
Part I

Basic Formulation

Models are to be used, not believed.
H. Theil (Principles of Econometrics)
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1

Getting Concepts and
Gathering Tools

1.1 Vectors and Scalars
In science and engineering we come across many quantities which require both
magnitude and direction for their complete specification, e.g., velocity, acceleration,
momentum, force, angular momentum, torque, electrical current density, electric and
magnetic fields, pressure and temperature gradients, heat flow and so on. To deal with
such quantities, we need laws to represent, combine and manipulate them. Instead of
creating these laws separately for each of these quantities, it makes good sense to create a
mathematical model to set up common laws for all quantities requiring both magnitude
and direction to be specified. This idea is neither new nor alien: right from our childhood
we deal with real numbers and integers which are the mathematical objects representing a
value of ‘something’. This ‘something’ is anything which can be quantified or measured
and whose value is specified as a single entity: length, mass, time, energy, area, volume,
curvature, cash in your pocket, the size of the memory and the speed of your computer,
bank interest rates · · · . The combination and manipulation of these values is effected by
combining and manipulating the corresponding real numbers. Similarly, the values of the
quantities specified by magnitude and direction are represented by vectors. A vector is
completely specified by its magnitude and direction. Note that the magnitude of a vector is
specified by a single real number ≥ 0, so if we wish to change only the magnitude of a
vector, we must have the facility to multiply a vector by a real number, which we call a
scalar in this context. Henceforth, in this book, by a scalar we mean a real number. Thus,
in order to develop an algebra on the set of vectors, we need to associate with it the set of
scalars and define the laws for multiplying a vector by a scalar. If we multiply a vector by
−1 we get the vector with same magnitude but opposite in direction, which, when added
to the original vector gives the zero vector, that is, a vector with zero magnitude and no
direction. Two vectors are equal if they have equal magnitudes and the same direction.
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4 An Introduction to Vectors, Vector Operators and Vector Analysis

In this book we are using boldfaced letters for vectors. A symbol which is not bold, may
represent the magnitude of the corresponding vector, or a scalar.

1.2 Space and Direction
We have not attempted to formally define ‘space’ or ‘direction’ as these are the integral
parts of our experience right from birth. By space we mean the space we live in and move
around. We experience direction by our motion as well as by observing other moving
objects. We call our space three dimensional, (3-D) because given any two different
directions, we can always choose a third direction such that going through any sequence
of displacements along any two of them, we will never move along the third and also
because given any set of four different directions we can always find a sequence of
displacements through any three of them, which will take us along the fourth. In this
book, any n-dimensional object is denoted n-D. We also assume that space is a
continuum, that is, any region of space can be divided arbitrarily and indefinitely into
smaller and smaller regions. Further, we assume that space is an inert vacuum, whose sole
purpose is to make room for different physical phenomena to occur in it. We denote this
space by a symbol R3. You may wonder about this weird symbol. However, we will
understand it in due course. For the time being we just view this symbol as a short name
for our space with the above properties.

In order to incorporate the concept of direction in our model, we note that any straight
line in space specifies two directions, each by the sense in which the line is traversed. In
order to pick one of these two directions, we may put an arrow-head on the line, pointing
in the direction we want to indicate. Thus, a straight line with an arrow is our first model
for specifying direction in space (see Fig. 1.1(a)). We will refine it shortly. Note that if we
parallelly transport a line with an arrow, (that is, the transported line is always parallel to
the original one), it indicates the same direction. Thus, two different directions in space
correspond to two intersecting straight lines with arrows appropriately placed on them.
One of these directions (which we call ‘reference direction’) can be reached from the other
by rotating the other direction about the line normal to the plane containing the two
intersecting lines and passing through the point of intersection, until both, the lines and
the arrows, coincide (see Fig. 1.1(b)). The angular advance made by the rotating line is
simply the angle between the two directions. This angle can be measured by drawing a
circle of radius r in the plane of two intersecting lines with its center at the point of
intersection and measuring the length of the arc of this circle, say S, swept by the rotating
line. The angle θ swept by the rotating line is then given by

S = rθ.

Any arbitrary circle drawn in the specified plane can be used to get the value of angle θ via
the above equation (θ = S/r). In other words, the radius r is arbitrary. It is convenient
to choose a unit circle, that is, a circle with radius unity, (r = 1), so that the arc-length
and the angle swept by the rotating line are numerically equal (see Fig. 1.1(c)). Such a arc-
length measure of angle is called ‘radian measure’. Since the length of the circumference
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Getting Concepts and Gathering Tools 5

of a unit circle is 2π, the angle corresponding to one complete rotation is 2π. The angle
corresponding to half the circumference is π and so on.

This procedure still leaves an ambiguity in defining the angle between two directions.
We can rotate one of the directions (so as to coincide with the other direction) in two ways.
The sense of one rotation is reverse to that of the other. Each of these rotations correspond
to different angles, say θ and 2π − θ (see Fig. 1.1(b)). Which of these rotations do we
choose? We place a clock with its center at the point of intersection of the two lines so as to
view it from the top. We then choose the rotation in the sense opposite to that of the hands
of the clock. This is called counterclockwise rotation.

