle	104
3.10	Constant power property of the circle	104
3.11	Illustrating Eq. (3.10)	105
3.12	Both impedance and admittance of this circuit are circles	106
3.13	Boucherot's circuit	107
3.14	Four terminal network	108
3.15	Geometrical meaning of $\omega_z^2 = \omega_0 \omega_\infty$	109
3.16	Point by point implementation of transformation Eq. (3.14)	110
3.17	An ellipse and a hyperbola	110
4.1	Inverse of a mapping. A one to one and onto map $f:X\mapsto Y$ has the unique inverse $f^{-1}:Y\mapsto X$	118

Figures xv

xvi Figures

5.1	$\mathbf{u} \cdot \left(e^{i\theta} \mathbf{v} \right) = \left(e^{-i\theta} \mathbf{u} \right) \cdot \mathbf{v}$	141
5.2	Symmetric transformation with principal values $\lambda_1 > 1$ and $\lambda_2 < 1$	145
5.3	An ellipsoid with semi-axes $\lambda_1, \lambda_2, \lambda_3$	146
5.4	Parameters in Mohr's algorithm	150
5.5	Mohr's Circle	151
5.6	Verification of Eq. (5.48)	152
6.1	Reflection of a vector in a plane	161
6.2	Reflection of a particle with momentum ${f p}$ by an unmovable plane	162
6.3	See text	164
6.4	Shear of a unit square	169
6.5	Rotation of a vector	170
6.6	Infinitesimal rotation $\delta \theta$ of x about \hat{n}	171
6.7	Vectors $d\mathbf{x}$ and arc length ds as radius $ \mathbf{x} \sin \theta$ is rotated through angle $\delta \theta$. As $\delta \theta \mapsto 0 d\mathbf{x}$ becomes tangent to the circle.	172
6.8	Orthonormal triad to study the action of the rotation operator	174
6.9	Equivalent rotations: One counterclockwise and the other clockwise	178
6.10	Composition of rotations. Rotations do not commute.	180
6.11	Active and passive transformations	182
6.12	Euler angles	184
6.13	Rotations corresponding to Euler angles	186
6.14	Roll, pitch and yaw	187
7.1	(a) Symmetry elements of an equilateral triangle i) Reflections in three planes shown by \perp bisectors of sides. ii) Rotations through $2\pi/3, 4\pi/3$ and 2π (= identity) about the axis \perp to the plane of the triangle passing through the center. (b) Isomorphism with S_3 (see text).	194
7.2	(a) Symmetry elements of a square (group D_4) i) Reflections in planes through the diagonal and bisectors of the opposite sides. ii) Rotations about the axis through the center and \perp to the square by angles $\pi/2$, pi , $3\pi/2$ and 2π (= identity) (b) D_4 is isomorphic with a subgroup of S_4 (see text)	195
73	Translation of a physical object by a	199
74	A rigid displacement is the composite of a rotation and a translation. The	177
<i>,</i>	translation vector a need not be in the plane of rotation.	201
7.5	Equivalence of a rotation/translation in a plane to a pure rotation	203
8.1	A converging sequence in \mathcal{E}_3	218
9.1	Geometry of the derivative	222
9.2	Parameterization by arc length	226
9.3	The Osculating circle	228
9.4	Curvature of a planar curve	229