Fig. 1.1 (a) A line indicates two possible directions. A line with an arrow specifies
a unique direction. (b) The angle between two directions is the amount
by which one line is to be rotated so as to coincide with the other
along with the arrows. Note the counterclockwise and clockwise rotations.
(c) The angle between two directions is measured by the arc of the unit
circle swept by the rotating direction.

The angle swept by a counterclockwise rotation is taken to be positive, while the angle swept
by a clockwise rotation is negative. Note that we can always choose the angle between two
directions to be ≤ π by choosing which direction is to be rotated counterclockwise towards
which (see Fig. 1.2).

Fig. 1.2 We can choose the angle between directions ≤ π by choosing which
direction is to be rotated (counterclockwise) towards which.
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6 An Introduction to Vectors, Vector Operators and Vector Analysis

The angle between two directions is used to specify one direction relative to the other. If
you reflect on your experience, you will realize that the only way to specify a direction is to
specify it relative to some other reference direction which you can determine by observing
something like a magnetic needle. To appreciate this, imagine that you are on a ship sailing
in the mid-pacific. Suppose that you have no device like a magnetic compass or a gyroscope
on the ship (I do not recommend this!) and that clouds block your vision of the pole star
and the other stars. Then it is impossible to tell in which direction your ship is moving.

Exercise Consider three different non-coplanar lines1 intersecting at a point O. Take a
point P which is not on any of these three lines. Put arrows on these three lines to specify
three directions (Draw a figure). Construct a path starting at O and ending at P on which
you are moving either in or opposite to one of the three directions you have specified by
putting arrows on the three lines. Convince yourself that this is always possible. In the light
of the statements made in the first para of this section, this exercise demonstrates that our
space is three dimensional. �

1.3 Representing Vectors in Space
Let us now consider a physical quantity, say electric field, whose ‘values’ are vectors. We call
such a quantity, a ‘vector quantity’. Each value is a specific vector, with given magnitude
and direction. For example, magnitude of earth’s magnetic field can be specified as say,
0.37 gauss and the direction can be given relative to that implied by earth’s polar axis. Any
such vector can be represented in space as follows. Given the magnitude and the direction
of the vector, we draw a line in space in the direction of the vector. Then, we mark out a
segment of this line whose length is proportional to the magnitude of the vector and then
put an arrow at one of the ends of this segment to indicate the direction of the vector.
For example, to represent a vector specifying a value of the electric field, we may choose a
length of 1 cm to correspond to the magnitude of 1 volt/meter. An electric field vector of
magnitude x volts/meter is then represented by a segment of length x cm. Once chosen,
the same constant of proportionality must be used to represent all vectors corresponding
to the electric field. Every vector giving a possible value of a vector quantity is completely
represented in space by the corresponding segment with an arrow at one of its ends. Of
course, the arrow can be placed anywhere on the line segment, not necessarily at one of its
ends.

The end opposite to the arrow on the vector (drawn in space) is called its base point.
Since a vector is completely specified by its magnitude and direction, it can be represented
in space at any point as its base point, because changing the base point does not change the
length or the direction of the vector. Two or more representations of the same vector based
at different points in space are to be taken as the same vector (see Fig. 1.3).

1Any number of lines all of which fall on the same plane are called coplanar . A collection of lines which are not coplanar is
called non-coplanar. A pair of intersecting lines is coplanar.
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Getting Concepts and Gathering Tools 7

Fig. 1.3 Different representations of the same vector in space

Henceforth, by a vector, we will mean the representation of a value of a vector quantity in
space, which is simply proportional to the actual value of the vector quantity it represents.
This enables us to specify every vector by its length and direction, without any reference to
the physical quantity it represents. This gives us the freedom to set up the laws of combining
two or more vectors in the same sense as we set up the laws for combining real or complex
numbers without reference to the quantities they correspond to. Thus, we can develop the
theory of vectors independent of which physical quantity they represent and common to
all applications of vectors. The vectors giving the possible positions of a point particle in
space (relative to some origin) are called the position vectors. The set of all vectors is in one
to one correspondence with the set of points in space.

In some applications, a vector has to be localized in space, that is, it has to be based at
a particular point in space and cannot be parallel transported. A typical example is – the
forces applied at a given set of points on a body which is in mechanical equilibrium, so that
the net force on the body is zero, as well as the net torque about any point of the body is
zero. Here, the set of applied forces are vectors fixed at the points of application. Such a
localization of vectors can be effected by assigning them to the points in space or to the
corresponding position vectors. If the number of vectors we are dealing with is finite and
small, we can assign this set of vectors to the corresponding set of position vectors by giving
an explicit table of assignment. If the vectors and the corresponding position vectors form
a continuum, then the assignment takes the form of a vector valued function of the position
vector variable, say f(x), which is called a vector field (see section 1.15).