9.5	A possible path of the satellite	235
9.6	Projections of a space curve on the coordinate planes of a moving trihedral	242
9.7	A construction for finding the equation of an involute C_2 for a given evolute	
	C_1 and vice versa	244
9.8	Construction of a evolute-involute pair	245
9.9	Finding the evolute of an involute	247
9.10	Ellipse	249
9.11	Parameters relative to foci	250
9.12	(a) Drawing ellipse with a pencil and a string (b) Semilatus rectum(c) Polar coordinates relative to a focus	251
9.13	Cycloid	254
9.14	Epicycloid. Vectors are (i) : c , (ii) : a , (iii) : a + c , (iv) : $-\mathscr{R}(t, \hat{\mathbf{n}})\mathbf{c}$, (v) : $\mathscr{R}(t, \hat{\mathbf{n}})(\mathbf{a} + \mathbf{c}), (vi)$: $\mathscr{R}(\frac{a}{2}t, \hat{\mathbf{n}})(-\mathscr{R}(t, \hat{\mathbf{n}})\mathbf{c}), (vii)$: x (t)	255
9.15	Cardioid	256
9.16	Hypocycloid	256
9.17	A point <i>P</i> on the rim of a circle rolling inside a circle of twice the radius	
	describes a straight line segment	257
9.18	Trochoid	258
9.19	A curve with a loop	259
9.20	Positive sense of traversing a closed curve	259
9.21	Positive and negative sides of an oriented arc	260
9.22	Orientated simple closed curve	260
9.23	Orientation of a curve with loops	261
9.24	Positive direction of the tangent and the normal	262
9.25	(a) A convex function with positive curvature, and (b) a concave function	
	with negative curvature	262
10.1	Sections of $u = f(x, y)$	267
10.2	Mapping polar to cartesian coordinates	277
10.3	The gradient vector is orthogonal to the equipotential at every point	282
10.4	Neighborhood of point (a, b) on $f(x, y) = c$ is locally given by the implicit function $y = f(x)$	286
10.5	Stereographic projection of the sphere	299
10.6	(a) Hyperboloid of one sheet and (b) Hyperboloid of two sheets	300
10.7	Creation of torus by the rotation of a circle	303
10.8	Vector fields given by (a) \mathbf{v}_a (b) \mathbf{v}_b (c) \mathbf{v}_c as defined in this exercise	305
10.9	Illustrating curl of a vector field	307
10.10	Various cases of field curling around a point	307

Figures xvii

xviii Figures

10.11	The Network of coordinate lines and coordinate surfaces at any arbitary	214
10.12	point, defining a curvilinear coordinate system $(x) \text{ Firstleasting and } (x) Firstleasting and $	210
10.12	(a) Evaluating $\mathbf{x} \cdot \mathbf{a} \mathbf{a}$ (b) Flux through the opposite faces of a volume element	220
10.13	Circulation around a loop	320
11.1	Defining the line integral	323
11.2	$\mathbf{x}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$	325
11.3	A circular helix	326
11.4	In carrying a test charge from <i>a</i> to <i>b</i> the same work is done along either path	326
11.5	Line integral over a unit circle	328
11.6	Line integral around a simple closed curve as the sum of the line integrals over its projections on the coordinate planes	330
11.7	Illustrating Eq. (11.13)	333
11.8	Each winding of the curve of integration around the z axis adds 2π to its	
	value	335
11.9	Illustration of a simply connected domain	337
11.10	The closed loop for integration	340
11.11	The geometry of Eq. (11.17)	342
11.12	A spherically symmetric mass distribution	347
11.13	Variables in the multipole expansion	352
11.14	Earth's rotation affected its shape in its formative stage	354
11.15	Area integral	358
11.16	Area swept out by radius vector along a closed curve. Cross-hatched region is swept out twice in opposite directions, so its area is zero.	359
11.17	Directed area of a self-intersecting closed plane curve. Vertical and horizontal lines denote areas with opposite orientation, so cross-hatched	
	region has zero area.	360
11.18	Interior and exterior approximations to the area of the unit disc $ \mathbf{x} \le 1$ for $n = 0, 1, 2$ where $A_0^- = 0, A_1^- = 1, A_2^- = 2, A_2^+ = 4.25, A_1^+ = 6, A_0^+ = 12$	361
11.19	Evaluation of a double integral	364
11.20	Subdivision by polar coordinate net	367
11.21	General convex region of integration	374
11.22	Non-convex region of integration	375
11.23	Circular ring as a region of integration	375
11.24	Triangle as a region of integration	376
11.25	The right triangular pyramid	378
11.26	Changing variables of integration (see text)	379
11.27	Tangent plane to the surface	385
11.28	Divergence theorem for connected regions	396

11.29	$\hat{\mathbf{n}}$ defines the directional derivatives of x and y	397
11.30	Γ is the boundary of a simply connected region	400
11.31	Amount of liquid crossing segment I in time dt for uniform flow of velocity v	402
11.32	(a) Flow with sink and (b) flow with vortex	405
11.33	Unit vector $\hat{\mathbf{n}}$ gives the orientation of oriented surface S^* at P	408
11.34	Orientation of S with respect to u, v	411
11.35	Mobius strip	412
11.36	Illustrating Eq. (11.157)	419
11.37	Evaluation of a line integral using Stoke's theorem	439
12.1	The rotating fan	447
12.2	Finding the instantaneous axis of rotation of a rigid body	448
12.3	Orbit of an isotropic harmonic oscillator	453
12.4	Elliptical orbit as a superposition of coplanar circular orbits	453
12.5	(a) The regions $V \le E$, $V_1 \le E$ and $V_2 \le E$ (b) Construction of a Lissajous	
	figure	455
12.6	Trajectory in position space	457
12.7	Trajectory in the velocity space	457
12.8	Graphical determination of the displacement r , time of light t and final	
	velocity v	458
12.9	Terrestrial Coriolis effect	462
12.10	Topocentric directional parameters	463
12.11	Net acceleration of river water	468
12.12	Eliptical orbit and Hodograph	472
12.13	Orbits after impulse	473
12.14	Earth's atmospheric drag on a satellite circularising its orbit	474
12.15	Velocity vector precesses about ω	476
12.16	(a) Right handed helix (b) Left handed helix	477
12.17	Rotational velocity of a charge q about ω	478
12.18	Trajectory of a charged particle in uniform electric and magnetic fields	480
12.19	Directions of electric and magnetic fields for Fig. 12.18	481
12.20	Trochoids traced by a charge q when the electric and magnetic fields are	
	orthogonal	481
12.21	Two-dimensional flow around a 90° corner	485
12.22	Two-dimensional flow around a 60° corner	485
12.23	Two-dimensional flow around a Semi-infinite straight line	486
12.24	Two-dimensional flow around a 2-D doublet source consisting of a source	101
	and a sink of equal strength, at an infinitesimal separation	486

Figures xix

Tables

- 2.1 Classification of Conics and Conicoids
- 12.1 Classification of Orbits with $H \neq 0$

92 471

Preface

This is a textbook on vectors at the undergraduate/advanced undergraduate level. Its target readership is the undergraduate student of science and engineering. It may also be used by professional scientists and engineers to brush up on various aspects of vectors and applications of their interest. Vectors, vector operators and vector analysis form the essential background to and the skeleton of many courses in science and engineering. Therefore, the utility of a book which clearly builds up the theoretical structure and applications of vectors cannot be over-emphasized. The present book is an attempt to fulfill such a requirement. This book, for instance, can be used to give a course forming a common pre-requisite for a number of science and engineering courses. In this book, I have tried to develop the theory and applications of vectors from scratch. Although the subject is presented in a general setting, it is developed in 3-D space using basic vector algebra. A coordinate-free approach is taken throughout, so that all developments are free of any particular coordinate system and apply to all coordinate systems. This approach directly deals with vectors instead of their components or coordinates and combines these vectors using vector algebra.

A large part of this book is inspired by the geometric algebra of multivectors that originated in the 19th century, in the works of Grassmann and Clifford and which has had a powerful re-incarnation with enhanced applicability in the recent works of D. Hestenes and others [7, 10, 11]. This is one of the most general algebraic formulations of geometry of which vectors form a special case. Keeping the multivector geometric algebra at the backdrop makes the coordinate free approach for vectors emerge naturally. On a personal note, the book on classical mechanics by D. Hestenes [10], which introduced me to the multivector geometric algebra, has always been a source of joy and education for me. I have always enjoyed solving problems from this book, many of them are included here. In fact I have used Hestenes' work in various places throughout the book, without using or referring to the geometric algebra or geometric calculus.

While designing this book I was guided by two principles: A consistent development of the subject from scratch, and also showing the beauty of the whole edifice and extending the utility of the book to the largest possible cross-section of students. The book comprises three parts, one for each part of the title: First on the basic formulation, the second on

xxii Preface

vector operators and the third on vector analysis. Following is the brief description of each one of them.