Apart from the vectors representing the values of vector quantities in space, we need to
draw another kind of vectors in space. These are called unit vectors whose length is always
unity. Thus, two unit vectors differ only in direction. A unit vector replaces the ‘line with an
arrow’ model to specify a direction in space. The sole purpose of a unit vector is to specify
a direction in space. In particular, the length of a unit vector does not correspond to the
magnitude of any physical quantity. We shall always denote a unit vector by a hat over it,
so that you can recognize it as a unit vector even if that is not explicitly stated. Given a
vector a, â will denote the unit vector in the direction of a. Thus, every vector a , 0 can be
written as

a = |a|â,

where |a| denotes the magnitude of a.
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8 An Introduction to Vectors, Vector Operators and Vector Analysis

The geometric interpretation of the set of real numbers is a straight line, that is, the set
of real numbers is in one to one correspondence with the points on the line. Similarly, the
set of vectors is in one to one correspondence with the points in the three dimensional
space R3. To see this one to one correspondence, consider the set of vectors comprising all
possible values of some vector quantity. We can construct the set containing the
representatives of these vectors in space. One to one correspondence between these two
sets is obvious by construction. To transfer this correspondence to the points in R3 we
take an arbitrary point in space say O, called origin and represent every vector with O as
the base point. Since the vectors have all possible magnitudes and directions, every point
in space is at the tip of some vector based at O, representing a possible value of the vector
quantity. In this way, a unique magnitude and direction is assigned to every point in space,
establishing the one to one correspondence between the set of vectors and the set of points
in space. We could have chosen any other point, sayO′ as the origin and base all vectors at
O′. This gives a new representation for each vector in the set of vectors obtained by
parallelly transporting each vector based at O to that based at O′. These two are the
representations of the same set of vectors (values of a vector quantity). However, they
generate two different one to one correspondences with the points in R3 as can be seen
from Fig. 1.4. We see that changing the origin from O to O′ makes a vector correspond to
two different points in space (or, makes a point in space correspond to two different
vectors) as we assign a vector (based at O or O′) to a point in space. Thus, changing the
origin changes the one to one correspondence between the set of vectors and the points in
space. Later, we will have a closer look at the one to one correspondence between R3 and
the set of vectors (values of a vector quantity).

Fig. 1.4 Shifting origin makes (a) two different vectors correspond to the same point
and (b) two different points correspond to the same vector

1.4 Addition and its Properties
Let us now see how to add two vectors. We will define the addition of vectors using the
representatives of the values of a vector quantity in space. This frees vector addition from
the corresponding vector quantities.

To add a and b, base the vector b at the tip of a. Then, the vector joining the base point
of a to the tip of b, in that direction, is the vector a+b. You can check that a+b = b+ a
(see Fig. 1.5). Notice that the vectors a, b and a+b form a (planar) triangle and hence are
coplanar.
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Getting Concepts and Gathering Tools 9

Fig. 1.5 Vector addition is commutative

The vector a + b is sometimes called the resultant of a and b. The rule of adding two or
more vectors is motivated by the net displacement of an object in space, resulting due to
many successive displacements. Thus, if we go from A to B by travelling 10km NE (vector
a) and then from B to C by travelling 6km W (vector b) the net displacement, 8km due
North from A to C (vector c), is obtained as depicted in Fig. 1.6(a), which is the same as
that given by c = a+ b. Figure 1.6(b) shows the net displacement (f) after four successive
displacements (a,b,c,d) which is consistent with f = a+b+ c+d.

We can now list the properties of vector addition and multiplication by a scalar.

(1) Closure If a,b are in R3 then a + b is also in R3. That is, addition of two vectors
results in a vector.

(2) Commutativity a+b = b+ a (see Fig. 1.5).
(3) Associativity For all vectors a,b,c in R3, a + (b + c) = (a + b) + c. Thus, while

adding three or more vectors, it does not matter which two you add first, which two
next etc, that is, the order in which you add does not matter (see Fig. 1.6(b)).

(4) Identity There is a unique vector 0 such that for every vector a in R3, a+ 0 = a.

(5) Inverse For every vector a , 0 in R3, there is a unique vector −a such that a +
(−a) = 0 and 0± 0 = 0.

To every pair α and a where α is a scalar (i.e., a real number) and a in R3 there is a vector
αa in R3. If we denote by |a| the magnitude of a, then the magnitude of αa is |α| |a|. If
α > 0, the direction of αa is the same as that of a, while if α < 0 then the direction of αa
is opposite to that of a. If α > 0, then αa is said to be the scaling of a by α. Note that α =
1/|a| produces unit vector â in the direction of a. We have, for the scalar multiplication,

(1) Associativity α(βa) = (αβ)a.

(2) Identity 1a = a.
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10 An Introduction to Vectors, Vector Operators and Vector Analysis

Fig. 1.6 (a) Addition of two vectors (see text). (b) Vector AE equals a+b+ c+d.
Draw different figures, adding a,b,c,d in different orders to check that this
vector addition is associative.

Multiplication by scalars is distributive, namely,

(3) α(a+b) = αa+αb.

(4) (α+ β)a = αa+ βa.

Fig. 1.7 αa+αb = α(a+b)

Note that these properties are shared by all vectors independent of the context in which
they are used and independent of which vector quantity they correspond to. As explained
in section 1.3, this is true of all the algebra of vectors and operations on vectors we develop
in this book and will not be stated explicitly again.
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