The first part gives the basic formulation, both conceptual and theoretical. The first chapter builds basic concepts and tools. The first three sections are the result of my experience with students and I have found that these matters should be explicitly dealt with for the correct understanding of the subject. I hope that the first three sections will clear up the confusion and the misconceptions regarding many basic issues, in the minds of students. I have also given the applications and examples of every algebraic operation, starting from vector addition. Levi-Civita notation is introduced in detail and used to get the vector identities. The metric space structure is introduced and used to understand vectors in the context of the physical quantities they represent. Apart from the essential structures like basis, dimension, coordinate systems and the consequences of linearity, the curvilinear coordinate systems like spherical polar and parabolic systems are developed systematically. Vector fields are defined and their basic structure is given. The orientation of a linearly independent triplet of vectors is then discussed, also including the orientation of a triplet relative to a coordinate system and the related concept of the orientation of a plane, which is later used to understand the orientation of a surface. The second chapter deals with the analytical geometry of curves and surfaces emphasizing vector methods. The third chapter uses complex algebra for manipulating planar vectors and for the description and transformations of the plane curves. In this chapter I follow the treatment by Zwikker [26] which is a complete and rigorous exposition of these issues.

The second part deals with operators on vectors. Everything about vector operators is formulated using vector algebra (scalar and vector products) and matrices. The fourth chapter gives the algebra of operators and various types of operators, and proves and emphasizes the equivalence between the algebra of vector operators and the algebra of matrices representing them. The fifth chapter gives general formulation of getting eigenvectors and eigenvalues of a linear operator on vectors using vector algebra. The properties of the spectrum of a symmetric operator are also obtained using vector algebra. Thus, extremely useful and general methods are accessible to the students using elementary vector algebra. A powerful algorithm to diagonalize a positive operator acting on a 2-D space, called Mohr's algorithm, is then described. Mohr's algorithm has been routinely used by engineers via its graphical implementation, as explained in the text. The sixth chapter develops in detail orthogonal transformations as rotations or reflections. The generic forms for operators of reflection and rotation, as well as the matrices for the rotation operator are obtained. The relationship between rotation and reflection is established via Hamilton's theorem. The active and passive transformations and their connection with symmetry is discussed. The concept of broken symmetry is briefly discussed. The Euler angle construction for arbitrary rotation is then derived. The problem of finding the axis and the angle of rotation corresponding to a given orthogonal matrix is solved as the Euler's theorem. The second part ends with the seventh chapter on transformation groups and deals with the rotation group, group of isometries and the Euclidean group, with applications to rigid displacements.

CAMBRIDGE

Cambridge University Press 978-1-107-15443-8 - An Introduction to Vectors, Vector Operators and Vector Analysis Pramod S. Joag Frontmatter <u>More information</u>

Preface xxiii

The third part deals with vector analysis. This is a vast subject and a personal flavor in the choice of topics is inevitable. For me the guiding question was, what vector analysis a graduating student in science and engineering must have ? Again, the variety of answers to this question is limited only by the number of people addressing it. Thus, the third part gives my version of the answer to this question and the resulting vector analysis. I primarily develop the subject with geometric point of view, making as much contact with applications as possible. My aim is to enable the student to independently read, understand and use the literature based on vector analysis for the applications of his interest. Whether this aim is met can only be decided by the students who learn and try to use this material. This part is divided into five (Chapters 8-12). The eighth chapter outlines fundamental notions and preliminary start ups, and also sets the objectives. The ninth chapter consists of the vector valued functions of a scalar variable. Theories of space curves and of plane curves are developed from scratch with some physical applications. This chapter ends with the integration of such functions with respect to their scalar argument and their Taylor series expansion. The tenth chapter deals with the functions of vector argument, both scalar valued and vector valued, thus covering both the scalar and vector fields. Again, everything is developed from scratch, starting with the directional derivative, partial derivatives and continuity of such functions. A part of this development is inspired by the geometric calculus developed by D. Hestenes and others [7, 10, 11]. To summarize, this chapter consists of different forms of derivatives of these and inverse functions, and their geometric/physical applications. A major omission in this chapter is that of the systematic development of differential forms, which may not be required in an undergraduate course. The eleventh chapter concerns vector integration. This is done in three phases: the line, the surface and the volume integral. All the standard topics are covered, emphasizing geometric aspects and physical applications. While writing this part, I have made use of many books, especially the book by Courant and John [5] and that by Lang [15], for the simple reason that I have learnt my calculus from these books, and I have no regrets about that. In particular, my treatment of multiple integrals and matrices and determinants in Appendix A is inspired by Courant and John's book. I find in their book, the unique property of building rigorous mathematics, starting from an intuitive geometric picture. Also, I follow Griffiths while presenting the divergence and the curl of vector fields, which, I think, is possibly one of the most compact and clear treatments of this topic. The subsections 11.1.1 and 11.8.1 and a part of section 9.2 are based on ref [22]. The twelfth and last chapter of the book presents an assorted collection of applications involving rotational motion of a rigid body, projectile motion, satellites and their orbits etc, illustrating coordinate-free analysis using vector techniques. This chapter, again, is influenced by Hestenes [10].

Appendix A develops the theory of matrices and determinants emphasizing their connection with vectors, also proving all results involving matrices and determinants used in the text. Appendix B gives a brief introduction to Dirac delta function.

The whole book is interspersed with exercises, which form an integral part of the text. Most of these exercises are illustrative or they explore some real life application of the theory. Some of them point out the subtlies involved. I recommend all students to attempt

xxiv Preface

all exercises, without looking at the solutions beforehand. When you read a solution after an attempt to get there, you understand it better. Also, do not be miserly about drawing figures, a figure can show you a way which thousand words may not.

I cannot end this preface without expressing my affection towards my friend and my deceased colleague Dr Narayan Rana, who re-kindled my interest in mechanics. Long evenings that I spent with him discussing mechanics and physics in general, sharing and laughing at various aspects of life from a distance, are the treasures of my life. We entered a rewarding and fruitful collaboration of writing a book on mechanics [19]. This collaboration and Hestenes' book [10] motivated me to formulate mechanics in a coordinate free way using vector methods. Apart from the book by Hestenes and his other related work, the book by V. I. Arnold on mechanics [3] has made an indelible impact on my understanding and my global view of mechanics, although its influence is not quite apparent in this book. I have always enjoyed discussing mechanics and physics in general with my colleagues Rajeev Pathak, Anil Gangal, C. V. Dharmadhikari, P. Durganandini, and Ahmad Sayeed. The present book is produced in LATEX and I thank our students, Dinesh Mali, Mukesh Khanore and Mihir Durve for their help in drawing figures and also as TEXperts.

Nomenclature

- $\alpha, \beta, \gamma, \delta$ Scalars
- \angle (**a**, **b**) Angle between vectors **a**, **b**
- a, b, x, y Vectors
- θ, ϕ, ψ, χ Angles
- $\mathcal R$ Region of 3-D space/plane
- LHS Left hand side
- RHS Right hand side
- \mathbb{R}^3 Vector space comprising ordered triplets of real numbers
- \mathscr{E}_3 3-D vector space
- |**a**|, *a* Magnitude of **a**
- $\|\mathbf{a}\|$ Norm of \mathbf{a}
- A, B Matrices
- |A|, |B| Determinants
- $\mathcal{R}(z)$, $\mathcal{I}(z)$ Real and imaginary parts of a complex number
- CM Center of mass
- μ Magnetic moment
- L Magnitude of angular momentum, A linear differential form
- **h** Angular momentum

xxvi Nomenclature

- ${\bf H}$ Specific angular momentum : Angular momentum per unit mass
- M Moment of a force, Torque
- B Magnetic field
- **E**, \mathcal{E} Electric field
- κ Curvature
- ρ Radius of curvature
- p Semilatus
rectum of a conic section
- e Eccentricity of a conic section
- **m** Moment of a line
- $\mathscr{R}(\mathbf{\hat{n}}, \theta)$ Operator for rotation of vector \mathbf{x} about $\mathbf{\hat{n}}$ by angle θ
- ${\mathscr U}$ Canonical reflection operator, general orthogonal operator
- S Similarity transformation on \mathcal{E}_3
- 𝒴 Affine transformation, skewsymmetric transformation
- J Jacobian matrix
- |J|, D Jacobian determinant
- E, F, G Gaussian fundamental quantities of a surface
- ${\mathscr I}$ Moment of Inertia operator/tensor
- $\mathbf{g}(\mathbf{x},t)$ Gravitational field of a continuous body
- \mathcal{Q} Gravitational quadrupole tensor
- ω , Ω Rotational velocity